Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Fomitopsis pinicola

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 993 KiB  
Article
Antibacterial Properties of Submerged Cultivated Fomitopsis pinicola, Targeting Gram-Negative Pathogens, Including Borrelia burgdorferi
by Olga Bragina, Maria Kuhtinskaja, Vladimir Elisashvili, Mikheil Asatiani and Maria Kulp
Sci 2025, 7(3), 104; https://doi.org/10.3390/sci7030104 - 2 Aug 2025
Viewed by 161
Abstract
The rise in multidrug-resistant bacterial strains and persistent infections such as Lyme disease caused by Borrelia burgdorferi highlights the need for novel antimicrobial agents. The present study explores the antioxidant, antibacterial, and cytotoxic properties of extracts from submerged mycelial biomass of Fomitopsis pinicola [...] Read more.
The rise in multidrug-resistant bacterial strains and persistent infections such as Lyme disease caused by Borrelia burgdorferi highlights the need for novel antimicrobial agents. The present study explores the antioxidant, antibacterial, and cytotoxic properties of extracts from submerged mycelial biomass of Fomitopsis pinicola, cultivated in synthetic and lignocellulosic media. Four extracts were obtained using hot water and 80% ethanol. The provided analysis of extracts confirmed the presence of various bioactive compounds, including flavonoids, alkaloids, and polyphenols. All extracts showed dose-dependent antioxidant activity (IC50: 1.9–6.7 mg/mL). Antibacterial tests revealed that Klebsiella pneumoniae was most sensitive, with the L2 extract producing the largest inhibition zone (15.33 ± 0.47 mm), while the strongest bactericidal effect was observed against Acinetobacter baumannii (MBC as low as 0.5 mg/mL for L1). Notably, all extracts significantly reduced the viability of stationary-phase B. burgdorferi cells, with L2 reducing viability to 42 ± 2% at 5 mg/mL, and decreased biofilm mass, especially with S2. Cytotoxicity assays showed minimal effects on NIH 3T3 cells, with slight toxicity in HEK 293 cells for S2 and L1. These results suggest that F. pinicola extracts, particularly ethanolic L2 and S2, may offer promising natural antimicrobial and antioxidant agents for managing resistant infections. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

13 pages, 3376 KiB  
Article
Research on the Prevention and Control of Korean Pine Wood Decay by Bacillus amyloliquefaciens AW3
by Jing Sun, Yanan Wang, Dongpeng Zhao, Hao Li, Yuanchao Li, Jingkui Li and Dawei Qi
Forests 2025, 16(6), 1030; https://doi.org/10.3390/f16061030 - 19 Jun 2025
Viewed by 333
Abstract
As one of the decay-resistant woods, Korean pine is widely used in the construction industry. However, even the most corrosion-resistant wood is still susceptible to decay under the right humidity and temperature conditions. In this study, Bacillus amyloliquefaciens (B. amyloliquefaciens) bacterial [...] Read more.
As one of the decay-resistant woods, Korean pine is widely used in the construction industry. However, even the most corrosion-resistant wood is still susceptible to decay under the right humidity and temperature conditions. In this study, Bacillus amyloliquefaciens (B. amyloliquefaciens) bacterial liquid and filter bacterial solution were prepared for the anti-corrosion treatment of Korean pine wood, aiming to improve its decay-resistant property. Through the plate confrontation test, it was discovered that B. amyloliquefaciens AW3 could significantly inhibit the growth of Fomitopsis pinicola (F. Pinicola). The results of mass loss rate, mechanical properties test, XRD, FTIR and SEM analysis showed that the preserved Korean pine wood had significant improvement in various properties compared with the decayed wood, which was manifested in the significant reduction of mass loss, improvement of mechanical properties, and increased wood cellulose diffraction peak intensity. There is no mycelium infection of F. pinicola in Korean pine wood, and the antiseptic liquid can penetrate into the wood evenly, which plays an effective antiseptic role. The B. amyloliquefaciens bacterial liquid exhibited superior preservative performance compared to the B. amyloliquefaciens filter bacterial solution. In conclusion, B. amyloliquefaciens, as an efficient and environmentally friendly biological preservative, holds broad application prospects in improving the anti-corrosion performance of Korean pine wood. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

12 pages, 1751 KiB  
Article
Transcriptomic Insights into the Degradation Mechanisms of Fomitopsis pinicola and Its Host Preference for Coniferous over Broadleaf Deadwood
by Jianbin Xue, Yulian Wei, Liting Chen and Haisheng Yuan
Microorganisms 2025, 13(5), 1006; https://doi.org/10.3390/microorganisms13051006 - 27 Apr 2025
Viewed by 429
Abstract
The degradation of deadwood is a vital ecological process for geochemical cycling and biodiversity conservation, with two main routes of fungal degradation: brown and white rot. Brown rot fungi cause severe destruction of wood cellulose and lead to brown and modified lignin residue. [...] Read more.
The degradation of deadwood is a vital ecological process for geochemical cycling and biodiversity conservation, with two main routes of fungal degradation: brown and white rot. Brown rot fungi cause severe destruction of wood cellulose and lead to brown and modified lignin residue. Fomitopsis pinicola is a typical brown rot fungus with a distinct host preference for coniferous trees. The mechanisms through which this fungus degrades coniferous and broadleaf wood remain poorly understood. Therefore, in this study, a 60-day cultivation experiment involving F. pinicola growing on deadwood strips of Pinus koraiensis and Betula platyphylla separately was performed. A comparative transcriptome analysis was carried out to explore the mechanisms underlying the differences in degradation, in terms of both physicochemical properties and transcriptomic data. The findings revealed that the host preference of F. pinicola resulted in the more efficient degradation of coniferous wood than broadleaf wood, accompanied by higher gene expression levels. GO enrichment analysis indicated that this preference was primarily associated with the hydrolytic enzyme family and processes related to the Fenton reaction, which is characteristic of brown rot fungi. Furthermore, the KEGG pathways showed that the DEGs were enriched in mainly included histidine metabolism, fatty acid degradation, and so on, indicating underlying carbohydrate and lipid metabolism processes. These results support P. pinicola’s strong ability to degrade the deadwood lignin of P. koraiensis, reflecting its adaptive evolution in host selection and choice of different ecological niches. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 5564 KiB  
Article
Identification of a Fomitopsis pinicola from Xiaoxing’an Mountains and Optimization of Cellulase Activity
by Jing Sun, Hong Yang, Shangjie Ge-Zhang, Yujie Chi and Dawei Qi
Forests 2024, 15(9), 1673; https://doi.org/10.3390/f15091673 - 23 Sep 2024
Cited by 2 | Viewed by 1177
Abstract
Brown-rot fungi are large fungi that can decompose the cell walls of wood; they are notable for their secretion of diverse and complex enzymes that synergistically hydrolyze natural wood cellulose molecules. Fomitopsis pinicola (F. pinicola) is a brown-rot fungus of interest [...] Read more.
Brown-rot fungi are large fungi that can decompose the cell walls of wood; they are notable for their secretion of diverse and complex enzymes that synergistically hydrolyze natural wood cellulose molecules. Fomitopsis pinicola (F. pinicola) is a brown-rot fungus of interest for its ability to break down the cellulose in wood efficiently. In this study, through a combination of rDNA-ITS analysis and morphological observation, the wood decay pathogen infecting Korean pine (Pinus koraiensis Siebold and Zucc.) was identified. Endoglucanase (CMCase) and β-glucosidase were quantified using the DNS (3,5-Dinitrosalicylic acid) method, and the cellulase activity was optimized using a single-factor method and orthogonal test. The results revealed that the wood-decaying fungus NE1 identified was Fomitopsis pinicola with the ITS accession number OQ880566.1. The highest cellulase activity of the strain reached 116.94 U/mL under the condition of an initial pH of 6.0, lactose 15 g·L−1, KH2PO4 0.5 g·L−1, NH4NO3 15 g·L−1, MgSO4 0.5 g·L−1, VB1 0.4 g·L−1, inoculated two 5 mm fungal cakes in 80 mL medium volume cultured 28 °C for 5 days. This laid a foundation for improving the degradation rate of cellulose and biotransformation research, as well as exploring the degradation of cellulose by brown rot fungi. Full article
(This article belongs to the Special Issue Fungal Biodiversity, Systematics, and Evolution)
Show Figures

Figure 1

13 pages, 5546 KiB  
Review
Investigating the Potential of Polypore Fungi as Eco-Friendly Materials in Food Industry Applications
by Tomasz Pawłowicz, Karolina Anna Gabrysiak and Konrad Wilamowski
Forests 2024, 15(7), 1230; https://doi.org/10.3390/f15071230 - 15 Jul 2024
Cited by 2 | Viewed by 1897
Abstract
Polyporoid fungi represent an untapped resource in the ancillary use of forests, traditionally utilized in both historic and contemporary medicine for their diverse bioactive properties, yet their potential for creating materials within the food industry remains largely unexplored. This article delves into the [...] Read more.
Polyporoid fungi represent an untapped resource in the ancillary use of forests, traditionally utilized in both historic and contemporary medicine for their diverse bioactive properties, yet their potential for creating materials within the food industry remains largely unexplored. This article delves into the polyporoid fungi as a promising, yet underutilized, biomaterial resource for eco-friendly applications in the food sector. Despite their widespread use in traditional and modern medicine, the exploration of these fungi for industrial applications, particularly in food storage solutions and utensils, is in its nascent stages. The Białowieża Primeval Forest, characterized by its abundant deadwood and minimal human intervention, offers a rich repository of polyporoid fungi. This study aims to illuminate the ecological significance and potential industrial applications of polyporoid fungi. By reviewing existing research and synthesizing insights into the genetic diversity, biochemical capabilities, and ecological roles of polyporoid species such as Fomes fomentarius, Fomitopsis pinicola, and Trametes versicolor, this article proposes a novel approach to leveraging polyporoid fungi in developing sustainable solutions that meet current environmental and health-conscious trends. The investigation not only underscores the potential of polyporoid fungi in advancing green technologies but also highlights the importance of utilizing renewable resources in material science, fostering a shift towards more sustainable industrial practices. Full article
(This article belongs to the Special Issue Non-timber Forest Products: Beyond the Wood)
Show Figures

Figure 1

9 pages, 1258 KiB  
Article
The Specific and Total CO2 Emission Activity of Wood-Decaying Fungi and Their Response to Increases in Temperature
by Victor A. Mukhin, Daria K. Diyarova and Elena V. Zhuykova
J. Fungi 2024, 10(7), 448; https://doi.org/10.3390/jof10070448 - 26 Jun 2024
Cited by 1 | Viewed by 1313
Abstract
The CO2 emission activity of xylotrophic fungi responding to an increase in temperature in the range of 10–30 °C with pure dikaryotic cultures of Fomes fomentarius s. str., F. inzengae, Fomitopsis betulina, F. pinicola, and Phellinus igniarius was analyzed. [...] Read more.
The CO2 emission activity of xylotrophic fungi responding to an increase in temperature in the range of 10–30 °C with pure dikaryotic cultures of Fomes fomentarius s. str., F. inzengae, Fomitopsis betulina, F. pinicola, and Phellinus igniarius was analyzed. Emission activity was assessed by the difference in CO2 concentration in 0.5 L exposure chambers with Petri dishes with mycelium growing on agar at the beginning of exposure and an hour later using a Gasmet DX-4030 FTIR spectrometer (Gasmet Technologies Oy, Finland), error measurements ±50 ppm. Specific (μg CO2/cm2/h) and total (μg CO2/h) emission activity and its relationship with temperature and size (area) of the mycelium were assessed. It is shown that in the range of 10–30 °C, the specific and total CO2 emission activity of the mycelium is closely and positively related to temperature. Specific emission, which is an indicator of the respiratory activity of the mycelium, does not depend on its size; its only driver is temperature, the relationship with which is linear: an increase in temperature by 10 °C causes an increase in the specific emission activity of the mycelium by 1.7 times. The total CO2 emission activity, which is an indicator of the total amount of CO2 emitted, is directly proportional to the specific emission activity and the size of the mycelium. In the range of 10–30 °C, an increase in temperature causes an almost equal increase in both the specific emission activity of the mycelium (Q10 1.7) and its growth (Q10 1.5) and causes an exponential increase in the total emission of CO2. This must be taken into account when predicting CO2 emissions from woody debris under climate change, as it could potentially contribute to accelerating climate change. Full article
Show Figures

Figure 1

13 pages, 2110 KiB  
Article
Decay and Termite Resistance of Wood Modified by High-Temperature Vapour-Phase Acetylation (HTVPA), a Simultaneous Acetylation and Heat Treatment Modification Process
by Zhong-Yao Wang, Jin-Wei Xu, Jian-Wei Liu, Ke-Chang Hung, Tung-Lin Wu, Wen-Shao Chang and Jyh-Horng Wu
Polymers 2024, 16(11), 1601; https://doi.org/10.3390/polym16111601 - 5 Jun 2024
Cited by 2 | Viewed by 1442
Abstract
High-temperature vapour-phase acetylation (HTVPA) is a simultaneous acetylation and heat treatment process for wood modification. This study was the first investigation into the impact of HTVPA treatment on the resistance of wood to biological degradation. In the termite resistance test, untreated wood exhibited [...] Read more.
High-temperature vapour-phase acetylation (HTVPA) is a simultaneous acetylation and heat treatment process for wood modification. This study was the first investigation into the impact of HTVPA treatment on the resistance of wood to biological degradation. In the termite resistance test, untreated wood exhibited a mass loss (MLt) of 20.3%, while HTVPA-modified wood showed a reduced MLt of 6.6–3.2%, which decreased with an increase in weight percent gain (WPG), and the termite mortality reached 95–100%. Furthermore, after a 12-week decay resistance test against brown-rot fungi (Laetiporus sulfureus and Fomitopsis pinicola), untreated wood exhibited mass loss (MLd) values of 39.6% and 54.5%, respectively, while HTVPA-modified wood exhibited MLd values of 0.2–0.9% and −0.2–0.3%, respectively, with no significant influence from WPG. Similar results were observed in decay resistance tests against white-rot fungi (Lenzites betulina and Trametes versicolor). The results of this study demonstrated that HTVPA treatment not only effectively enhanced the decay resistance of wood but also offered superior enhancement relative to separate heat treatment or acetylation processes. In addition, all the HTVPA-modified wood specimens prepared in this study met the requirements of the CNS 6717 wood preservative standard, with an MLd of less than 3% for decay-resistant materials. Full article
Show Figures

Figure 1

23 pages, 6034 KiB  
Article
Bioprospecting of Selected Species of Polypore Fungi from the Western Balkans
by Maja Kozarski, Anita Klaus, Bojana Špirović-Trifunović, Srdjan Miletić, Vesna Lazić, Željko Žižak and Jovana Vunduk
Molecules 2024, 29(2), 314; https://doi.org/10.3390/molecules29020314 - 8 Jan 2024
Cited by 6 | Viewed by 2536
Abstract
Growing mushrooms means meeting challenges while aiming for sustainability and circularity. Wherever the producer is located, commercial strains are the same originating from several producers. Customized strains adapted to local conditions are urgently needed. Before introducing new species to the strain development pipeline, [...] Read more.
Growing mushrooms means meeting challenges while aiming for sustainability and circularity. Wherever the producer is located, commercial strains are the same originating from several producers. Customized strains adapted to local conditions are urgently needed. Before introducing new species to the strain development pipeline, the chemical characterization and biological activity of wild ones need to be assessed. Accordingly, the mycoceutical potential of five polypore mushroom species from Serbia was evaluated including: secondary metabolite composition, oxidative damage prevention, anti-tyrosinase, and anti-angiotensin converting enzyme (ACE). The phenolic pattern was comparable in all samples, but the amounts of specific chemicals varied. Hydroxybenzoic acids were the primary components. All samples had varying quantities of ascorbic acid, carotene, and lycopene, and showed a pronounced inhibition of lipid peroxidation (LPx) and ability to scavenge HO. Extracts were more potent tyrosinase inhibitors but unsuccessful when faced with ACE. Fomitopsis pinicola had the strongest anti-tumor efficacy while Ganoderma lucidum demonstrated strong selectivity in anti-tumor effect in comparison to normal cells. The evaluated species provided a solid foundation for commercial development while keeping local ecology in mind. Full article
(This article belongs to the Special Issue Functional Evaluation of Bioactive Compounds from Natural Sources)
Show Figures

Graphical abstract

20 pages, 4411 KiB  
Article
Wood-Decaying Fungi: From Timber Degradation to Sustainable Insulating Biomaterials Production
by Camila Charpentier-Alfaro, Jorge Benavides-Hernández, Marco Poggerini, Alfonso Crisci, Giacomo Mele, Gianni Della Rocca, Giovanni Emiliani, Angela Frascella, Tommaso Torrigiani and Sabrina Palanti
Materials 2023, 16(9), 3547; https://doi.org/10.3390/ma16093547 - 5 May 2023
Cited by 23 | Viewed by 4366
Abstract
Addressing the impacts of climate change and global warming has become an urgent priority for the planet’s well-being. In recent decades the great potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. These new materials [...] Read more.
Addressing the impacts of climate change and global warming has become an urgent priority for the planet’s well-being. In recent decades the great potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. These new materials present the added advantage of having a reduced carbon footprint, less environmental impact and contributing to the shift away from a fossil-based economy. This study focused on the production of insulation panels using fungal mycelium and lignocellulosic materials as substrates. The process was optimized, starting with the selection of Trametes versicolor, Pleurotus ostreatus, P. eryngii, Ganoderma carnosum and Fomitopsis pinicola isolates, followed by the evaluation of three grain spawn substrates (millet, wheat and a 1:1 mix of millet and wheat grains) for mycelium propagation, and finishing with the production of various mycelium-based composites using five wood by-products and waste materials (pine sawdust, oak shavings, tree of heaven wood chips, wheat straw and shredded beech wood). The obtained biomaterials were characterized for internal structure by X-ray micro-CT, thermal transmittance using a thermoflowmeter and moisture absorption. The results showed that using a wheat and millet 1:1 (w/w) mix is the best option for spawn production regardless of the fungal isolate. In addition, the performance of the final composites was influenced both by the fungal isolate and the substrate used, with the latter having a stronger effect on the measured properties. The study shows that the most promising sustainable insulating biomaterial was created using T. versicolor grown on wheat straw. Full article
Show Figures

Figure 1

12 pages, 1131 KiB  
Article
Nematodes Consume Four Species of a Common, Wood-Decay Fungus
by Abigail Ferson-Mitchell, Lynn Carta, John-Erich Haight and George Newcombe
Forests 2023, 14(3), 634; https://doi.org/10.3390/f14030634 - 21 Mar 2023
Viewed by 1861
Abstract
Since nitrogen is in short supply in wood yet relatively plentiful in the bodies of nematodes, wood-decay fungi have been thought to be nematophagous. In an earlier study, we confirmed the nematophagy of two species of wood-decay fungi (Pleurotus ostreatus and P. [...] Read more.
Since nitrogen is in short supply in wood yet relatively plentiful in the bodies of nematodes, wood-decay fungi have been thought to be nematophagous. In an earlier study, we confirmed the nematophagy of two species of wood-decay fungi (Pleurotus ostreatus and P. pulmonarius), although we also found nematode species that could turn the tables and consume Pleurotus. In this study, we tested interactions between nematode species and Fomitopsis, another genus of common wood-decay fungi. Four geographically distinct isolates, or provenances, within each of four species (i.e., the European F. pinicola and three North American species: F. ochracea, F. schrenkii, and F. mounceae) were confronted with a total of twenty nematode species (twenty-four strains) in four experiments. Nematophagy was observed much less frequently in Fomitopsis than in Pleurotus: only 31 of the 516 interactions (6%), overall, resulted in nematophagy by a Fomitopsis isolate, whereas with Pleurotus, the result was 16 of 28 (57%). In contrast, all 20 species of nematode here were capable of mycophagy and dominated interactions with all isolates of Fomitopsis overall. Clearly, not all wood-decay fungi are as strongly nematophagous as the Pleurotus species. Perhaps arboreal nematodes even tend towards mycophagy, given the limiting nitrogen in wood. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

17 pages, 1188 KiB  
Article
Use of Secondary Metabolites of Wood-Decaying Fungi to Reduce Damping off Disease
by Urszula Waszczuk, Ewa Zapora, Daria Berezovska, Marcin Stocki, Marek Wołkowycki, Tadeusz Malewski, Tom Hsiang, Tomasz Oszako and Piotr Borowik
Forests 2022, 13(8), 1208; https://doi.org/10.3390/f13081208 - 1 Aug 2022
Cited by 9 | Viewed by 3108
Abstract
Phytopathogenic fungi can cause plant diseases that are difficult to control, including mass mortality of some tree species. The Fusarium oxysporum complex (sensu lato) is one of the most dangerous groups of phytopathogenic fungi, causing the death of conifer species, including [...] Read more.
Phytopathogenic fungi can cause plant diseases that are difficult to control, including mass mortality of some tree species. The Fusarium oxysporum complex (sensu lato) is one of the most dangerous groups of phytopathogenic fungi, causing the death of conifer species, including Pinus sylvestris seedlings in forest and ornamental nurseries. Recently, non-chemical methods of plant protection have become the basis of integrated pest management (IPM) in the European Union (EC Directive). The possibility of protection of pine seedlings against the pathogen F. oxysporum using active substances from wood-destroying fungi commonly found in forests was examined. Methanolic extracts of Fomitopsis pinicola, Ganoderma applanatum, and Trametes versicolor were found to contain substances effective in both prevention and treatment of infected seedlings. G. applanatum and T. versicolor showed particular biological activity in increasing plant resistance. Efficacy, especially of the extract of F. pinicola, increased with concentration. Further field trials are needed to confirm the results obtained in laboratory tests on plant protection. Full article
(This article belongs to the Special Issue Biological Control in Forests Protection)
Show Figures

Figure 1

18 pages, 2698 KiB  
Article
Screening for Antibacterial Activity of French Mushrooms against Pathogenic and Multidrug Resistant Bacteria
by Clément Huguet, Mélanie Bourjot, Jean-Michel Bellanger, Gilles Prévost and Aurélie Urbain
Appl. Sci. 2022, 12(10), 5229; https://doi.org/10.3390/app12105229 - 21 May 2022
Cited by 15 | Viewed by 3918
Abstract
In the alarming context of antibiotic resistance, we explored the antibacterial potential of French mushrooms against wild-type and multidrug-resistant (MDR) bacteria. In order to accelerate the discovery of promising compounds, screenings were carried out by TLC-direct bioautography. A total of 70 extracts from [...] Read more.
In the alarming context of antibiotic resistance, we explored the antibacterial potential of French mushrooms against wild-type and multidrug-resistant (MDR) bacteria. In order to accelerate the discovery of promising compounds, screenings were carried out by TLC-direct bioautography. A total of 70 extracts from 31 mushroom species were evaluated against five wild-type bacteria: Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. This first screening revealed that 95% of the extracts contained antibacterial compounds. Generally, it was observed that EtOAc extracts exhibited more active compounds than methanolic extracts. In addition, all extracts were overall more active against Gram-positive bacteria than against Gram-negative strains. The most promising mushroom extracts were then screened against various multidrug-resistant strains of S. aureus and E. coli. Activity was globally less on MDR strains; however, two mushroom species, Fomitopsis pinicola and Scleroderma citrinum, still contained several compounds inhibiting the growth of these MDR pathogenic bacteria. Stearic acid was identified as a ubiquitous compound contributing to the antibacterial defence of mushrooms. This screening revealed the potential of macromycetes as a source of antibacterial compounds; further assays are necessary to consider fungal compounds as promising drugs to counter antibiotic resistance. Full article
(This article belongs to the Special Issue Microbiology and Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

22 pages, 573 KiB  
Article
Use of Different Types of Biosorbents to Remove Cr (VI) from Aqueous Solution
by Eva Pertile, Tomáš Dvorský, Vojtěch Václavík and Silvie Heviánková
Life 2021, 11(3), 240; https://doi.org/10.3390/life11030240 - 14 Mar 2021
Cited by 30 | Viewed by 3233
Abstract
This article summarizes the results of a research study that was focused on the possibility of removing Cr (VI) from aqueous solution, using low-cost waste biomaterial in a batch mode. A set of seven biosorbents was used: Fomitopsis pinicola, a mixture of [...] Read more.
This article summarizes the results of a research study that was focused on the possibility of removing Cr (VI) from aqueous solution, using low-cost waste biomaterial in a batch mode. A set of seven biosorbents was used: Fomitopsis pinicola, a mixture of cones, peach stones, apricot stones, Juglans regia shells, orange peels, and Merino sheep wool. Three grain fractions (fr. 1/2, fr. 0.5/1.0, and fr. 0/0.5 mm) of biosorbents were studied. The aim was to find the most suitable biosorbent that can be tested with real samples. The influence of other factors on the course of biosorption was studied as well (chemical activation of the biosorbent, pH value, rotation speed during mixing, temperature, and the influence of biosorbent concentration). The use of chemical activation and adjustment of the pH to 1.1 to 2.0 make it possible to increase their sorption capacity and, for some biosorbents, to shorten the exposure times. Two kinetic models were used for the analysis of the experimental data, to explain the mechanism of adsorption and its possible speed control steps: pseudo-first and pseudo-second-order. The pseudo-second-order kinetic model seems to be the most suitable for the description of the experimental data. The thermodynamic parameters suggest that the biosorption was endothermic and spontaneous. In the biosorption equilibrium study, the adsorption data were described by using Langmuir and Freundlich adsorption isotherms. The Langmuir model was applicable to describe the adsorption data of all biosorbents. Both models are suitable for chemically treated sheep fleece and peach stones. Full article
(This article belongs to the Special Issue Microbial Degradation and Biosorbents)
Show Figures

Figure 1

20 pages, 3091 KiB  
Article
Aspects Determining the Dominance of Fomitopsis pinicola in the Colonization of Deadwood and the Role of the Pathogenicity Factor Oxalate
by Gerhard Gramss
Forests 2020, 11(3), 290; https://doi.org/10.3390/f11030290 - 3 Mar 2020
Cited by 9 | Viewed by 2927
Abstract
Carbon and mineral cycling in sustainable forest systems depends on a microbiome of basidiomycetes, ascomycetes, litter-degrading saprobes, ectomycorrhizal, and mycoparasitic fungi that constitute a deadwood degrading consortium. The brown rot basidiomycete Fomitopsis pinicola (Swartz: Fr.) P. Karsten (Fp), as an oxalate-producing facultative pathogen, [...] Read more.
Carbon and mineral cycling in sustainable forest systems depends on a microbiome of basidiomycetes, ascomycetes, litter-degrading saprobes, ectomycorrhizal, and mycoparasitic fungi that constitute a deadwood degrading consortium. The brown rot basidiomycete Fomitopsis pinicola (Swartz: Fr.) P. Karsten (Fp), as an oxalate-producing facultative pathogen, is an early colonizer of wounded trees and fresh deadwood. It replaces basidiomycetous white rot fungi and non-basidiomycetous fungal phyla in the presence of its volatilome, but poorly in its absence. With the goal of determining its dominance over the most competitive basidiomycetes and its role in fungal successions within the forest microbiome in general, Fp was exposed to the white rot fungus Kuehneromyces mutabilis (Schaeff.: Fr.) Singer & Smith (Km) in aseptic dual culture established on fertilized 100 mm-long wood dust columns in glass tubes with the inclusion of their volatilomes. For the mycelia approaching from the opposite ends of the wood dust columns, the energy-generating systems of laccase and manganese peroxidase (MnP), the virulence factor oxalate, and the exhalation of terpenes were determined by spectrophotometry, High Pressure Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS). Km mycelia perceived the approaching Fp over 20 mm of non-colonized wood dust, reduced the laccase activity to 25%, and raised MnP to 275%–500% by gaining energy and presumably by controlling oxalate, H2O2, and the dropping substrate pH caused by Fp. On mycelial contact, Km stopped Fp, secured its substrate sector with 4 mm of an impermeable barrier region during an eruption of antimicrobial bisabolenes, and dropped from the invasion mode of substrate colonization into the steady state mode of low metabolic and defensive activity. The approaching Fp raised the oxalate production throughout to >20 g kg−1 to inactivate laccase and caused, with pH 1.4–1.7, lethal conditions in its substrate sector whose physiological effects on Km could be reproduced with acidity conditions incited by HCl. After a mean lag phase of 11 days, Fp persisting in a state of high metabolic activity overgrew and digested the debilitated Km thallus and terminated the production of oxalate. It is concluded that the factors contributing to the competitive advantage of F. pinicola in the colonization of wounded trees and pre-infected deadwood are the drastic long-term acidification of the timber substrate, its own insensitivity to extremely low pH conditions, its efficient control of the volatile mono- and sesquiterpenes of timber and microbial origin, and the action of a undefined blend of terpenes and allelopathic substances. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

10 pages, 582 KiB  
Review
Characterisation of Extracts and Anti-Cancer Activities of Fomitopsis pinicola
by Karen S. Bishop
Nutrients 2020, 12(3), 609; https://doi.org/10.3390/nu12030609 - 26 Feb 2020
Cited by 20 | Viewed by 6550
Abstract
Fomitopsis pinicola (Sw. Karst) is a common bracket fungus, with a woody texture. It is found predominantly in coniferous forests in temperate regions throughout Europe and Asia. Fomitopsis pinicola has been extensively used for medicinal purposes, particularly in Chinese and Korean traditional medicine. [...] Read more.
Fomitopsis pinicola (Sw. Karst) is a common bracket fungus, with a woody texture. It is found predominantly in coniferous forests in temperate regions throughout Europe and Asia. Fomitopsis pinicola has been extensively used for medicinal purposes, particularly in Chinese and Korean traditional medicine. In this mini-review, the anti-cancer characteristics of F. pinicola extracts were investigated. In vitro experiments revealed the pro-apoptotic, anti-oxidant and anti-inflammatory properties of extracts, whilst two of three in vivo studies reported an inhibition of tumour growth and prolonged survival. Only studies wherein fungal specimens were sourced from Europe or Asia were included in this review, as samples sourced as F. pinicola from North America were probably not F. pinicola, but a different species. Although not one of the most revered fungal species, F. pinicola has been used as a medicinal fungus for centuries, as well as consumed as a health food supplement. To date, the results from only three in vivo studies, investigating anti-cancer properties, have been published. Further studies, using comprehensively identified specimens, are required to fully elucidate the anti-cancer properties of F. pinicola extracts. Full article
(This article belongs to the Special Issue The Application of Mushrooms or Mushroom Extracts to Enhance Health)
Show Figures

Figure 1

Back to TopTop