The Specific and Total CO2 Emission Activity of Wood-Decaying Fungi and Their Response to Increases in Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudeyarov, V.; Zavarzin, G.; Blagodatskii, S.; Borisov, A.; Voronin, P.Y.; Demkin, V.; Demkina, T.; Evdokimov, I.; Zamolodchikov, D.; Karelin, D.; et al. Pools and Fluxes of Carbon in Terrestrial Ecosystems of Russia; Nauka: Moscow, Russia, 2007. (In Russian) [Google Scholar]
- Wu, J.; Zhang, X.; Wang, H.; Sun, J.; Guan, D. Respiration of Downed Logs in an Old-Growth Temperate Forest in North-Eastern China. Scand. J. For. Res. 2010, 25, 500–506. [Google Scholar] [CrossRef]
- Safonov, S.S.; Karelin, D.V.; Grabar, V.A.; Latyshev, B.A.; Grabovskiy; Uvarova, N.E.; Zamolodchikov, D.G.; Korotkov, V.N.; Gytarsky, M.L. Carbon emissions from the decomposition of dead wood in the southern taiga spruce forest. Russ. J. For. Sci. 2012, 5, 44–49. [Google Scholar]
- Journeaux, K.L.; Boddy, L.; Rowland, L.; Hartley, I.P. A Positive Feedback to Climate Change: The Effect of Temperature on the Respiration of Key Wood-Decomposing Fungi Does Not Decline with Time. Glob. Chang. Biol. 2024, 30, e17212. [Google Scholar] [CrossRef] [PubMed]
- Zavarzin, G.A.; Zavarzina, A.G. Xylotrophic and Mycophilic Bacteria in Formation of Dystrophic Waters. Microbiology 2009, 78, 523–534. [Google Scholar] [CrossRef]
- Rayner, A.D.M.; Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology; Wiley: Hoboken, NJ, USA, 1988; ISBN 978-0-471-10310-3. [Google Scholar]
- Boddy, L.; Watkinson, S.C. Wood Decomposition, Higher Fungi, and Their Role in Nutrient Redistribution. Botany 1995, 73, 1377–1383. [Google Scholar] [CrossRef]
- Watkinson, S.; Bebber, D.; Darrah, P.; Fricker, M.; Tlalka, M.; Boddy, L. The Role of Wood Decay Fungi in the Carbon and Nitrogen Dynamics of the Forest Floor. In Fungi in Biogeochemical Cycles; Gadd, G.M., Ed.; British Mycological Society Symposia; Cambridge University Press: Cambridge, UK, 2006; pp. 151–181. ISBN 978-0-521-84579-3. [Google Scholar]
- Baldrian, P.; Lindahl, B. Decomposition in Forest Ecosystems: After Decades of Research Still Novel Findings. Fungal Ecol. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Mukhin, V.A.; Diyarova, D.K. Eco-Physiological Adaptations of the Xylotrophic Basidiomycetes Fungi to CO2 and O2 Mode in the Woody Habitat. J. Fungi 2022, 8, 1296. [Google Scholar] [CrossRef] [PubMed]
- Mukhin, V.A.; Diyarova, D.K.; Gitarskiy, M.L.; Zamolodchikov, D.G. Carbon and Oxygen Gas Exchange in Woody Debris: The Process and Climate-Related Drivers. Forests 2021, 12, 1156. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The Temperature Dependence of Soil Organic Matter Decomposition, and the Effect of Global Warming on Soil Organic C Storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, V.A. Respiratory Gas Exchange of Wood; LGU: Leningrad, Russia, 1987. (In Russian) [Google Scholar]
- Chen, H.; Harmon, M.E.; Griffiths, R.P.; Hicks, W. Effects of Temperature and Moisture on Carbon Respired from Decomposing Woody Roots. For. Ecol. Manag. 2000, 138, 51–64. [Google Scholar] [CrossRef]
- Zhou, L.; Dai, L.; Gu, H.; Zhong, L. Review on the Decomposition and Influence Factors of Coarse Woody Debris in Forest Ecosystem. J. For. Res. 2007, 18, 48–54. [Google Scholar] [CrossRef]
- Olajuyigbe, S.; Tobin, B.; Nieuwenhuis, M. Temperature and Moisture Effects on Respiration Rate of Decomposing Logs in a Sitka Spruce Plantation in Ireland. For. Int. J. For. Res. 2012, 85, 485–496. [Google Scholar] [CrossRef]
- Diyarova, D.K.; Vladykina, V.D.; Mukhin, V.A. Temperature Effect on CO2 Emission by Two Xylotrophic Fungi and by Wood Debris. Russ. J. Ecol. 2023, 54, 213–220. [Google Scholar] [CrossRef]
- Bilay, V.I. (Ed.) Methods of Experimental Mycology; Naukova Dumka: Kyiv, Ukraine, 1982. (In Russian) [Google Scholar]
- Ryvarden, L.; Gilbertson, R.L. European Polypores: Abortiporus–Lindtneria; European Polypores; Fungiflora: Oslo, Norway, 1993; ISBN 978-82-90724-12-7. [Google Scholar]
- Index Fungorum Home Page. Available online: https://www.indexfungorum.org/ (accessed on 28 May 2024).
- Judova, J.; Dubikova, K.; Gaperova, S.; Gaper, J.; Pristas, P. The Occurrence and Rapid Discrimination of Fomes fomentarius Genotypes by ITS-RFLP Analysis. Fungal Biol. 2012, 116, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Peintner, U.; Kuhnert-Finkernagel, R.; Wille, V.; Biasioli, F.; Shiryaev, A.; Perini, C. How to Resolve Cryptic Species of Polypores: An Example in Fomes. IMA Fungus 2019, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhuykova, E.V.; Mukhin, V.A. Diversity and Ecological Features of Phylogenetic Lineages of Tinder Fungus in the Urals. Russ. J. Ecol. 2022, 53, 366–372. [Google Scholar] [CrossRef]
Temperature, °C | Time | Fomitopsis betulina | Specific Emission, µg CO2/cm2/h | Phellinus igniarius | Specific Emission, µg CO2/cm2/h | ||
---|---|---|---|---|---|---|---|
Mycelium Area, cm2 | Total Emission, µg CO2/h | Mycelium Area, cm2 | Total Emission, µg CO2/h | ||||
10 | 0 h | 10 ± 0.5 | 182 ± 5.0 | 18 ± 0.8 | 6 ± 0.2 | 168 ± 12.0 | 30 ± 2.8 |
24 h | 13 ± 1.4 | 233 ± 1.1 | 19 ± 2.0 | 6 ± 0.2 | 165 ± 47.1 | 30 ± 8.7 | |
20 | 0 h | 13 ± 1.4 | 303 ± 69.2 | 25 ± 7.1 | 6 ± 0.2 | 326 ± 21.9 | 56 ± 4.3 |
24 h | 21 ± 1.6 | 490 ± 10.2 | 24 ± 2.2 | 9 ± 0.5 | 517 ± 11.2 | 60 ± 4.9 | |
25 | 0 h | 21 ± 1.6 | 671 ± 52.5 | 32 ± 2.6 | 9 ± 0.5 | 697 ± 20.1 | 80 ± 2.7 |
24 h | 27 ± 3.0 | 789 ± 34.7 | 30 ± 2.6 | 13 ± 0.8 | 988 ± 46.8 | 80 ± 5.2 | |
30 | 0 h | 27 ± 3.0 | 1024 ± 56.4 | 40 ± 6.0 | 13 ± 0.8 | 1077 ± 16.9 | 87 ± 7.3 |
24 h | 35 ± 3.9 | 1076 ± 87.3 | 33 ± 5.9 | 18 ± 0.6 | 1062 ± 49.6 | 60 ± 4.7 | |
35 | 0 h | 35 ± 3.9 | 1049 ± 129.5 | 32 ± 6.8 | 18 ± 0.6 | 946 ± 92.8 | 53 ± 4.2 |
24 h | 35 ± 3.1 | 917 ± 27.4 | 27 ± 2.4 | 19 ± 0.5 | 645 ± 24.7 | 35 ± 0.4 |
Temperature, °C | Time | Fomitopsis pinicola (Betula) | Specific Emission, µg CO2/cm2/h | Fomitopsis pinicola (Picea) | Specific Emission, µg CO2/cm2/h | ||
---|---|---|---|---|---|---|---|
Mycelium Area, cm2 | Total Emission, µg CO2/h | Mycelium Area, cm2 | Total Emission, µg CO2/h | ||||
10 | 0 h | 11 ± 1.3 | 244 ± 34.7 | 23 ± 6.0 | 13 ± 0.8 | 242 ± 17.6 | 19 ± 0.5 |
24 h | 14 ± 1.3 | 319 ± 20.4 | 23 ± 3.7 | 18 ± 1.2 | 336 ± 22.4 | 19 ± 2.5 | |
20 | 0 h | 14 ± 1.3 | 495 ± 22.8 | 35 ± 1.7 | 18 ± 1.2 | 699 ± 44.7 | 40 ± 2.9 |
24 h | 18 ± 1.8 | 740 ± 36.9 | 41 ± 4.3 | 21 ± 1.4 | 856 ± 0.6 | 40 ± 2.5 | |
25 | 0 h | 18 ± 1.8 | 959 ± 62.3 | 52 ± 2.2 | 21 ± 1.4 | 1072 ± 18.5 | 50 ± 2.7 |
24 h | 29 ± 2.3 | 1698 ± 22.0 | 59 ± 4.4 | 27 ± 1.3 | 1416 ± 26.6 | 53 ± 2.3 | |
30 | 0 h | 29 ± 2.3 | 2076 ± 13.1 | 73 ± 6.4 | 27 ± 1.3 | 1955 ± 37.7 | 73 ± 2.6 |
24 h | 38 ± 2.5 | 2736 ± 44.3 | 73 ± 6.5 | 35 ± 1.4 | 2551 ± 35.0 | 74 ± 3.5 | |
35 | 0 h | 38 ± 2.5 | 2771 ± 34.1 | 74 ± 5.7 | 35 ± 1.4 | 2382 ± 49.2 | 69 ± 1.6 |
24 h | 42 ± 2.3 | 2670 ± 83.9 | 65 ± 5.2 | 43 ± 0.9 | 2290 ± 33.7 | 53 ± 1.2 |
Temperature, °C | Time | Fomes fomentarius | Specific Emission, µg CO2/cm2/h | Fomes inzengae | Specific Emission, µg CO2/cm2/h | ||
---|---|---|---|---|---|---|---|
Mycelium Area, cm2 | Total Emission, µg CO2/h | Mycelium Area, cm2 | Total Emission, µg CO2/h | ||||
10 | 0 h | 2 ± 0.1 | 116 ± 1.1 | 54 ± 4.7 | 3 ± 0.2 | 141 ± 15.2 | 53 ± 7.8 |
24 h | 3 ± 0.1 | 147 ± 17.5 | 55 ± 7.8 | 4 ± 0.5 | 250 ± 42.4 | 69 ± 3.6 | |
20 | 0 h | 3 ± 0.1 | 222 ± 36.3 | 83 ± 11.9 | 4 ± 0.5 | 328 ± 75.4 | 92 ± 15.2 |
24 h | 6 ± 0.2 | 681 ± 98.0 | 106 ± 11.8 | 5 ± 0.5 | 516 ± 13.7 | 104 ± 7.5 | |
25 | 0 h | 6 ± 0.2 | 884 ± 78.6 | 139 ± 12.0 | 5 ± 0.5 | 707 ± 53.2 | 142 ± 7.4 |
24 h | 13 ± 0.2 | 2064 ± 133.9 | 154 ± 9.2 | 9 ± 0.7 | 1269 ± 98.9 | 146 ± 2.7 | |
30 | 0 h | 13 ± 0.2 | 1878 ± 36.9 | 140 ± 3.0 | 9 ± 0.7 | 1637 ± 56.9 | 190 ± 13.4 |
24 h | 19 ± 0.8 | 2401 ± 41.0 | 127 ± 3.0 | 12 ± 0.8 | 1868 ± 26.2 | 155 ± 8.2 | |
35 | 0 h | 19 ± 0.8 | 2588 ± 127.5 | 137 ± 1.3 | 12 ± 0.8 | 1777 ± 82.6 | 147 ± 6.6 |
24 h | 25 ± 1.3 | 2042 ± 183.5 | 84 ± 10.7 | 16 ± 1.0 | 1650 ± 78.9 | 102 ± 10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhin, V.A.; Diyarova, D.K.; Zhuykova, E.V. The Specific and Total CO2 Emission Activity of Wood-Decaying Fungi and Their Response to Increases in Temperature. J. Fungi 2024, 10, 448. https://doi.org/10.3390/jof10070448
Mukhin VA, Diyarova DK, Zhuykova EV. The Specific and Total CO2 Emission Activity of Wood-Decaying Fungi and Their Response to Increases in Temperature. Journal of Fungi. 2024; 10(7):448. https://doi.org/10.3390/jof10070448
Chicago/Turabian StyleMukhin, Victor A., Daria K. Diyarova, and Elena V. Zhuykova. 2024. "The Specific and Total CO2 Emission Activity of Wood-Decaying Fungi and Their Response to Increases in Temperature" Journal of Fungi 10, no. 7: 448. https://doi.org/10.3390/jof10070448
APA StyleMukhin, V. A., Diyarova, D. K., & Zhuykova, E. V. (2024). The Specific and Total CO2 Emission Activity of Wood-Decaying Fungi and Their Response to Increases in Temperature. Journal of Fungi, 10(7), 448. https://doi.org/10.3390/jof10070448