Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = Fifth generation network (5G)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
17 pages, 4473 KiB  
Article
Dual-Band Wearable Antenna Integrated with Glasses for 5G and Wi-Fi Systems
by Łukasz Januszkiewicz
Appl. Sci. 2025, 15(14), 8018; https://doi.org/10.3390/app15148018 - 18 Jul 2025
Viewed by 248
Abstract
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the [...] Read more.
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the proposed design supports both fifth-generation (5G) wireless communication and Wi-Fi networks. The compact antenna is specifically dimensioned for integration within eyeglass temples and operates in the 3.5 GHz and 5.8 GHz frequency bands. Prototype measurements, conducted using a human head phantom, validate the antenna’s performance. The results demonstrate good impedance matching across the desired frequency bands and a maximum gain of at least 4 dBi in both bands. Full article
(This article belongs to the Special Issue Antenna Technology for 5G Communication)
Show Figures

Figure 1

20 pages, 5781 KiB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Viewed by 335
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

15 pages, 1816 KiB  
Article
A Framework for User Traffic Prediction and Resource Allocation in 5G Networks
by Ioannis Konstantoulas, Iliana Loi, Dimosthenis Tsimas, Kyriakos Sgarbas, Apostolos Gkamas and Christos Bouras
Appl. Sci. 2025, 15(13), 7603; https://doi.org/10.3390/app15137603 - 7 Jul 2025
Viewed by 464
Abstract
Fifth-Generation (5G) networks deal with dynamic fluctuations in user traffic and the demands of each connected user and application. This creates a need for optimized resource allocation to reduce network congestion in densely populated urban centers and further ensure Quality of Service (QoS) [...] Read more.
Fifth-Generation (5G) networks deal with dynamic fluctuations in user traffic and the demands of each connected user and application. This creates a need for optimized resource allocation to reduce network congestion in densely populated urban centers and further ensure Quality of Service (QoS) in (5G) environments. To address this issue, we present a framework for both predicting user traffic and allocating users to base stations in 5G networks using neural network architectures. This framework consists of a hybrid approach utilizing a Long Short-Term Memory (LSTM) network or a Transformer architecture for user traffic prediction in base stations, as well as a Convolutional Neural Network (CNN) to allocate users to base stations in a realistic scenario. The models show high accuracy in the tasks performed, especially in the user traffic prediction task, where the models show an accuracy of over 99%. Overall, our framework is capable of capturing long-term temporal features and spatial features from 5G user data, taking a significant step towards a holistic approach in data-driven resource allocation and traffic prediction in 5G networks. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 2973 KiB  
Article
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
by Oluwole John Famoriji and Thokozani Shongwe
Appl. Sci. 2025, 15(13), 7302; https://doi.org/10.3390/app15137302 - 28 Jun 2025
Viewed by 272
Abstract
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G [...] Read more.
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G services are able to meet serious demands for bandwidth. To evaluate the ground-plane radiation level of electromagnetics close to 5G base stations, we propose a unique machine-learning-based approach. Because a machine learning algorithm is trained by utilizing data obtained from numerous 5G base stations, it exhibits the capability to estimate the strength of the electric field effectively at every point of arbitrary radiation, while the base station generates a network and serves various numbers of 5G terminals running in different modes of service. The model requires different numbers of inputs, including the antenna’s transmit power, antenna gain, terminal service modes, number of 5G terminals, distance between the 5G terminals and 5G base station, and environmental complexity. Based on experimental data, the estimation method is both feasible and effective; the machine learning model’s mean absolute percentage error is about 5.89%. The degree of correctness shows how dependable the developed technique is. In addition, the developed approach is less expensive when compared to measurements taken on-site. The results of the estimates can be used to save test costs and offer useful guidelines for choosing the best location, which will make 5G base station electromagnetic radiation management or radio wave coverage optimization easier. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

59 pages, 4517 KiB  
Review
Artificial Intelligence Empowering Dynamic Spectrum Access in Advanced Wireless Communications: A Comprehensive Overview
by Abiodun Gbenga-Ilori, Agbotiname Lucky Imoize, Kinzah Noor and Paul Oluwadara Adebolu-Ololade
AI 2025, 6(6), 126; https://doi.org/10.3390/ai6060126 - 13 Jun 2025
Viewed by 1932
Abstract
This review paper examines the integration of artificial intelligence (AI) in wireless communication, focusing on cognitive radio (CR), spectrum sensing, and dynamic spectrum access (DSA). As the demand for spectrum continues to rise with the expansion of mobile users and connected devices, cognitive [...] Read more.
This review paper examines the integration of artificial intelligence (AI) in wireless communication, focusing on cognitive radio (CR), spectrum sensing, and dynamic spectrum access (DSA). As the demand for spectrum continues to rise with the expansion of mobile users and connected devices, cognitive radio networks (CRNs), leveraging AI-driven spectrum sensing and dynamic access, provide a promising solution to improve spectrum utilization. The paper reviews various deep learning (DL)-based spectrum-sensing methods, highlighting their advantages and challenges. It also explores the use of multi-agent reinforcement learning (MARL) for distributed DSA networks, where agents autonomously optimize power allocation (PA) to minimize interference and enhance quality of service. Additionally, the paper discusses the role of machine learning (ML) in predicting spectrum requirements, which is crucial for efficient frequency management in the fifth generation (5G) networks and beyond. Case studies show how ML can help self-optimize networks, reducing energy consumption while improving performance. The review also introduces the potential of generative AI (GenAI) for demand-planning and network optimization, enhancing spectrum efficiency and energy conservation in wireless networks (WNs). Finally, the paper highlights future research directions, including improving AI-driven network resilience, refining predictive models, and addressing ethical considerations. Overall, AI is poised to transform wireless communication, offering innovative solutions for spectrum management (SM), security, and network performance. Full article
(This article belongs to the Special Issue Artificial Intelligence for Network Management)
Show Figures

Figure 1

27 pages, 2162 KiB  
Review
Future of Telepresence Services in the Evolving Fog Computing Environment: A Survey on Research and Use Cases
by Dang Van Thang, Artem Volkov, Ammar Muthanna, Andrey Koucheryavy, Abdelhamied A. Ateya and Dushantha Nalin K. Jayakody
Sensors 2025, 25(11), 3488; https://doi.org/10.3390/s25113488 - 31 May 2025
Viewed by 785
Abstract
With the continuing development of technology, telepresence services have emerged as an essential part of modern communication systems. Concurrently, the rapid growth of fog computing presents new opportunities and challenges for integrating telepresence capabilities into distributed networks. Fog computing is a component of [...] Read more.
With the continuing development of technology, telepresence services have emerged as an essential part of modern communication systems. Concurrently, the rapid growth of fog computing presents new opportunities and challenges for integrating telepresence capabilities into distributed networks. Fog computing is a component of the cloud computing model that is used to meet the diverse computing needs of applications in the emergence and development of fifth- and sixth-generation (5G and 6G) networks. The incorporation of fog computing into this model provides benefits that go beyond the traditional model. This survey investigates the convergence of telepresence services with fog computing, evaluating the latest advancements in research developments and practical use cases. This study examines the changes brought about by the 6G network as well as the promising future directions of 6G. This study presents the concepts of fog computing and its basic structure. We analyze Cisco’s model and propose an alternative model to improve its weaknesses. Additionally, this study synthesizes, analyzes, and evaluates a body of articles on remote presence services from major bibliographic databases. Summing up, this work thoroughly reviews current research on telepresence services and fog computing for the future. Full article
Show Figures

Figure 1

50 pages, 2715 KiB  
Review
Interference Mitigation Strategies in Beyond 5G Wireless Systems: A Review
by Osamah Thamer Hassan Alzubaidi, Salah Alheejawi, Mhd Nour Hindia, Kaharudin Dimyati and Kamarul Ariffin Noordin
Electronics 2025, 14(11), 2237; https://doi.org/10.3390/electronics14112237 - 30 May 2025
Viewed by 1503
Abstract
Over the past few years, wireless communication has grown dramatically, and the consumer demand for wireless services has seen a significant jump. One of the main challenges for beyond fifth generation (B5G) networks is the increased capacity of the network. The continuously increasing [...] Read more.
Over the past few years, wireless communication has grown dramatically, and the consumer demand for wireless services has seen a significant jump. One of the main challenges for beyond fifth generation (B5G) networks is the increased capacity of the network. The continuously increasing number of network users and the limited radio spectrum in wireless technologies have led to severe congestion in communication channels. This issue leads to traffic congestion at base stations and introduces interference in the network, thereby degrading system capability and quality of service. Interference reduction has thus become a major design challenge in wireless communication systems. This review paper comprehensively explores interference management (IM) strategies in B5G networks. We critically analyze and summarize existing research on interference issues related to device-to-device communication, heterogeneous networks, inter-cell interference, and artificial intelligence (AI)-based frameworks. The paper reviews a wide range of methodologies, highlights the strengths and limitations of state-of-the-art approaches, and discusses standardized techniques such as power control, resource allocation, spectrum separation and mode selection, carrier aggregation, load balancing and cell range expansion, enhanced inter-cell interference coordination, coordinated scheduling and beamforming, coordinated multipoint, and AI-based interference prediction methods. A structured taxonomy and comparative summary are introduced to help categorize these techniques. Several related works based on their methodologies, shortcomings, and future directions have been critically reviewed. In addition, the paper identifies open research challenges and outlines key trends that are shaping future B5G IM systems. A comparative visualization is also provided to highlight dominant and underexplored optimization objectives across IM domains. This review serves as a valuable reference for researchers aiming to understand and evaluate current and emerging solutions for interference mitigation in B5G wireless systems. Full article
(This article belongs to the Special Issue Next-Generation Industrial Wireless Communication)
Show Figures

Figure 1

35 pages, 3885 KiB  
Review
Supporting Global Communications of 6G Networks Using AI, Digital Twin, Hybrid and Integrated Networks, and Cloud: Features, Challenges, and Recommendations
by Shaymaa Ayad Mohammed, Sallar S. Murad, Havot J. Albeyboni, Mohammad Dehghani Soltani, Reham A. Ahmed, Rozin Badeel and Ping Chen
Telecom 2025, 6(2), 35; https://doi.org/10.3390/telecom6020035 - 27 May 2025
Viewed by 1318
Abstract
The commercial deployment of fifth generation (5G) mobile communication networks has begun, bringing with it novel offerings, improved user activities, and a variety of opportunities for different types of organizations. However, there still exist several challenges to implementing 5G technology. Sixth generation (6G) [...] Read more.
The commercial deployment of fifth generation (5G) mobile communication networks has begun, bringing with it novel offerings, improved user activities, and a variety of opportunities for different types of organizations. However, there still exist several challenges to implementing 5G technology. Sixth generation (6G) wireless communication technology development has begun on a worldwide scale in response to these challenges. Even though there have been many discussions on this topic in the past, many questions remain unanswered in the present literature. The article provides a comprehensive overview of 6G, including the common understanding of the concept, as well as its technical requirements and potential applications. A comprehensive analysis of the 6G network design, potential uses, and key elements are covered. This research article delineates future study topics and unresolved challenges to stimulate an ongoing global discourse. This analysis and content of this study supports the use of different applications and services that will benefit the community in the near future using the 6G technology. Subsequently, recommendations for each problem are provided, offering solutions to unresolved difficulties where functionalities are anticipated to improve, hence enhancing the overall user experience. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

20 pages, 817 KiB  
Article
Cross-Layer Security for 5G/6G Network Slices: An SDN, NFV, and AI-Based Hybrid Framework
by Zeina Allaw, Ola Zein and Abdel-Mehsen Ahmad
Sensors 2025, 25(11), 3335; https://doi.org/10.3390/s25113335 - 26 May 2025
Viewed by 918
Abstract
Within the dynamic landscape of fifth-generation (5G) and emerging sixth-generation (6G) wireless networks, the adoption of network slicing has revolutionized telecommunications by enabling flexible and efficient resource allocation. However, this advancement introduces new security challenges, as traditional protection mechanisms struggle to address the [...] Read more.
Within the dynamic landscape of fifth-generation (5G) and emerging sixth-generation (6G) wireless networks, the adoption of network slicing has revolutionized telecommunications by enabling flexible and efficient resource allocation. However, this advancement introduces new security challenges, as traditional protection mechanisms struggle to address the dynamic and complex nature of sliced network environments. This study proposes a Hybrid Security Framework Using Cross-Layer Integration, combining Software-Defined Networking (SDN), Network Function Virtualization (NFV), and AI-driven anomaly detection to strengthen network defenses. By integrating security mechanisms across multiple layers, the framework effectively mitigates threats, ensuring the integrity and confidentiality of network slices. An implementation was developed, focusing on the AI-based detection process using a representative 5G security dataset. The results demonstrate promising detection accuracy and real-time response capabilities. While full SDN/NFV integration remains under development, these findings lay the groundwork for scalable, intelligent security architectures tailored to the evolving needs of next-generation networks. Full article
Show Figures

Figure 1

17 pages, 3268 KiB  
Article
Simulative Analysis of Stimulated Raman Scattering Effects on WDM-PON Based 5G Fronthaul Networks
by Yan Xu, Shuai Wang and Asad Saleem
Sensors 2025, 25(10), 3237; https://doi.org/10.3390/s25103237 - 21 May 2025
Viewed by 509
Abstract
In future hybrid fiber and radio access networks, wavelength division multiplexing passive optical networks (WDM-PON) based fifth-generation (5G) fronthaul systems are anticipated to coexist with current protocols, potentially leading to non-linearity impairment due to stimulated Raman scattering (SRS). To meet the loss budget [...] Read more.
In future hybrid fiber and radio access networks, wavelength division multiplexing passive optical networks (WDM-PON) based fifth-generation (5G) fronthaul systems are anticipated to coexist with current protocols, potentially leading to non-linearity impairment due to stimulated Raman scattering (SRS). To meet the loss budget requirements of 5G fronthaul networks, this paper investigates the power changes induced by SRS in WDM-PON based 5G fronthaul systems. The study examines wavelength allocation schemes utilizing both the C-band and O-band, with modulation formats including non-return-to-zero (NRZ), optical double-binary (ODB), and four-level pulse amplitude modulation (PAM4). Simulation results indicate that SRS non-linearity impairment causes a power depletion of 1.3 dB in the 20 km C-band link scenario, regardless of whether the modulation formats are 25 Gb/s or 50 Gb/s NRZ, ODB, and PAM4, indicating that the SRS-induced power changes are largely independent of both modulation formats and modulation rates. This effect occurs when only the upstream and downstream wavelengths of the 5G fronthaul are broadcast. However, when the 5G fronthaul wavelengths coexist with previous protocols, the maximum power depletion increases significantly to 10.1 dB. In the O-band scenario, the SRS-induced maximum power depletion reaches 1.5 dB with NRZ, ODB, and PAM4 modulation formats at both 25 Gb/s and 50 Gb/s. Based on these analyses, the SRS non-linearity impairment shall be fully considered when planning the wavelengths for 5G fronthaul transmission. Full article
(This article belongs to the Special Issue Novel Technology in Optical Communications)
Show Figures

Figure 1

24 pages, 5732 KiB  
Article
Performance Analysis of Reconfigurable Intelligent Surface-Assisted Millimeter Wave Massive MIMO System Under 3GPP 5G Channels
by Vishnu Vardhan Gudla, Vinoth Babu Kumaravelu, Agbotiname Lucky Imoize, Francisco R. Castillo Soria, Anjana Babu Sujatha, Helen Sheeba John Kennedy, Hindavi Kishor Jadhav, Arthi Murugadass and Samarendra Nath Sur
Information 2025, 16(5), 396; https://doi.org/10.3390/info16050396 - 12 May 2025
Viewed by 932
Abstract
Reconfigurable intelligent surfaces (RIS) and massive multiple input and multiple output (M-MIMO) are the two major enabling technologies for next-generation networks, capable of providing spectral efficiency (SE), energy efficiency (EE), array gain, spatial multiplexing, and reliability. This work introduces an RIS-assisted millimeter wave [...] Read more.
Reconfigurable intelligent surfaces (RIS) and massive multiple input and multiple output (M-MIMO) are the two major enabling technologies for next-generation networks, capable of providing spectral efficiency (SE), energy efficiency (EE), array gain, spatial multiplexing, and reliability. This work introduces an RIS-assisted millimeter wave (mmWave) M-MIMO system to harvest the advantages of RIS and mmWave M-MIMO systems that are required for beyond fifth-generation (B5G) systems. The performance of the proposed system is evaluated under 3GPP TR 38.901 V16.1.0 5G channel models. Specifically, we considered indoor hotspot (InH)—indoor office and urban microcellular (UMi)—street canyon channel environments for 28 GHz and 73 GHz mmWave frequencies. Using the SimRIS channel simulator, the channel matrices were generated for the required number of realizations. Monte Carlo simulations were executed extensively to evaluate the proposed system’s average bit error rate (ABER) and sum rate performances, and it was observed that increasing the number of transmit antennas from 4 to 64 resulted in a better performance gain of ∼10 dB for both InH—indoor office and UMi—street canyon channel environments. The improvement of the number of RIS elements from 64 to 1024 resulted in ∼7 dB performance gain. It was also observed that ABER performance at 28 GHz was better compared to 73 GHz by at least ∼5 dB for the considered channels. The impact of finite resolution RIS on the considered 5G channel models was also evaluated. ABER performance degraded for 2-bit finite resolution RIS compared to ideal infinite resolution RIS by ∼6 dB. Full article
(This article belongs to the Special Issue Advances in Telecommunication Networks and Wireless Technology)
Show Figures

Figure 1

35 pages, 17275 KiB  
Article
Performance Analysis of Downlink 5G Networks in Realistic Environments
by Aymen I. Zreikat and Hunseok Kang
Appl. Sci. 2025, 15(8), 4526; https://doi.org/10.3390/app15084526 - 19 Apr 2025
Viewed by 693
Abstract
Fifth-generation (5G) networks are the fifth generation of mobile networks and are regarded as a global standard, following 1G, 2G, 3G, and 4G networks. Fifth-generation, with its large available bandwidth provided by mmWave, not only provides the end user with higher spectrum efficiency, [...] Read more.
Fifth-generation (5G) networks are the fifth generation of mobile networks and are regarded as a global standard, following 1G, 2G, 3G, and 4G networks. Fifth-generation, with its large available bandwidth provided by mmWave, not only provides the end user with higher spectrum efficiency, massive capacity, low latency, and high speed but is also a network designed to connect virtually everyone and everything together, including machines, objects, and devices. Therefore, studies of such systems’ performance evaluation and capacity bounds are critical for the research community. Furthermore, the performance of these systems should be investigated in realistic contexts while considering signal strength and restricted uplink power to maintain system coverage and capacity, which are also affected by the environment and the value of the service factor parameter. However, any proposed application should include a multiservice case to reflect the true state of 5G systems. As an extension of previous work, the capacity bounds for 5G networks are derived and analyzed in this research, considering both single and multiservice cases with mobility. In addition, the influence of different parameters on network performance, such as the interference, service factor, and non-orthogonality factors, and cell radii, is also discussed. The numerical findings and analysis reveal that the type of environment and service factor parameters have the greatest influence on system capacity and coverage. Subsequently, it is shown that the investigated parameters have a major impact on cell performance and therefore can be considered key indicators for mobile designers and operators to consider in planning and designing future networks. To validate these findings, some results are evaluated against ITU-T standards, while others are compared with related studies from the literature. Full article
(This article belongs to the Special Issue Trends and Prospects for Wireless Sensor Networks and IoT)
Show Figures

Figure 1

21 pages, 779 KiB  
Review
Optically Transparent Antennas for 5G and Beyond: A Review
by Bernardo Dominguez, Fábio Silva, Amit Baghel, Daniel Albuquerque and Pedro Pinho
Electronics 2025, 14(8), 1616; https://doi.org/10.3390/electronics14081616 - 16 Apr 2025
Viewed by 1197
Abstract
As wireless communication technology advances towards faster and higher transmission rates such as Fifth Generation (5G) and beyond, the need for multiple access points increases. The growing demand for access points often results in them occupying any available surface area and potentially disrupting [...] Read more.
As wireless communication technology advances towards faster and higher transmission rates such as Fifth Generation (5G) and beyond, the need for multiple access points increases. The growing demand for access points often results in them occupying any available surface area and potentially disrupting the existing scenery. In order to address this issue, Optically Transparent Antennas (OTAs) emerge as an optimal solution for balancing the aesthetics of a specific setting with the desired communication system requirements. These antennas can be integrated into various infrastructures without interfering with the design of the objects on which they are installed. Research on the techniques and materials for OTA fabrication, which is proposed as a solution to the 5G wireless communication demand for access points, is presented. This work will highlight key antenna characteristics such as gain, bandwidth, efficiency, and transparency, and how the materials used for OTA implementation influence these parameters. Techniques like Metal Mesh (MM), Transparent Conductive Film (TCF), and Transparent Conductive Oxide (TCO) will be explained. The performance of the OTAs will be analyzed based on gain, bandwidth, transparency, and efficiency. This paper also addresses the challenges and limitations associated with OTAs. Finally, it confirms that OTAs offer a compelling solution for this scenario by balancing aesthetics with high antenna performance, making them an innovation for future wireless networks. Full article
Show Figures

Figure 1

34 pages, 9047 KiB  
Article
Impact of Regulation on TV White Space Implementation in Brazil: Laboratory and Field Analyses Using 5G-RANGE System
by Matheus Sêda Borsato Cunha, Juliano Silveira Ferreira, Anderson Reis Rufino Marins, Rafael Andre Baldo de Lima, Gilberto Zorello and Luciano Leonel Mendes
Sensors 2025, 25(8), 2469; https://doi.org/10.3390/s25082469 - 14 Apr 2025
Viewed by 820
Abstract
This paper presents the results of field tests conducted in the project “Implementation of TV White Spaces (TVWS) for Internet Access in Brazil”. This study evaluates the feasibility and regulatory implications of TVWS in rural and remote areas. TVWS systems are promising for [...] Read more.
This paper presents the results of field tests conducted in the project “Implementation of TV White Spaces (TVWS) for Internet Access in Brazil”. This study evaluates the feasibility and regulatory implications of TVWS in rural and remote areas. TVWS systems are promising for sensor network applications, enabling efficient and long-range connectivity. The experiments assess the coexistence of TVWS signals, applying, for example, the Remote Area Access Network System for the Fifth Generation (5G-RANGE) using the generalized frequency division multiplexing (GFDM) technique, with the Integrated Services Digital Broadcasting–Terrestrial (ISDB-T) system. Laboratory tests determined the protection ratio (PR) between digital television (DTV) signals and interfering signals, with minimum PR values of 31.38 dB on channel n1 and 33.24 dB on channel n+1 for 5G-RANGE using GFDM, highlighting its low out-of-band emission (OOBE). Field tests confirmed the laboratory results, with the worst recorded PR causing interference being 30.2 dB on channel n1. The power restriction to 1 Wp limited coverage, allowing 96 Mbps in 24 MHz BW at 14.7 km from the base station. These results highlight that regulatory adjustments can be made to support TVWS deployment in Brazil. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop