Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Faecal Microbiota Transplantation (FMT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 827 KiB  
Study Protocol
The Effect of Faecal Microbiota Transplantation on Cognitive Function in Cognitively Healthy Adults with Irritable Bowel Syndrome: Protocol for a Randomised, Placebo-Controlled, Double-Blinded Pilot Study
by Sara Alaeddin, Yanna Ko, Genevieve Z. Steiner-Lim, Slade O. Jensen, Tara L. Roberts and Vincent Ho
Methods Protoc. 2025, 8(4), 83; https://doi.org/10.3390/mps8040083 - 1 Aug 2025
Viewed by 257
Abstract
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates [...] Read more.
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates whether FMT is feasible and improves cognition in adults with irritable bowel syndrome (IBS). Participants receive a single dose of FMT or placebo via rectal retention enema. Cognitive performance is the primary outcome, assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Secondary outcomes include IBS symptom severity and mood. Tertiary outcomes include microbiome composition and plasma biomarkers related to inflammation, short-chain fatty acids, and tryptophan metabolism. Outcomes are assessed at baseline and at one, three, six, and twelve months following treatment. We hypothesise that FMT will lead to greater improvements in cognitive performance than placebo, with benefits extending beyond practice effects, emerging at one month and persisting in the long term. The findings will contribute to evaluating the safety and efficacy of FMT and enhance our understanding of gut–brain interactions. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

39 pages, 2733 KiB  
Review
From Dysbiosis to Cardiovascular Disease: The Impact of Gut Microbiota on Atherosclerosis and Emerging Therapies
by Tiago Lima, Verónica Costa, Carla Nunes, Gabriela Jorge da Silva and Sara Domingues
Appl. Sci. 2025, 15(13), 7084; https://doi.org/10.3390/app15137084 - 24 Jun 2025
Viewed by 894
Abstract
The gut microbiota consists of trillions of microorganisms, mostly bacteria, which establish a symbiotic relationship with the host. The host provides a favourable environment and the essential nutrients for their proliferation, while the gut microbiota plays a key role in maintaining the host’s [...] Read more.
The gut microbiota consists of trillions of microorganisms, mostly bacteria, which establish a symbiotic relationship with the host. The host provides a favourable environment and the essential nutrients for their proliferation, while the gut microbiota plays a key role in maintaining the host’s health. Therefore, imbalances in its composition, a state known as dysbiosis, can contribute to the onset or progression of various pathological conditions, including atherosclerosis. Atherosclerosis is a chronic, slow-progressing inflammatory disease characterised by the formation and potential rupture of atheromatous plaques in medium- and large-calibre arteries. It underlies major cardiovascular events, such as stroke and myocardial infarction, and remains a leading cause of global morbidity and mortality. The modulation of the gut microbiota using prebiotics, probiotics, and faecal microbiota transplantation (FMT) has emerged as a promising approach for preventing and managing atherosclerosis. Although numerous studies have explored these strategies, further research is needed to establish their efficacy and mechanisms. This review explores the pathophysiology of atherosclerosis, its main risk factors, and the interplay between the gut microbiota and atherosclerosis, with a particular focus on the mechanisms by which microbiota-targeted interventions, including prebiotics, probiotics, and FMT, may serve as therapeutic adjuvants in the prevention and treatment of atherosclerosis. Full article
(This article belongs to the Special Issue Advances in Microbiota in Human Health and Diseases)
Show Figures

Graphical abstract

24 pages, 393 KiB  
Review
Faecal Microbiota Transplantation as an Adjuvant Treatment for Extraintestinal Disorders: Translating Insights from Human Medicine to Veterinary Practice
by Alice Nishigaki, Julian R. Marchesi and Renato L. Previdelli
Vet. Sci. 2025, 12(6), 541; https://doi.org/10.3390/vetsci12060541 - 3 Jun 2025
Viewed by 2626
Abstract
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy in human medicine, particularly for managing recurrent Clostridioides difficile infections and other gastrointestinal (GI) disorders. Beyond the GI tract, FMT has shown potential in addressing extraintestinal conditions in people, including metabolic, immune-mediated, dermatological, [...] Read more.
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy in human medicine, particularly for managing recurrent Clostridioides difficile infections and other gastrointestinal (GI) disorders. Beyond the GI tract, FMT has shown potential in addressing extraintestinal conditions in people, including metabolic, immune-mediated, dermatological, neurological, and infectious diseases. Research in people has highlighted its efficacy in decolonising multidrug-resistant organisms in infection, mitigating autoimmune diseases, and improving outcomes in metabolic disorders such as obesity and diabetes. Furthermore, FMT has also been linked to enhanced responses to immunotherapy in cancer and improved management of hepatic and renal conditions. These findings underscore the intricate connections between the gut microbiome and systemic health, opening novel therapeutic avenues. In veterinary medicine, while FMT has demonstrated benefits for GI disorders, its application in extraintestinal diseases remains largely unexplored. Emerging evidence suggests that conditions such as atopic dermatitis, chronic kidney disease, immune-mediated diseases, and behavioural disorders in companion animals could benefit from microbiome-targeted therapies. However, significant gaps in knowledge persist, particularly regarding the long-term safety and efficacy for veterinary applications. This review synthesises findings from human medicine to assess their relevance for veterinary applications and future research. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

18 pages, 1627 KiB  
Review
Microbiome and Phageome: Key Factors in Host Organism Function and Disease Prevention in the Context of Microbiome Transplants
by Wojciech Jankowski, Małgorzata Mizielińska and Paweł Nawrotek
Appl. Sci. 2025, 15(10), 5330; https://doi.org/10.3390/app15105330 - 10 May 2025
Viewed by 654
Abstract
The study of interactions between gut microbiota and the well-being of the host has become increasingly popular in the last decades. Growing interest in gut microbiota–host interactions has brought attention to faecal microbiota transplantation (FMT) as a clinically effective, though still debated, therapeutic [...] Read more.
The study of interactions between gut microbiota and the well-being of the host has become increasingly popular in the last decades. Growing interest in gut microbiota–host interactions has brought attention to faecal microbiota transplantation (FMT) as a clinically effective, though still debated, therapeutic approach. This review discusses how limitations in the characterisation of gut bacteriomes—particularly interindividual variation and methodological inconsistencies—may influence the outcomes of FMT. The concept of enterotypes is considered as a framework that could support more refined stratification of donors and recipients, offering a possible route toward greater precision in microbiota-based interventions. Further on, the review touches on the subject of interactions among the host, the bacteriome, and the phageome—the community of bacteriophages—with specific focus on the presence and intriguing distribution patterns of crAssviruses. The final chapters are dedicated to discussing the current state of the FMT procedure and its variations, as well as the possibility of performing faecal virome transplants (FVTs) as a potentially safer and equally efficient alternative. Full article
Show Figures

Graphical abstract

16 pages, 1250 KiB  
Review
Effect of Gut Dysbiosis on Onset of GI Cancers
by Seema Kumari, Mundla Srilatha and Ganji Purnachandra Nagaraju
Cancers 2025, 17(1), 90; https://doi.org/10.3390/cancers17010090 - 30 Dec 2024
Cited by 1 | Viewed by 1730
Abstract
Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory [...] Read more.
Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory signalling, contributing to GI cancer initiation and progression. Helicobacter pylori infection and genotoxins released from dysbiosis, lifestyle and dietary habits are other factors that contribute to GI cancer development. Emerging diagnostic and therapeutic approaches show promise in colorectal cancer treatment, including the multitarget faecal immunochemical test (mtFIT), standard FIT, and faecal microbiota transplantation (FMT) combined with PD-1 inhibitors. We used search engine databases like PubMed, Scopus, and Web of Science. This review discusses the role of dysbiosis in GI cancer onset and explores strategies such as FMT, probiotics, and prebiotics to enhance the immune response and improve cancer therapy outcomes. Full article
Show Figures

Figure 1

14 pages, 3086 KiB  
Article
Should the Faecal Microbiota Composition Be Determined to Certify a Faecal Donor?
by Celia Morales, Luna Ballestero, Patricia del Río, Raquel Barbero-Herranz, Leticia Olavarrieta, Leticia Gómez-Artíguez, Javier Galeano, José Avendaño-Ortiz, Juan Basterra and Rosa del Campo
Diagnostics 2024, 14(23), 2635; https://doi.org/10.3390/diagnostics14232635 - 22 Nov 2024
Viewed by 1303
Abstract
Background/Objectives: Faecal microbiota transplantation (FMT) is considered a safe and effective therapy for recurrent Clostridioides difficile infection. It is the only current clinical indication for this technique, although numerous clinical research studies and trials propose its potential usefulness for treating other pathologies. Donor [...] Read more.
Background/Objectives: Faecal microbiota transplantation (FMT) is considered a safe and effective therapy for recurrent Clostridioides difficile infection. It is the only current clinical indication for this technique, although numerous clinical research studies and trials propose its potential usefulness for treating other pathologies. Donor selection is a very rigorous process, based on a personal lifestyle interview and the absence of known pathogens in faeces and serum, leading to only a few volunteers finally achieving the corresponding certification. However, despite the high amount of data generated from the ongoing research studies relating microbiota and health, there is not yet a consensus defining what is a “healthy” microbiota. To date, knowledge of the composition of the microbiota is not a requirement to be a faecal donor. The aim of this work was to evaluate whether the analysis of the composition of the microbiota by massive sequencing of 16S rDNA could be useful in the selection of the faecal donors. Methods: Samples from 10 certified donors from Mikrobiomik Healthcare Company were collected and sequenced using 16S rDNA in a MiSeq (Illumina) platform. Alpha (Chao1 and Shannon indices) and beta diversity (Bray–Curtis) were performed using the bioinformatic web server Microbiome Analyst. The differences in microbial composition at the genera and phyla levels among the donors were evaluated. Results: The microbial diversity metric by alpha diversity indexes showed that most donors exhibited a similar microbial diversity and richness, whereas beta diversity by 16S rDNA sequencing revealed significant inter-donor differences, with a more stable microbial composition over time in some donors. The phyla Bacillota and Bacteroidota were predominant in all donors, while the density of other phyla, such as Actinomycota and Pseudomonota, varied among individuals. Each donor exhibited a characteristic genera distribution pattern; however, it was possible to define a microbiome core consisting of the genera Agathobacter, Eubacterium, Bacteroides, Clostridia UCG-014 and Akkermansia. Conclusions: The results suggest that donor certification does not need to rely exclusively on their microbiota composition, as it is unique to each donor. While one donor showed greater microbial diversity and richness, clear criteria for microbial normality and health have yet to be established. Therefore, donor certification should focus more on clinical and lifestyle aspects. Full article
(This article belongs to the Special Issue Microbiology Laboratory: Sample Collection and Diagnosis Advances)
Show Figures

Figure 1

15 pages, 2606 KiB  
Review
Intestinal Insights: The Gut Microbiome’s Role in Atherosclerotic Disease: A Narrative Review
by Luana Alexandrescu, Adrian Paul Suceveanu, Alina Mihaela Stanigut, Doina Ecaterina Tofolean, Ani Docu Axelerad, Ionut Eduard Iordache, Alexandra Herlo, Andreea Nelson Twakor, Alina Doina Nicoara, Cristina Tocia, Andrei Dumitru, Eugen Dumitru, Laura Maria Condur, Cristian Florentin Aftenie and Ioan Tiberiu Tofolean
Microorganisms 2024, 12(11), 2341; https://doi.org/10.3390/microorganisms12112341 - 16 Nov 2024
Cited by 12 | Viewed by 2850
Abstract
Recent advances have highlighted the gut microbiota as a significant contributor to the development and progression of atherosclerosis, which is an inflammatory cardiovascular disease (CVD) characterized by plaque buildup within arterial walls. The gut microbiota, consisting of a diverse collection of microorganisms, impacts [...] Read more.
Recent advances have highlighted the gut microbiota as a significant contributor to the development and progression of atherosclerosis, which is an inflammatory cardiovascular disease (CVD) characterized by plaque buildup within arterial walls. The gut microbiota, consisting of a diverse collection of microorganisms, impacts the host’s metabolism, immune responses, and lipid processing, all of which contribute to atherosclerosis. This review explores the complex mechanisms through which gut dysbiosis promotes atherogenesis. We emphasize the potential of integrating microbiota modulation with traditional cardiovascular care, offering a holistic approach to managing atherosclerosis. Important pathways involve the translocation of inflammatory microbial components, modulation of lipid metabolism through metabolites such as trimethylamine-N-oxide (TMAO), and the production of short-chain fatty acids (SCFAs) that influence vascular health. Studies reveal distinct microbial profiles in atherosclerosis patients, with increased pathogenic bacteria (Megamonas, Veillonella, Streptococcus) and reduced anti-inflammatory genera (Bifidobacterium, Roseburia), highlighting the potential of these profiles as biomarkers and therapeutic targets. Probiotics are live microorganisms that have health benefits on the host. Prebiotics are non-digestible dietary fibers that stimulate the growth and activity of beneficial gut bacteria. Interventions targeting microbiota, such as probiotics, prebiotics, dietary modifications, and faecal microbiota transplantation (FMT), present effective approaches for restoring microbial equilibrium and justifying cardiovascular risk. Future research should focus on longitudinal, multi-omics studies to clarify causal links and refine therapeutic applications. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

22 pages, 1385 KiB  
Review
Unravelling the Role of Gut and Oral Microbiota in the Pediatric Population with Type 1 Diabetes Mellitus
by Stefania Luppi, Luana Aldegheri, Eros Azzalini, Emanuele Pacetti, Giulia Barucca Sebastiani, Carolina Fabiani, Antonietta Robino and Manola Comar
Int. J. Mol. Sci. 2024, 25(19), 10611; https://doi.org/10.3390/ijms251910611 - 2 Oct 2024
Cited by 1 | Viewed by 3067
Abstract
Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic β cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact [...] Read more.
Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic β cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation. In individuals with T1DM, changes in the gut and oral microbial composition are commonly observed, indicating that dysbiosis may contribute to immune dysregulation. Gut dysbiosis can influence the immune system through increased intestinal permeability, altered production of short chain fatty acids (SCFAs), and interactions with the mucosal immune system, potentially triggering the autoimmune response. Similarly, oral dysbiosis may contribute to the development of systemic inflammation and thus influence the progression of T1DM. A comprehensive understanding of these relationships is essential for the identification of biomarkers for early diagnosis and monitoring, as well as for the development of therapies aimed at restoring microbial balance. This review presents a synthesis of current research on the connection between T1DM and microbiome dysbiosis, with a focus on the gut and oral microbiomes in pediatric populations. It explores potential mechanisms by which microbial dysbiosis contributes to the pathogenesis of T1DM and examines the potential of microbiome-based therapies, including probiotics, prebiotics, synbiotics, and faecal microbiota transplantation (FMT). This complex relationship highlights the need for longitudinal studies to monitor microbiome changes over time, investigate causal relationships between specific microbial species and T1DM, and develop personalised medicine approaches. Full article
(This article belongs to the Special Issue The Role of Dysbiosis in Chronic Diseases)
Show Figures

Figure 1

14 pages, 1776 KiB  
Article
Evaluation of the Suitability of Selecting a Faecal Microbiota Transplant: Bacterial Composition and Subsequent Long-Term Monitoring of the Viability of Its Frozen and Lyophilised Forms
by Ivan Pacuta, Sona Gancarcikova, Stanislav Lauko, Vanda Hajduckova, Martin Janicko, Vlasta Demeckova, Maria Rynikova, Petra Adamkova, Dagmar Mudronova, Lubos Ambro, Maria Fialkovicova, Daniela Nemetova and Izabela Bertkova
Appl. Sci. 2024, 14(11), 4856; https://doi.org/10.3390/app14114856 - 4 Jun 2024
Cited by 1 | Viewed by 1673
Abstract
Objectives: The aim of this study was to confirm the effectiveness of FMT on the basis of optimum composition of the faecal microbiota of the donor for support therapy in patients with ulcerative colitis, and to observe the viability of the microbiota in [...] Read more.
Objectives: The aim of this study was to confirm the effectiveness of FMT on the basis of optimum composition of the faecal microbiota of the donor for support therapy in patients with ulcerative colitis, and to observe the viability of the microbiota in frozen and lyophilised administration forms of FMT under various storage conditions. Methods: The bacterial microbiota composition of the FMT samples was assessed using amplicon sequencing via next-generation sequencing (NGS) technology, conducted on the Illumina MiSeq platform. The BD FACS Canto flow cytometer was used to analyse the metabolic activity of FMT samples. Results: FMT analysis confirmed the presence of key butyrate-producing organisms, specifically highlighting species such as Bifidobacterium adolescentis, Faecalibacterium prausnitzi, Coprococcus catus, Eubacterium rectale, alongside contributions from genera Roseburia and Blautia. These organisms play a crucial role in maintaining intestinal health in humans. The viable microorganism counts were significantly higher (p < 0.001) in the frozen form of FMT (−70 °C) in comparison to lyophilised forms (−70 °C, 4 °C and 20 °C) throughout the storage period. Conclusion: The conducted NGS analyses allowed us to confirm the suitability of our FMT donor as a potential candidate for the target group of patients diagnosed with ulcerative colitis. From the point of view of optimum utilisation of FMT at its highest metabolic activity for the purpose of transplantation, its storage for a maximum of 2 months under specified conditions was confirmed as the most suitable for the frozen and all lyophilised FMT forms. Full article
Show Figures

Figure 1

37 pages, 11679 KiB  
Article
Beneficial Effect of Faecal Microbiota Transplantation on Mild, Moderate and Severe Dextran Sodium Sulphate-Induced Ulcerative Colitis in a Pseudo Germ-Free Animal Model
by Stanislav Lauko, Sona Gancarcikova, Gabriela Hrckova, Vanda Hajduckova, Zuzana Andrejcakova, Livia Kolesar Fecskeova, Izabela Bertkova, Emilia Hijova, Anna Kamlarova, Martin Janicko, Lubos Ambro, Monika Kvakova, Zuzana Gulasova, Ladislav Strojny, Gabriela Strkolcova, Dagmar Mudronova, Marian Madar, Vlasta Demeckova, Daniela Nemetova, Ivan Pacuta and Drahomira Sopkovaadd Show full author list remove Hide full author list
Biomedicines 2024, 12(1), 43; https://doi.org/10.3390/biomedicines12010043 - 22 Dec 2023
Cited by 3 | Viewed by 2595
Abstract
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of [...] Read more.
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of infection and transfer of another disease. Obtaining the animal model of UC (ulcerative colitis) by exposure to DSS (dextran sodium sulphate) depends on many factors that significantly affect the result. Per os intake of DSS with water is individual for each animal and results in the development of a range of various forms of induced UC. For this reason, the aim of our study was to evaluate the modulation and regenerative effects of FMT on the clinical and histopathological responses and the changes in the bowel microenvironment in pseudo germ-free (PGF) mice of the BALB/c line subjected to chemical induction of mild, moderate and serious forms of UC. The goal was to obtain new data related to the safety and effectiveness of FMT that can contribute to its improved and optimised use. The animals with mild and moderate forms of UC subjected to FMT treatment exhibited lower severity of the disease and markedly lower damage to the colon, including reduced clinical and histological disease index and decreased inflammatory response of colon mucosa. However, FMT treatment failed to achieve the expected therapeutic effect in animals with the serious form of UC activity. The results of our study indicated a potential safety risk involving development of bacteraemia and also translocation of non-pathogenic representatives of bowel microbiota associated with FMT treatment of animals with a diagnosed serious form of UC. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

9 pages, 918 KiB  
Article
Autologous Faecal Microbiota Transplantation to Improve Outcomes of Haematopoietic Stem Cell Transplantation: Results of a Single-Centre Feasibility Study
by Anna Li, Joanne M. Bowen, Imogen A. Ball, Sophie Wilson, Angelina Yong, David T. Yeung, Cindy H. Lee, Robert V. Bryant, Samuel P. Costello, Feargal J. Ryan and Hannah R. Wardill
Biomedicines 2023, 11(12), 3274; https://doi.org/10.3390/biomedicines11123274 - 11 Dec 2023
Cited by 2 | Viewed by 3113
Abstract
Haematopoietic stem cell transplantation (HSCT) is a curative approach for blood cancers, yet its efficacy is undermined by a range of acute and chronic complications. In light of mounting evidence to suggest that these complications are linked to a dysbiotic gut microbiome, we [...] Read more.
Haematopoietic stem cell transplantation (HSCT) is a curative approach for blood cancers, yet its efficacy is undermined by a range of acute and chronic complications. In light of mounting evidence to suggest that these complications are linked to a dysbiotic gut microbiome, we aimed to evaluate the feasibility of faecal microbiota transplantation (FMT) delivered during the acute phase after HSCT. Of note, this trial opted for FMT prepared using the individual’s own stool (autologous FMT) to mitigate the risks of disease transmission from a donor stool. Adults (>18 years) with multiple myeloma were recruited from a single centre. The stool was collected prior to starting first line therapy. Patients who progressed to HSCT were offered FMT via 3 × retention enemas before day +5 (HSCT = day 0). The feasibility was determined by the recruitment rate, number and volume of enemas administered, and the retention time. Longitudinally collected stool samples were also collected to explore the influence of auto-FMT using 16S rRNA gene sequencing. n = 4 (2F:2M) participants received auto-FMT in 12 months. Participants received an average of 2.25 (1–3) enemas 43.67 (25–50) mL total, retained for an average of 60.78 (10–145) min. No adverse events (AEs) attributed to the FMT were identified. Although the minimum requirements were met for the volume and retention of auto-FMT, the recruitment was significantly impacted by the logistical challenges of the pretherapy stool collection. This ultimately undermined the feasibility of this trial and suggests that third party (donor) FMT should be prioritised. Full article
(This article belongs to the Special Issue Gut Dysbiosis: Molecular Mechanisms and Therapies 2.0)
Show Figures

Figure 1

16 pages, 3031 KiB  
Article
Alkylresorcinols as New Modulators of the Metabolic Activity of the Gut Microbiota
by Anastasia A. Zabolotneva, Andrei M. Gaponov, Sergey A. Roumiantsev, Ilya Yu. Vasiliev, Tatiana V. Grigoryeva, Oleg I. Kit, Elena Yu. Zlatnik, Aleksey Yu. Maksimov, Anna S. Goncharova, Inna A. Novikova, Svetlana A. Appolonova, Pavel A. Markin and Aleksandr V. Shestopalov
Int. J. Mol. Sci. 2023, 24(18), 14206; https://doi.org/10.3390/ijms241814206 - 18 Sep 2023
Cited by 3 | Viewed by 2139
Abstract
Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in [...] Read more.
Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (−/−) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol’s regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (−/−) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (−/−) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 1884 KiB  
Article
Effect of the Administration of a Lyophilised Faecal Capsules on the Intestinal Microbiome of Dogs: A Pilot Study
by Sandra Carapeto, Eva Cunha, Isa Serrano, Pedro Pascoal, Marcelo Pereira, Raquel Abreu, Sara Neto, Beatriz Antunes, Ricardo Dias, Luís Tavares and Manuela Oliveira
Genes 2023, 14(9), 1676; https://doi.org/10.3390/genes14091676 - 25 Aug 2023
Cited by 4 | Viewed by 2438
Abstract
Faecal Microbiota Transplantation (FMT) is a promising strategy for modulating the gut microbiome. We aimed to assess the effect of the oral administration of capsules containing lyophilised faeces on dogs with diarrhoea for 2 months as well as evaluate their long-term influence on [...] Read more.
Faecal Microbiota Transplantation (FMT) is a promising strategy for modulating the gut microbiome. We aimed to assess the effect of the oral administration of capsules containing lyophilised faeces on dogs with diarrhoea for 2 months as well as evaluate their long-term influence on animals’ faecal consistency and intestinal microbiome. This pilot study included five dogs: two used as controls and three with diarrhoea. Animals were evaluated for four months by performing a monthly faecal samples collection and physical examination, which included faecal consistency determination using the Bristol scale. The total number of viable bacteria present in the capsules was quantified and their bacterial composition was determined by 16S rRNA gene sequencing, which was also applied to the faecal samples. During the assay, no side effects were reported. Animals’ faecal consistency improved and, after ending capsules administration, Bristol scale values remained stable in two of the three animals. The animals’ microbiome gradually changed toward a composition associated with a balanced microbiota. After FMT, a slight shift was observed in its composition, but the capsules’ influence remained evident during the 4-month period. Capsules administration seems to have a positive effect on the microbiota modulation; however, studies with more animals should be performed to confirm our observations. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 757 KiB  
Review
Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)—A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT)
by Blair Merrick, Chrysi Sergaki, Lindsey Edwards, David L. Moyes, Michael Kertanegara, Désirée Prossomariti, Debbie L. Shawcross and Simon D. Goldenberg
Infect. Dis. Rep. 2023, 15(3), 238-254; https://doi.org/10.3390/idr15030025 - 9 May 2023
Cited by 14 | Viewed by 4383
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and [...] Read more.
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT). Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

19 pages, 984 KiB  
Review
Faecal Microbiota Transplantation, Paving the Way to Treat Non-Alcoholic Fatty Liver Disease
by María Del Barrio, Lucía Lavín, Álvaro Santos-Laso, Maria Teresa Arias-Loste, Aitor Odriozola, Juan Carlos Rodriguez-Duque, Coral Rivas, Paula Iruzubieta and Javier Crespo
Int. J. Mol. Sci. 2023, 24(7), 6123; https://doi.org/10.3390/ijms24076123 - 24 Mar 2023
Cited by 19 | Viewed by 4301
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent cause of chronic liver disease (CLD). Currently, the only therapeutic recommendation available is a lifestyle change. However, adherence to this approach is often difficult to guarantee. Alteration of the microbiota and an increase [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent cause of chronic liver disease (CLD). Currently, the only therapeutic recommendation available is a lifestyle change. However, adherence to this approach is often difficult to guarantee. Alteration of the microbiota and an increase in intestinal permeability seem to be key in the development and progression of NAFLD. Therefore, the manipulation of microbiota seems to provide a promising therapeutic strategy. One way to do so is through faecal microbiota transplantation (FMT). Here, we summarize the key aspects of FMT, detail its current indications and highlight the most recent advances in NAFLD. Full article
Show Figures

Figure 1

Back to TopTop