Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (943)

Search Parameters:
Keywords = FRP reinforced

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 19785 KB  
Article
Generation of Randomly Inclined Fibers in the Representative Volume Element for Predicting the Elastic Modulus of Fiber-Reinforced Polymer Composites
by Menglong Shao and Songling Xue
Polymers 2025, 17(17), 2300; https://doi.org/10.3390/polym17172300 (registering DOI) - 25 Aug 2025
Abstract
The representative volume element (RVE) is frequently used to forecast the mechanical properties of composites, where the distribution of fibers plays a significant role. This paper proposes a new RVE modeling method for unidirectional fiber-reinforced polymer (UD-FRP) composites, which takes into account the [...] Read more.
The representative volume element (RVE) is frequently used to forecast the mechanical properties of composites, where the distribution of fibers plays a significant role. This paper proposes a new RVE modeling method for unidirectional fiber-reinforced polymer (UD-FRP) composites, which takes into account the random distribution of fiber positions and inclinations. The fiber inclination in the RVE is normally or uniformly distributed. The suggested RVE model was validated using static tests and the fiber structure observed by micro-computed tomography (CT). The effects of fiber volume fraction and maximum fiber inclination on the elastic properties were investigated based on the proposed RVE model. The results indicate that the prediction of transverse properties is considerably impacted by fiber inclination in RVE, with uniformly distributed inclination having a more significant influence than normally distributed inclination. For the transverse Young’s modulus of UD-FRP, the predicted results of the proposed model and the models in the literature differed from the experimental results by 0.30% and 11.45%, respectively. For the in-plane shear modulus of UD-FRP, the predicted results of the proposed model and the models in the literature differed from the experimental results by 1.65% and 8.44%, respectively. Moreover, the fiber volume fraction has a significant effect on the elastic properties, and the maximum inclination of the fibers has a significant effect on the elastic properties except for the longitudinal Poisson’s ratio. The proposed RVE model in this paper can predict the elastic properties of composites more accurately. Full article
(This article belongs to the Special Issue Mechanical Behavior of Polymer Composites)
Show Figures

Graphical abstract

22 pages, 8482 KB  
Article
Effect of C-FRP (Carbon Fiber Reinforced Polymer) Rope and Sheet Strengthening on the Shear Behavior of RC Beam-Column Joints
by Emmanouil Golias and Chris Karayannis
Fibers 2025, 13(9), 113; https://doi.org/10.3390/fib13090113 - 22 Aug 2025
Viewed by 156
Abstract
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical [...] Read more.
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical ropes at column corners, provide enhanced core confinement and shear reinforcement. C-FRP sheets applied to the beam’s plastic hinge region further increase flexural strength and delay localized failure. Three full-scale, shear-deficient RC joints were subjected to cyclic lateral loading. The unstrengthened specimen (JB0V) exhibited rapid stiffness deterioration, premature joint shear cracking, and unstable hysteretic behavior. In contrast, the specimen strengthened solely with X-shaped C-FRP ropes (JB0VF2X2c) displayed a markedly slower rate of stiffness degradation, delayed crack development, and improved energy dissipation stability. The fully retrofitted specimen (JB0VF2X2c + C-FRP) demonstrated the most pronounced gains, with peak load capacity increased by 65%, equivalent viscous damping enhanced by 55%, and joint shear deformations reduced by more than 40%. Even at 4% drift, it retained over 90% of its peak strength, while localizing damage away from the joint core—a performance unattainable by the unstrengthened configuration. These results clearly establish that the combined C-FRP rope–sheet system transforms the seismic response of deficient RC joints, offering a lightweight, non-invasive, and rapidly deployable retrofit solution. By simultaneously boosting shear resistance, ductility, and energy dissipation while controlling damage localization, the technique provides a robust pathway to extend service life and significantly enhance post-earthquake functionality in critical structural connections. Full article
Show Figures

Figure 1

18 pages, 3165 KB  
Article
Prediction of FRP–Concrete Bond Strength Using a Genetic Neural Network Algorithm
by Yi Yang, Tan-Tan Zhu, Wu-Er Ha, Xin Zhao, Hong Qiu, Xiao-Lei Liu, Rui-Gang Ma, Jun-Nian Li, Jun Tao and Fei Zhang
Buildings 2025, 15(16), 2939; https://doi.org/10.3390/buildings15162939 - 19 Aug 2025
Viewed by 210
Abstract
The bond strength at the interface between fiber-reinforced polymer (FRP) composites and concrete is a critical factor affecting the mechanical performance of strengthened structures. To investigate this behavior, a comprehensive database of 1032 single-shear test results was compiled. A genetic algorithm-optimized backpropagation (GA-BP) [...] Read more.
The bond strength at the interface between fiber-reinforced polymer (FRP) composites and concrete is a critical factor affecting the mechanical performance of strengthened structures. To investigate this behavior, a comprehensive database of 1032 single-shear test results was compiled. A genetic algorithm-optimized backpropagation (GA-BP) neural network was developed using six input parameters: concrete width and compressive strength, and the FRP plate’s width, elastic modulus, thickness, and effective bond length. The optimized network, with a 6-13-1 architecture, achieved the highest prediction accuracy, with R2 = 0.93 and MAPE as low as 15.96%, outperforming all benchmark models. Eight existing bond strength prediction models were evaluated against the experimental data, revealing that models incorporating effective bond length achieved up to 35% lower prediction error than those that did not. A univariate sensitivity analysis showed that concrete compressive strength was the most influential parameter, with a normalized sensitivity coefficient of 0.325. The final trained weights and biases can be directly applied to similar prediction tasks without retraining. These results demonstrate the proposed model’s high accuracy, generalizability, and interpretability, offering a practical and efficient tool for evaluating FRP–concrete bond performance and supporting the design and rehabilitation of strengthened structures. Full article
Show Figures

Figure 1

27 pages, 4573 KB  
Article
Basalt vs. Glass Fiber-Reinforced Polymers: A Statistical Comparison of Tribological Performance Under Dry Sliding Conditions
by Corina Birleanu, Razvan Udroiu, Mircea Cioaza, Paul Bere and Marius Pustan
J. Compos. Sci. 2025, 9(8), 444; https://doi.org/10.3390/jcs9080444 - 18 Aug 2025
Viewed by 293
Abstract
The variety of fiber types embedded in fiber-reinforced polymer (FRP) composites determines different tribology performance properties. In this work, the tribological properties under dry sliding conditions of glass fiber-reinforced polymer (GFRP) and basalt fiber-reinforced polymer (BFRP) were investigated and compared. Laminated composite specimens [...] Read more.
The variety of fiber types embedded in fiber-reinforced polymer (FRP) composites determines different tribology performance properties. In this work, the tribological properties under dry sliding conditions of glass fiber-reinforced polymer (GFRP) and basalt fiber-reinforced polymer (BFRP) were investigated and compared. Laminated composite specimens with different fiber content were manufactured by vacuum bagging and autoclave curing. Tensile and flexural mechanical properties, as well as pin-on-disk tribological properties of the composite specimens, were analyzed. A design of experiments was performed considering the influence of fiber weight fraction, fiber type, and sliding speed on the coefficient of friction (COF), specific wear rate (K), and contact temperature. A multifactorial ANOVA was performed to identify the significance and contribution percentage of each factor. Deep investigations to understand the wear mechanisms were performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results of the statistical analysis showed that the interaction between fiber type and sliding speed had the most significant influence on the COF (31.36%), while the fiber weight fraction had the predominant effect on the specific wear rate (22.04%), and the sliding speed was the most influential factor affecting temperature (82.88%). BFRP composites consistently performed better than GFRP in all tribological metrics, such as coefficient of friction, specific wear rate, and contact temperature. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

22 pages, 3203 KB  
Article
Axial Compression Behavior of Square RC Columns Confined by Rectangular BFRP and Hybrid Ties
by Amr M. A. Moussa, Arafa M. A. Ibrahim, Ahmed Elsayed, Zhishen Wu and Ahmed Monier
Infrastructures 2025, 10(8), 206; https://doi.org/10.3390/infrastructures10080206 - 8 Aug 2025
Viewed by 306
Abstract
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to [...] Read more.
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to overcome common limitations of conventional FRP stirrups, such as reduced tensile strength at bent regions and premature rupture. A total of five RC column specimens were tested under monotonic axial loading: one reference specimen with conventional steel ties, two specimens with BFRP ties spaced at 45 mm and 90 mm, and two hybrid specimens combining steel and BFRP ties. Experimental results showed that the steel-confined column achieved the highest peak axial load of 1793.2 kN and an ultimate strain value of 1.12. The specimen with closely spaced BFRP ties (45 mm) reached 94.7% of the peak load of the steel-confined specimen and exhibited over 137% higher axial strain capacity. The hybrid specimen with two interleaved BFRP ties achieved the highest confinement effectiveness ratio of 1.306. The findings demonstrate that the proposed BFRP ties offer a structurally viable and corrosion-resistant alternative to steel ties, particularly when used in hybrid systems. This research contributes to the development of durable, high-performance confinement strategies for RC columns in seismic and aggressive environmental conditions. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

11 pages, 1617 KB  
Article
Mechanics of Interfacial Debonding in FRP Strengthening Systems: Energy Limits and Characteristic Bond Lengths
by Nefeli Mitsopoulou and Marinos Kattis
J. Compos. Sci. 2025, 9(8), 412; https://doi.org/10.3390/jcs9080412 - 4 Aug 2025
Viewed by 375
Abstract
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending [...] Read more.
This study examines the energy behavior of a strengthening system consisting of a Fiber Reinforced Polymer (FRP) plate bonded to a rigid substrate and subjected to tensile loading, where the adhesive interface is governed by a bilinear bond–slip law with a vertical descending branch. The investigation focuses on the interaction between the elastic energy stored in the FRP and the adhesive interface, as well as the characteristic lengths that control the debonding process. Analytical expressions for the strain energy stored in both the FRP plate and the adhesive interface are derived, enabling the identification and evaluation of two critical characteristic lengths as the bond stress at the loaded end approaches its maximum value lc, at which the elastic energies of the FRP and the adhesive interface converge, signaling energy saturation; and lmax, where the adhesive interface attains its peak energy absorption. Upon reaching the energy saturation state, the system undergoes failure through the sudden and complete debonding of the FRP from the substrate. The onset of unstable debonding is rigorously analyzed in terms of the first and second derivatives of the total potential energy with respect to the bond length. It is further demonstrated that abrupt debonding may also occur in cases where the length exceeds lc when the bond stress reaches its maximum, and the bond–slip law is characterized by a vertical branch. The findings provide significant insights into the energy balance and stability criteria governing the debonding failure mode in FRP-strengthened structures, highlighting the pivotal role of characteristic lengths in predicting both structural performance and failure mechanisms. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

19 pages, 1058 KB  
Review
Shear Strength of Lightweight Concrete Structural Elements Reinforced with FRP Bars: Experimental Studies vs. Code Predictions
by Agnieszka Wiater and Tomasz Wojciech Siwowski
Materials 2025, 18(15), 3525; https://doi.org/10.3390/ma18153525 - 27 Jul 2025
Viewed by 452
Abstract
Using lightweight concrete (LWC) reduces the dead weight of the concrete structure by 25–30% compared to ordinary concrete. However, harmful and corrosive substances penetrate the lightweight concrete matrix due to its high permeability, resulting in higher maintenance costs and a reduced structure service [...] Read more.
Using lightweight concrete (LWC) reduces the dead weight of the concrete structure by 25–30% compared to ordinary concrete. However, harmful and corrosive substances penetrate the lightweight concrete matrix due to its high permeability, resulting in higher maintenance costs and a reduced structure service life. Therefore, in harsh environments where conventional steel bars are susceptible to corrosion, fibre-reinforced polymer (FRP) bars should be used for reinforcement. However, there is a paucity of experimental studies regarding LWC structural elements reinforced with FRP bars. Shear strength is a critical limit state that typically determines the proper design of such elements, ensuring the required safety margin and an appropriate level of reliability. The research work was conducted to compare the experimentally determined shear strengths (Vexp) of 50 structural elements (beams, slabs) made of LWC/FRP with code predictions (Vcode) made according to eight codes used for design. Based on this comparison, the so-called conformity coefficient (Vexp/Vcode) was calculated and used to assess which provision documents are the best, considering the entire population of test results. The work demonstrated that the recent Eurocode best predicts the shear strength of LWC/FRP elements. Full article
Show Figures

Figure 1

41 pages, 1835 KB  
Review
A Comprehensive Review of Vertical Forest Buildings: Integrating Structural, Energy, Forestry, and Occupant Comfort Aspects in Renovation Modeling
by Vachan Vanian, Theodora Fanaradelli and Theodoros Rousakis
Fibers 2025, 13(8), 101; https://doi.org/10.3390/fib13080101 - 25 Jul 2025
Viewed by 290
Abstract
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the [...] Read more.
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the use of retrofitting modeling techniques, including textile-reinforced mortar (TRM), fiber-reinforced polymer (FRP), seismic joints, and green concrete applications. The energy system modeling methods are reviewed, taking into account the complexity of incorporating vegetation and seasonal variations. During forestry integration, three main design parameters are identified, namely, root systems, trunks, and crowns, for their critical role in the structural stability and optimal environmental performance. The comfort models are identified evolving from static to adaptive models incorporating thermal, acoustic, visual and air quality parameters. The current review consists of more than one hundred studies indicating that the integration of natural systems to buildings requires a multidimensional and multidisciplinary approach with sophisticated systems. The findings of this review provide the basis for implementing VF models to RC buildings, while highlighting areas requiring further research and validation. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

41 pages, 16361 KB  
Review
Progress on Sustainable Cryogenic Machining of Hard-to-Cut Material and Greener Processing Techniques: A Combined Machinability and Sustainability Perspective
by Shafahat Ali, Said Abdallah, Salman Pervaiz and Ibrahim Deiab
Lubricants 2025, 13(8), 322; https://doi.org/10.3390/lubricants13080322 - 23 Jul 2025
Viewed by 660
Abstract
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to [...] Read more.
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to maintain strength at high operating temperatures. Due to these characteristics, such materials are employed in applications such as aerospace, marine, energy generation, and structural. The purpose of this article is to investigate the machinability of these alloys under various cutting conditions. The purpose of this article is to compare cryogenic cooling and cryogenic processing from the perspective of machinability and sustainability in the manufacturing process. Compared to conventional machining, hybrid techniques, which mix cryogenic and minimal quantity lubricant, led to significantly reduced cutting forces of 40–50%, cutting temperatures and surface finishes by approximately 20–30% and more than 40%, respectively. A carbon footprint is determined by several factors including power consumption, energy requirements, and carbon dioxide emissions. As a result of the cryogenic technology, the energy consumption, power consumption, and CO2 emissions were reduced by 40%, 28%, and 35%. Full article
Show Figures

Figure 1

20 pages, 5397 KB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Viewed by 810
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

30 pages, 5062 KB  
Review
State-of-the-Art Review of Studies on the Flexural Behavior and Design of FRP-Reinforced Concrete Beams
by Hau Tran, Trung Nguyen-Thoi and Huu-Ba Dinh
Materials 2025, 18(14), 3295; https://doi.org/10.3390/ma18143295 - 12 Jul 2025
Viewed by 681
Abstract
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused [...] Read more.
Fiber-reinforced polymer (FRP) bars have great potential to replace steel bars in the design of reinforced concrete (RC) beams since they have numerous advantages such as high tensile strength and good corrosion resistance. Therefore, many studies including experiments and numerical simulations have focused on the behavior of FRP RC beams. In this paper, a comprehensive overview of previous studies is conducted to provide a thorough understanding about the behavior, the design, and the limitations of FRP RC beams. Particularly, experimental studies on FRP RC beams are collected and reviewed. In addition, the numerical analysis of FRP beams including the finite element (FE) analysis, the discrete element (DE) analysis, and artificial intelligence/machine learning (AI/ML) is summarized. Moreover, the international standards for the design of FRP RC beams are presented and evaluated. Through the review of previous studies, 93 tested specimens are collected. They can be a great source of reference for other studies. In addition, it has been found that the studies on the continuous beams and deep beams reinforced with FRP bars are still limited. In addition, more studies using DE analysis and AI/ML to analyze the response of FRP RC beams under loading conditions should be conducted. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 2688 KB  
Systematic Review
Structural Performance of Fiber-Reinforced Cementitious Composite Members Reinforced with Fiber-Reinforced Polymer Bars: A Systematic Review
by Helen Negash Shiferaw and Toshiyuki Kanakubo
Appl. Sci. 2025, 15(14), 7681; https://doi.org/10.3390/app15147681 - 9 Jul 2025
Viewed by 434
Abstract
The integration of fiber-reinforced cementitious composites (FRCCs) with fiber-reinforced polymer (FRP) bars represents a significant advancement in concrete technology, aimed at enhancing the structural performance of reinforced concrete elements. The incorporation of fibers into cementitious composites markedly improves their mechanical properties, including tensile [...] Read more.
The integration of fiber-reinforced cementitious composites (FRCCs) with fiber-reinforced polymer (FRP) bars represents a significant advancement in concrete technology, aimed at enhancing the structural performance of reinforced concrete elements. The incorporation of fibers into cementitious composites markedly improves their mechanical properties, including tensile strength, ductility, compressive strength, and flexural strength, by effectively bridging cracks and optimizing load distribution. Furthermore, FRP bars extend these properties with their high tensile strength, lightweight characteristics, and exceptional corrosion resistance, rendering them ideal for applications in aggressive environments. In recent years, there has been a notable increase in interest from the engineering research community regarding this topic, primarily to solve the issues of aging and deteriorating infrastructure. Researchers have conducted extensive investigations into the structural performance of FRCC and FRP composite systems. This paper presents a systematic literature review that surveys experimental and analytical studies, findings, and emerging trends in this field. A comprehensive search on the Web of Science identified 40 relevant research articles through a rigorous selection process. Key factors of structural performance, such as bond behavior, flexural behavior, ductility performance assessments, shear and torsional performance, and durability evaluations, have been documented. This review aims to provide an in-depth understanding of the structural performance of these innovative composite materials, paving the way for future research and development in construction materials technology. Full article
(This article belongs to the Special Issue Sustainable Concrete Materials and Resilient Structures)
Show Figures

Figure 1

33 pages, 6318 KB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 410
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

36 pages, 2504 KB  
Article
Long-Term Durability of CFRP Strips Used in Infrastructure Rehabilitation
by Karunya Kanagavel and Vistasp M. Karbhari
Polymers 2025, 17(13), 1886; https://doi.org/10.3390/polym17131886 - 7 Jul 2025
Viewed by 541
Abstract
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to [...] Read more.
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to 1–2 years providing an insufficient dataset for prediction of long-term durability. This investigation focuses on the assessment of the response of three different prefabricated CFRP systems exposed to water, seawater, and alkaline solutions for 5 years of immersion in deionized water conducted at three temperatures of 23, 37.8 and 60 °C, all well below the glass transition temperature levels. Overall response is characterized through tensile and short beam shear (SBS) testing at periodic intervals. It is noted that while the three systems are similar, with the dominant mechanisms of deterioration being related to matrix plasticization followed by fiber–matrix debonding with levels of matrix and interface deterioration being accelerated at elevated temperatures, their baseline characteristics and distributions are different emphasizing the need for greater standardization. While tensile modulus does not degrade appreciably over the 5-year period of exposure with final levels of deterioration being between 7.3 and 11.9%, both tensile strength and SBS strength degrade substantially with increasing levels based on temperature and time of immersion. Levels of tensile strength retention can be as low as 61.8–66.6% when immersed in deionized water at 60 °C, those for SBS strength can be 38.4–48.7% at the same immersion condition for the three FRP systems. Differences due to solution type are wider in the short-term and start approaching asymptotic levels within FRP systems at longer periods of exposure. The very high levels of deterioration in SBS strength indicate the breakdown of the materials at the fiber–matrix bond and interfacial levels. It is shown that the level of deterioration exceeds that presumed through design thresholds set by specific codes/standards and that new safety factors are warranted in addition to expanding the set of characteristics studied to include SBS or similar interface-level tests. Alkali solutions are also shown to have the highest deteriorative effects with deionized water having the least. Simple equations are developed to enable extrapolation of test data to predict long term durability and to develop design thresholds based on expectations of service life with an environmental factor of between 0.56 and 0.69 for a 50-year expected service life. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

22 pages, 7210 KB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 588
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

Back to TopTop