Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = F–T diesel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3456 KiB  
Article
Impact of Impregnation pH on NiMo Surface Species in Al2O3-Supported Catalysts for Green Diesel Production
by Alexis G. Mijares-Alvarado, Acela López-Benítez, Rebeca Silva-Rodrigo, José A. Rodríguez-Ávila and Alfredo Guevara-Lara
Surfaces 2025, 8(2), 21; https://doi.org/10.3390/surfaces8020021 - 25 Mar 2025
Viewed by 573
Abstract
Green diesel is a high-quality biofuel obtained through the transformation of triglycerides into linear alkanes. In order to obtain green diesel, this study investigates the impact of impregnation pH on the surface species of NiMo/Al2O3 catalysts in the hydroprocessing of [...] Read more.
Green diesel is a high-quality biofuel obtained through the transformation of triglycerides into linear alkanes. In order to obtain green diesel, this study investigates the impact of impregnation pH on the surface species of NiMo/Al2O3 catalysts in the hydroprocessing of soybean oil. NiMo catalysts supported on Al2O3 were synthesized at different pH values (pH = 7 and 9). In the oxide state, solids were characterized by UV-Vis diffuse reflectance, Raman, and FT-IR spectroscopies, and, in the sulfide state, they were characterized by HR-TEM. The results show that the pH of impregnation significantly determines the surface species formed. An impregnation at pH = 7 favors the formation of Ni2+(Oh) and Ni2+(Oh-dis) interacting with non-crystalline molybdenum trioxide, while the formation of Ni2+/Al2O3, Ni2+(Oh-dis), and MoO3 species is favored at pH = 9. These surface species play a fundamental role in the hydrogenolysis and deoxygenation steps. Catalyst impregnated at pH = 7 shows higher activity due to the formation of shorter MoS2 slabs. This study emphasized the importance of controlling impregnation conditions for optimizing catalyst performance. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Surfaces and Interfaces)
Show Figures

Figure 1

30 pages, 5789 KiB  
Article
Fischer–Tropsch Biofuel Production from Supercritical Water Gasification of Lignocellulosic Biomass: Process Modelling and Life-Cycle Assessment
by Dimitrios Katsourinis, Dimitrios Giannopoulos and Maria Founti
Processes 2025, 13(3), 895; https://doi.org/10.3390/pr13030895 - 18 Mar 2025
Cited by 1 | Viewed by 671
Abstract
The production of Fischer–Tropsch liquid biofuels from the supercritical water gasification (SCWG) of lignocellulosic biomass is energetically and environmentally assessed by coupling process modelling with Life-Cycle Assessment. A conceptual process model has been developed comprising the following stages: (a) the thermochemical conversion of [...] Read more.
The production of Fischer–Tropsch liquid biofuels from the supercritical water gasification (SCWG) of lignocellulosic biomass is energetically and environmentally assessed by coupling process modelling with Life-Cycle Assessment. A conceptual process model has been developed comprising the following stages: (a) the thermochemical conversion of lignocellulosic biomass in a supercritical water gasification (SCWG) reactor, (b) syngas upgrade through dry reforming (DRR), (c) liquid biofuel production from Fischer–Tropsch synthesis (FTS) and (d) FT product upgrade and refinement, so that diesel-like (FT—Diesel), gasoline-like (FT—Gasoline), and jet fuel-like (FT Jet Fuel) yields are predicted. Parametric studies have been performed, highlighting the effect of biomass concentration and SCWG temperature on end-product yields. Furthermore, alternative scenarios have been examined with respect to: (a) maximizing FT liquid biofuel yields and (b) minimizing heat requirements to potentially achieve a thermally self-sustained process. The results of the simulated process, including liquid biofuel yield and heat-demand predictions, are used as inputs in the inventories compiled for the Life-Cycle Assessment of the overall process. Agricultural and feedstock transportation stages have also been considered. Energetic and environmental benefits and challenges are highlighted through the quantification of Global Warming Potential (GWP), while special importance is assigned to following the REDII sustainability methodology and reference data. Full article
(This article belongs to the Special Issue Processes in Biofuel Production and Biomass Valorization)
Show Figures

Figure 1

27 pages, 1497 KiB  
Article
Methodological Development for Studying the Chemical Composition of Exhaust Particle Emissions: Application to a Passenger Vessel Operating on Marine Gas Oil
by Ridha Mahi, Aurélie Joubert, Audrey Villot, Benoit Sagot and Laurence Le Coq
Atmosphere 2025, 16(2), 126; https://doi.org/10.3390/atmos16020126 - 24 Jan 2025
Cited by 1 | Viewed by 717
Abstract
On-board emission measurements were conducted at the exhaust of a passenger ship operating under real-world conditions. The chemical composition of exhaust particulate emissions from a turbocharged four-stroke marine diesel engine, operated on Marine Gas Oil was studied. A variety of organic compounds, including [...] Read more.
On-board emission measurements were conducted at the exhaust of a passenger ship operating under real-world conditions. The chemical composition of exhaust particulate emissions from a turbocharged four-stroke marine diesel engine, operated on Marine Gas Oil was studied. A variety of organic compounds, including alkanes, alkenes, alcohols, cycloalkanes, cycloalkenes, esters, ketones, carboxylic acids, etc., were analyzed. Alkanes were the most abundant organic compounds, followed by alkenes, esters, and alcohols. Emission factors for these compounds were determined under two operating conditions: low engine load (at berth at 400 rpm/4% load, and during port maneuvers at 800 rpm/14% load) and high engine load (during cruising at 1000 rpm, 68% load). A clear increase in organic-compound emission factors was observed at lower loads. The total particulate matter emission factors were between 0.02 and 0.03 g/kWh at high-load points and exhibited significant variability under low-load conditions, from 0.02 to 2.83 g/kWh. The effect of a marine fuel additive was evaluated in this study. Using this fuel additive resulted in a significant decrease in both particulate matter and organic-compound emission factors, especially at low engine loads. Furthermore, the marine fuel additive decreased the total emission factors (EFTOCs) by a factor of 56 under low-load conditions. For high loads, the additive had no effect on the EFTOCs. Full article
Show Figures

Figure 1

21 pages, 5423 KiB  
Article
Virtual Inertia Methods for Supporting Frequency Stabilisation in Autonomous AC/DC Microgrids
by Faysal Hardan, Rosemary Norman and Pietro Tricoli
Electronics 2025, 14(1), 91; https://doi.org/10.3390/electronics14010091 - 28 Dec 2024
Viewed by 1441
Abstract
Isolated microgrids have long been considered alternative power system entities that can integrate various types of distributed energy sources such as diesel and renewable power generators including energy storage. Renewable energy sources, such as wind and solar PV, introduce low inertia and high [...] Read more.
Isolated microgrids have long been considered alternative power system entities that can integrate various types of distributed energy sources such as diesel and renewable power generators including energy storage. Renewable energy sources, such as wind and solar PV, introduce low inertia and high intermittency to the microgrid. For this reason, coordinated control and frequency stabilisation are crucial for maintaining higher service levels in the microgrid. This paper reports on the design and development of two proposed methods for virtual inertia provision, namely model-based and filter-based methods, which support the frequency stability of AC/DC microgrids. The inertial power produced by these methods was implemented through power-controlled voltage source converters, associated with a Li-ion battery energy storage system. To derive and develop the functions for the virtual inertia providers using these methods, a new electromechanical power-speed model was developed to represent the interaction between the microgrid AC/DC-sides and its generators. Small-signal analysis using the linearised form of this model was carried out, in addition to deriving the law for the model-based virtual inertia method. Detailed physical-system simulation and tests were performed, and performance analysis of the resulting generator speed-responses using the proposed methods illustrated their merits compared with other methods, namely the standard df/dt and frequency-event techniques. Full article
Show Figures

Figure 1

18 pages, 3359 KiB  
Article
Alternative Analyzers for the Measurement of Gaseous Compounds During Type-Approval of Heavy-Duty Vehicles
by Ricardo Suarez-Bertoa, Roberto Gioria, Christian Ferrarese, Lorenzo Finocchiaro and Barouch Giechaskiel
Energies 2024, 17(22), 5676; https://doi.org/10.3390/en17225676 - 13 Nov 2024
Viewed by 1189
Abstract
Emissions standards describe the fuels, the procedures, and, among others, the analyzers to be used for the measurement of the different compounds during the type-approval of heavy-duty engines and vehicles. Traditionally, NOx, CO, hydrocarbons, and CO2 were the gaseous compounds measured within [...] Read more.
Emissions standards describe the fuels, the procedures, and, among others, the analyzers to be used for the measurement of the different compounds during the type-approval of heavy-duty engines and vehicles. Traditionally, NOx, CO, hydrocarbons, and CO2 were the gaseous compounds measured within the Euro standard, with the later addition of CH4 and NH3. Euro 7, introduced in early 2024, expanded those compounds, requiring the measurement of N2O and HCHO. With an increasing number of molecules that need to be measured and introducing carbonless fuels, such as hydrogen, that present different requirements compared to carbon-based fuels, the test procedure needs to be updated. The performances of three laboratory-grade instruments and three portable emissions measurement systems based on Fourier-transformed infrared (FTIR) or quantum cascade laser infrared (QCL-IR) technologies were investigated while measuring from the tailpipe of a Diesel engine and a compressed natural gas (CNG) vehicle. All instruments presented good agreement when emissions of NOx, CO, CH4, NH3, N2O, HCHO, and CO2 were compared using: Z-score, F-test and two tail t-test of student. Water concentration measured by the four FTIRs was also in good agreement. Moreover, the dry emissions of CO2 and CO measured by the laboratory non-dispersive infrared (NDIR) and corrected using water were a few percentages different from those obtained using the regulated carbon-based approach. The results indicate that all the investigated systems are suitable for the measurement of the investigated gaseous compounds, including CO2 and H2O. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 3286 KiB  
Article
Sustainable Biodiesel Production via Biogenic Catalyzed Transesterification of Baobab Oil Methyl Ester and Optimization Process
by Anietie Etim and Paul Musonge
Energies 2024, 17(17), 4418; https://doi.org/10.3390/en17174418 - 3 Sep 2024
Cited by 5 | Viewed by 1410
Abstract
Biomass diesel is one of the sustainable and renewable sources of energy envisaged to hold a prominent position in the world energy infrastructure. In this study, biodiesel was produced from baobab seed oil by transesterification using biogenic heterogeneous catalyst, derived from mixed wastes [...] Read more.
Biomass diesel is one of the sustainable and renewable sources of energy envisaged to hold a prominent position in the world energy infrastructure. In this study, biodiesel was produced from baobab seed oil by transesterification using biogenic heterogeneous catalyst, derived from mixed wastes of white chicken eggshells and banana fruit peels. The production process was statistically analyzed using Box-Behnken Design-Response Surface Methodology (BBD-RSM). The influential transesterification reaction parameters investigated with their ranges include reaction time (40–80 min), molar ratio of oil to methanol (1:9–1:15) and catalyst weight (3–5 wt%). The nano-catalyst (CaO-BFP-850 NPs) was prepared by calcination at high temperature of 850 °C for 4 h, and its properties were found to contain majorly the basic elements of Ca and K when investigated with analytical instruments such as SEM, EDS, DSC-TGA, FT-IR, and XRD. The regeneration test of the CaO-BFP-850 NPs conducted showed it could be reused for more than four cycles with less catalytic efficiency reduction. The ideal conditions instituted by BBD-RSM was 75 min of reaction time, 12.8:1 molar ratio of oil to methanol, and 4.08 wt% CaO-BFP-850 at 65 °C and 650 rpm constant temperature and agitation speed respectively, with the validated biodiesel yield of 96.70 wt%. The assessment of the quality of the biodiesel produced showed compliance with the standard specifications of ASTM D6751, EN 14241, and SANS 833. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

21 pages, 3742 KiB  
Article
Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends
by Nalan Türköz Karakullukçu, Halit Muğlu, Hasan Yakan, Volkan Murat Yılmaz, Sarmad Marah and İkbal Agah İnce
Antioxidants 2024, 13(7), 819; https://doi.org/10.3390/antiox13070819 - 8 Jul 2024
Cited by 1 | Viewed by 1242
Abstract
Biodiesel has several drawbacks, such as being prone to oxidation, having reduced stability, and having limited storage time. Antioxidants compatible with biodiesel are being used to address its drawbacks. Utilizing antioxidants effectively improves the quality of biodiesel. Enhancing the quality of biodiesel for [...] Read more.
Biodiesel has several drawbacks, such as being prone to oxidation, having reduced stability, and having limited storage time. Antioxidants compatible with biodiesel are being used to address its drawbacks. Utilizing antioxidants effectively improves the quality of biodiesel. Enhancing the quality of biodiesel for use as a clean energy source benefits both the global economy and ecology. Therefore, we believe that our work will contribute to the advancement of the biodiesel industry worldwide. This study used blends consisting of 20% biodiesel and 80% diesel fuel. Isatin-thiosemicarbazones were tested as additives in blends at a concentration of 3000 parts per million (ppm) using an oxifast device and were compared with the chemical antioxidant Trolox. FT-IR, DSC, and TGA were used to characterize these samples. DSC measured sample crystallization temperatures (Tc). Samples with antioxidants showed decreased values compared to the non-antioxidant diesel sample D100. Several DSC tests were conducted to determine the antioxidant strengths of various samples. The results show that the FT-IR spectrum’s antioxidant effect regions grow clearer with antioxidants. The extra antioxidant is effective. Biodiesel’s oxidative stability improves with isatin-thiosemicarbazones at varying concentrations. The kinetics of thermal decomposition of isatin-thiosemicarbazones under non-isothermal conditions were determined using the Kissinger, Ozawa, and Boswell techniques. The activation energies of compounds 1 and 2 were calculated as 137–147 kJ mol−1 and 173–183 kJ mol−1, respectively. Full article
Show Figures

Figure 1

18 pages, 2358 KiB  
Article
Automotive e-Fuels via Hydrocracking of FT-Wax: e-Gasoline and e-Diesel Production
by Athanasios Dimitriadis, Loukia P. Chrysikou and Stella Bezergianni
Energies 2024, 17(11), 2756; https://doi.org/10.3390/en17112756 - 5 Jun 2024
Cited by 3 | Viewed by 2138
Abstract
The main goal of this research is the production of e-fuels in gasoline- and diesel-range hydrocarbons via the hydrocracking of wax from Fischer–Tropsch (FT-wax) synthesis. The hydrogen for the hydrocracking process originated from solar energy via water electrolysis, thus, the produced fuels were [...] Read more.
The main goal of this research is the production of e-fuels in gasoline- and diesel-range hydrocarbons via the hydrocracking of wax from Fischer–Tropsch (FT-wax) synthesis. The hydrogen for the hydrocracking process originated from solar energy via water electrolysis, thus, the produced fuels were called e-fuels. The FT-wax was produced via the Fischer–Tropsch synthesis of syngas stream from the chemical looping gasification (CLG) of biogenic residues. For the hydrocracking tests, a continuous-operation TRL3 (Technology Readiness Level) pilot plant was utilized. At first, hydrocracking catalyst screening was performed for the upgrading of the FT-wax. Three hydrocracking catalysts were investigated (Ni-W, Ni-W zeolite-supported, and Ni-W Al2O3-supported catalyst) via various operating conditions to identify the optimal operating window for each one. These three catalysts were selected, as they are typical catalysts that are used in the petroleum refinery industry. The optimal catalyst was found to be the NiW catalyst, as it led to high e-fuel yields (38 wt% e-gasoline and 47 wt% e-diesel) with an average hydrogen consumption. The optimum operating window was found at a 603 K reactor temperature, 8.3 MPa system pressure, 1 hr−1 LHSV, and 2500 scfb H2/oil ratio. In the next phase, the production of 5 L of hydrocracked wax was performed utilizing the optimum NiW catalyst and the optimal operating parameters. The liquid product was further fractionated to separate the fractions of e-gasoline, e-diesel, and e-heavy fuel. The e-gasoline and e-diesel fractions were qualitatively assessed, indicating that they fulfilled almost all EN 228 and EN 590 for petroleum-based gasoline and diesel, respectively. Furthermore, a 12-month storage study showed that the product can be stored for a period of 4 months in ambient conditions. In general, green transportation e-fuels with favorable properties that met most of the fossil fuels specifications were produced successfully from the hydrocracking of FT-wax. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

12 pages, 1788 KiB  
Article
Production of Transportation Fuels from Fischer–Tropsch Waxes: Distillation, Blending, and Hydrocracking
by Jakub Frątczak, Joanna Górska, Martin Babor, Zahra Gholami, José Miguel Hidalgo Herrador and Héctor de Paz Carmona
Appl. Sci. 2024, 14(11), 4656; https://doi.org/10.3390/app14114656 - 28 May 2024
Viewed by 2151
Abstract
Nowadays, transportation fuels such as diesel or gasoline are standardly produced from crude oil refining. These petroleum-based products are gradually replaced by more environmentally friendly sources, such as Fischer–Tropsch diesel fractions and other biofuels. The present work reports the distillation of Fischer–Tropsch (FTS) [...] Read more.
Nowadays, transportation fuels such as diesel or gasoline are standardly produced from crude oil refining. These petroleum-based products are gradually replaced by more environmentally friendly sources, such as Fischer–Tropsch diesel fractions and other biofuels. The present work reports the distillation of Fischer–Tropsch (FTS) waxes and its use for fuel production by (i) blending the FTS wax diesel fraction with fossil diesel (7:93; 15:85; 30:70; and 50:50 wt.%) and (ii) blending the FTS wax heavy fraction (360–700 °C) with vacuum gas oil (10–50 wt.%) followed by hydrocracking at industrial operating conditions (T = 420 °C, WHSV = 0.5–1.0 h−1, P = 10.0 MPa). The obtained products in both cases were analysed and compared with standard EN590 for petroleum-diesel fuels. Overall, our results point to the suitability of the distillation of FTS waxes for renewable fuel production, either by straight blending of the diesel petroleum-based products or co-hydrocracking of the heavy fraction with vacuum gas oil. Full article
(This article belongs to the Special Issue Environmental Catalysis and Green Chemistry)
Show Figures

Figure 1

27 pages, 2098 KiB  
Article
Complex Use of the Main Marine Diesel Engine High- and Low-Temperature Waste Heat in the Organic Rankine Cycle
by Sergejus Lebedevas and Tomas Čepaitis
J. Mar. Sci. Eng. 2024, 12(3), 521; https://doi.org/10.3390/jmse12030521 - 21 Mar 2024
Cited by 7 | Viewed by 5195
Abstract
The decarbonization problem of maritime transport and new restrictions on CO2 emissions (MARPOL Annex VI Chapter 4, COM (2021)562) have prompted the development and practical implementation of new decarbonization solutions. One of them, along with the use of renewable fuels, is the [...] Read more.
The decarbonization problem of maritime transport and new restrictions on CO2 emissions (MARPOL Annex VI Chapter 4, COM (2021)562) have prompted the development and practical implementation of new decarbonization solutions. One of them, along with the use of renewable fuels, is the waste heat recovery of secondary heat sources from a ship’s main engine, whose energy potential reaches 45–55%. The organic Rankine cycle (ORC), which uses low-boiling organic working fluids, is considered one of the most promising and energy-efficient solutions for ship conditions. However, there remains uncertainty when choosing a rational cycle configuration, taking into account the energy consumption efficiency indicators of various low-temperature (cylinder cooling jacket and scavenging air cooling) and high-temperature (exhaust gas) secondary heat source combinations while the engine operates within the operational load range. It is also rational, especially at the initial stage, to evaluate possible constraints of ship technological systems for ORC implementation on the ship. The numerical investigation of these practical aspects of ORC applicability was conducted with widely used marine medium-speed diesel engines, such as the Wartsila 12V46F. Comprehensive waste heat recovery of all secondary heat sources in ORC provides a potential increase in the energy efficiency of the main engine by 13.5% to 21% in the engine load range of 100% to 25% of nominal power, while individual heat sources only achieve 3% to 8%. The average increase in energy efficiency over the operating cycle according to test cycles for the type approval engines ranges from 8% to 15% compared to 3% to 6.5%. From a practical implementation perspective, the most attractive potential for energy recovery is from the scavenging air cooling system, which, both separately (5% compared to 6.5% during the engine’s operating cycle) and in conjunction with other WHR sources, approaches the highest level of exhaust gas potential. The choice of a rational ORC structure for WHR composition allowed for achieving a waste heat recovery system energy efficiency coefficient of 15%. Based on the studied experimental and analytical relationships between the ORC (generated mechanical energy) energy performance (Pturb) and the technological constraints of shipboard systems (Gw), ranges for the use of secondary heat sources in diesel operational characteristic modes have been identified according to technological limits. Full article
(This article belongs to the Special Issue Advanced Research on the Sustainable Maritime Transportation)
Show Figures

Figure 1

33 pages, 6198 KiB  
Article
Comparative Life Cycle Assessments and Economic Analyses of Alternative Marine Fuels: Insights for Practical Strategies
by Hyunyong Lee, Jinkwang Lee, Gilltae Roh, Sangick Lee, Choungho Choung and Hokeun Kang
Sustainability 2024, 16(5), 2114; https://doi.org/10.3390/su16052114 - 4 Mar 2024
Cited by 23 | Viewed by 5794
Abstract
The growth of the global shipping industry has increased the interest in the environmental impact of this sector. The International Maritime Organization adopted the initial Greenhouse Gas strategy for reducing GHG emissions from ships at the 72nd Marine Environment Protection Committee in April [...] Read more.
The growth of the global shipping industry has increased the interest in the environmental impact of this sector. The International Maritime Organization adopted the initial Greenhouse Gas strategy for reducing GHG emissions from ships at the 72nd Marine Environment Protection Committee in April 2018. In this study, we carried out a life cycle assessment of nine production pathways of alternative fuels, including LNG, ammonia, methanol, and biofuels, and conducted an economic analysis considering the life cycle carbon pricing of each fuel pathway. Our results indicate that biomass-based FT-diesel, e-methanol, and e-ammonia are the most environmentally friendly, with GHG reductions of 92%, 88.2%, and 86.6%, respectively. However, our net present value analysis of ship life cycle cost considering carbon price indicated that using those fuels would not be cost-effective during the target period of study. Sensitivity analysis was performed by changing the life cycle carbon pricing from the baseline scenario, and we investigated the approximate years for when these alternative fuels will become more cost-effective compared to conventional fossil fuels. Further, to provide practical implications for shipping stakeholders, we analysed the effect of blending the same kinds of fuels with different production pathways. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 5682 KiB  
Article
Quantitative Analysis of Near-Infrared Spectroscopy Using the BEST-1DConvNet Model
by Gang Li and Shuangcheng Deng
Processes 2024, 12(2), 272; https://doi.org/10.3390/pr12020272 - 26 Jan 2024
Cited by 5 | Viewed by 2653
Abstract
In the quest for enhanced precision in near-infrared spectroscopy (NIRS), in this study, the application of a novel BEST-1DConvNet model for quantitative analysis is investigated against conventional support vector machine (SVM) approaches with preprocessing such as multiplicative scatter correction (MSC) and standard normal [...] Read more.
In the quest for enhanced precision in near-infrared spectroscopy (NIRS), in this study, the application of a novel BEST-1DConvNet model for quantitative analysis is investigated against conventional support vector machine (SVM) approaches with preprocessing such as multiplicative scatter correction (MSC) and standard normal variate (SNV). We assessed the performance of these methods on NIRS datasets of diesel, gasoline, and milk using a Fourier Transform Near-Infrared (FT-NIR) spectrometer having a wavelength range of 900–1700 nm for diesel and gasoline and 4000–10,000 nm for milk, ensuring comprehensive spectral capture. The BEST-1DConvNet’s effectiveness in chemometric predictions was quantitatively gauged by improvements in the coefficient of determination (R2) and reductions in the root mean square error (RMSE). The BEST-1DConvNet model achieved significant performance enhancements compared to the MSC + SNV + 1D + SVM model. Notably, the R2 value for diesel increased by approximately 48.85% despite a marginal RMSE decrease of 0.92%. R2 increased by 11.30% with a 3.32% RMSE reduction for gasoline, and it increased by 8.71%, accompanied by a 3.51% RMSE decrease for milk. In conclusion, the BEST-1DConvNet model demonstrates superior predictive accuracy and reliability in NIRS data analysis, marking a substantial leap forward in spectral analysis technology. This advancement could potentially streamline their integration into various industrial applications and highlight the role of convolutional neural networks in future chemometric methodologies. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

22 pages, 3324 KiB  
Article
Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment
by Julia Hansson, Sofia Klugman, Tomas Lönnqvist, Nilay Elginoz, Julia Granacher, Pavinee Hasselberg, Fredrik Hedman, Nora Efraimsson, Sofie Johnsson, Sofia Poulikidou, Sahar Safarian and Kåre Tjus
Energies 2024, 17(1), 99; https://doi.org/10.3390/en17010099 - 23 Dec 2023
Cited by 3 | Viewed by 1811
Abstract
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill [...] Read more.
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance. The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts. The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or 50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technology readiness level of the gasification technologies, especially wet gasification. However, the studied concept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost. Full article
(This article belongs to the Special Issue Conversion of Biomass to Fuel and Commodity Chemicals)
Show Figures

Figure 1

37 pages, 5696 KiB  
Article
Catalytic Cracking of Palm Oil: Effect of Catalyst Reuse and Reaction Time of the Quality of Biofuels-like Fractions
by Nélio Teixeira Machado, Andréia de Andrade Mancio da Mota, Jhuliana da Silva Santanna, Valtiane de Jesus Pantoja da Gama, José Roberto Zamian, Luiz Eduardo Pizarro Borges and Silvio Alex Pereira da Mota
Energies 2023, 16(20), 7063; https://doi.org/10.3390/en16207063 - 12 Oct 2023
Cited by 2 | Viewed by 2597
Abstract
This work systematically investigated the influence of catalyst reuse and reaction time on the yield and quality of organic liquid products (OLP) obtained in a cracking pilot plant at 450 °C and 1.0 atm. The distillation of OLP produced 04 (four) distilled fractions [...] Read more.
This work systematically investigated the influence of catalyst reuse and reaction time on the yield and quality of organic liquid products (OLP) obtained in a cracking pilot plant at 450 °C and 1.0 atm. The distillation of OLP produced 04 (four) distilled fractions (gasoline, kerosene, and green diesel). The biofuels-like fractions are liquid mixtures with high content of hydrocarbons (alkanes, alkenes, and aromatics) with potential application as substitutes for fossil fuels in internal combustion motors. The quality of the biofuels was certified by physical-chemical analysis and FT-IR and GC-MS analysis. The experimental results showed the feasibility of applying the spent sodium carbonate twice in the catalytic cracking of vegetable oils. The physical-chemical properties (density, viscosity, acid value, saponification value, and flash point) of OLP decrease as the reaction time increases. The distillation of OLP yields 62.35% (wt.), producing green-like gasoline, kerosene, and diesel fractions rich in hydrocarbons. Therefore, biofuel-like fractions produced by distillation of OLP have a great potential for replacing partially petroleum-derived fuels. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

16 pages, 2219 KiB  
Review
A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation
by Ali Mubarak Al-Qahtani
Energies 2023, 16(19), 6876; https://doi.org/10.3390/en16196876 - 29 Sep 2023
Cited by 15 | Viewed by 3608
Abstract
Lignocellulosic and waste materials, such as sewage sludge, can be broken down into its useful constituents and converted into fuel for engines. This paper investigates microwave pyrolysis to decompose biomass into H2 and CO (syngas), which may be catalysed in the Fischer–Tropsch [...] Read more.
Lignocellulosic and waste materials, such as sewage sludge, can be broken down into its useful constituents and converted into fuel for engines. This paper investigates microwave pyrolysis to decompose biomass into H2 and CO (syngas), which may be catalysed in the Fischer–Tropsch (F-T) process to liquid biofuels. Using microwave radiation as the heat source for pyrolysis proves to yield large quantities of gas with higher concentrations of H2 and CO compared to conventional heating methods. This is largely due to the energy transfer mechanism of microwaves. Pyrolysis parameters such as temperature (which increases with input power), feedstock type, microwave absorber, and biomass moisture content influence syngas yield. Several papers reviewed for this study showed differing optimal conditions for microwave pyrolysis, all being heavily dependent on the biomass used and its composition. However, all researchers agreed on the thermal efficiency of microwave heating and how its material-selective nature can increase syngas yield. Compared to diesel fuels (while processing a similar efficiency and a higher cetane number), FT fuels and specifically pyrolysis may yield the benefit of reduced nitric oxides (NOx), particulate matter (PM), unburnt hydrocarbons (HC) and carbon monoxide (CO) emissions. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

Back to TopTop