Sustainable Biodiesel Production via Biogenic Catalyzed Transesterification of Baobab Oil Methyl Ester and Optimization Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Catalyst
2.3. Catalyst Characterization
2.4. Empirical Design of the Transesterification Process
2.5. Biodiesel Synthesis from Baobab Oil and Characterization
2.6. Characterization of BOME
3. Results and Discussion
3.1. Synthesized Catalyst Characterization
3.1.1. FT-IR Analysis
3.1.2. XRD Analysis
3.1.3. EDX Analysis
3.1.4. SEM Analysis
3.1.5. DSC-TGA Analysis of CaO-BFP-850 NPs
3.1.6. Reusability Test of CaO-BFP-850 NPs
3.2. Transesterification Process Modeling and Optimization
3.2.1. Graphical and Numerical Optimization of the Process Parameters
3.2.2. Model Validation and Parameters Optimization
3.3. Fatty Acid Composition of BO and BOME
3.4. Infrared Spectroscopy of Baobab Oil (BO) and Baobab Methyl Ester (BOME)
3.5. Biodiesel Quality Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Changmai, B.; Sudarsanam, P.; Rokhum, S.L. Biodiesel production using a renewable mesoporous solid catalyst. Ind. Crop. Prod. 2020, 145, 111911. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S. Cost, environmental impact, and resilience of re-newable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741–764. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H.K.S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M.M. Reactor technologies for biodiesel production and processing: A review. Prog. Energy Combust. Sci. 2019, 74, 239–303. [Google Scholar] [CrossRef]
- Cipolletta, M.; D’Ambrosio, M.; Moreno, V.C.; Cozzani, V. Enhancing the sustainability of biodiesel fuels by inherently safer production processes. J. Clean. Prod. 2022, 344, 131075. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine learning technology in biodiesel research: A review. Prog. Energy Combust. Sci. 2021, 85, 100–904. [Google Scholar] [CrossRef]
- Aleman-Ramirez, J.; Okoye, P.U.; Torres-Arellano, S.; Paraguay-Delgado, F.; Mejía-López, M.; Moreira, J.; Sebastian, P. Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production. Fuel 2022, 324, 124–601. [Google Scholar] [CrossRef]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.; Sharma, S.; Kumari, D. Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel 2019, 253, 60–71. [Google Scholar] [CrossRef]
- Vermaak, I.; Kamatou, G.; Komane-Mofokeng, B.; Viljoen, A.; Beckett, K. African seed oils of commercial importance—Cosmetic applications. S. Afr. J. Bot. 2011, 77, 920–933. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Trans-esterification and Esterification Reactions: A Critical Review. Bioenergy Res. 2022, 15, 935–961. [Google Scholar] [CrossRef]
- Thoai, D.N.; Tongurai, C.; Prasertsit, K.; Kumar, A. Review on biodiesel production by two-step catalytic conversion. Biocatal. Agric. Biotechnol. 2019, 18, 101023. [Google Scholar] [CrossRef]
- Osman, A.I.; Elgarahy, A.M.; Eltaweil, A.S.; El-Monaem, E.M.A.; El-Aqapa, H.G.; Park, Y.; Hwang, Y.; Ayati, A.; Farghali, M.; Ihara, I.; et al. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ. Chem. Lett. 2023, 21, 1315–1379. [Google Scholar] [CrossRef]
- Gohain, M.; Devi, A.; Deka, D. Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Ind. Crop. Prod. 2017, 109, 8–18. [Google Scholar] [CrossRef]
- Betiku, E.; Akintunde, A.M.; Ojumu, T.V. Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon’s plume (Bauhinia monandra) seed oil: A process parameters optimization study. Energy 2016, 103, 797–806. [Google Scholar] [CrossRef]
- Etim, A.O.; Musonge, P.; Eloka-Eboka, A.C. Process optimization of bio-alkaline catalysed transesterification of flax seed oil methyl ester. Sci. Afr. 2022, 16, e01275. [Google Scholar] [CrossRef]
- Pathak, G.; Das, D.; Rajkumari, K.; Rokhum, S.L. Exploiting waste: Towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chem. 2018, 20, 2365–2373. [Google Scholar] [CrossRef]
- Barros, S.D.S.; Pessoa, W.A.G.; Sá, I.S.C.; Takeno, M.L.; Nobre, F.X.; Pinheiro, W.; Manzato, L.; Iglauer, S. Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresour. Technol. 2020, 312, 123569. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel production—Process optimization using central composite design. Energy Convers. Manag. 2019, 189, 118–131. [Google Scholar] [CrossRef]
- Ezekannagha, C.B.; Onukwuli, O.D.; Obibuenyi, J.I.; Udunwa, D.I. Kinetic modeling of papaya seed triglyceride trans-esterification catalyzed by calcined banana peel ash in methyl ester production. Chem. Eng. Res. Des. 2023, 200, 256–265. [Google Scholar] [CrossRef]
- Ao, S.; Changmai, B.; Vanlalveni, C.; Chhandama, M.V.L.; Wheatley, A.E.H.; Rokhum, S.L. Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges. Renew. Energy 2024, 223, 120031. [Google Scholar] [CrossRef]
- Marwaha, A.; Rosha, P.; Mohapatra, S.K.; Mahla, S.K.; Dhir, A. Biodiesel production from Terminalia bellerica using eggshell-based green catalyst: An optimization study with response surface methodology. Energy Rep. 2019, 5, 1580–1588. [Google Scholar] [CrossRef]
- Gupta, A.R.; Rathod, V.K. Waste cooking oil and waste chicken eggshells derived solid base catalyst for biodiesel production: Optimization and kinetics. Waste Manag. 2018, 79, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Adepoju, T.F.; Ibeh, M.A.; Babatunde, E.O.; Asquo, A.J. Methanolysis of CaO based catalyst derived from eggshell-snail shell-wood ash mixed for fatty acid methylester (FAME) synthesis from a ternary mixture of Irvingia gabonensis-Pentaclethra macrophylla—Elais guineensis oil blend: An application of simple. Fuel 2020, 275, 117–997. [Google Scholar] [CrossRef]
- Foroutan, R.; Mohammadi, R.; Razeghi, J.; Ramavandi, B. Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst. Renew. Energy 2021, 168, 1207–1216. [Google Scholar] [CrossRef]
- Borah, M.J.; Das, A.; Das, V.; Bhuyan, N.; Deka, D. Transesterification of waste cooking oil for biodiesel production cata-lyzed by Zn substituted waste eggshell derived CaO nanocatalyst. Fuel 2019, 242, 345–354. [Google Scholar] [CrossRef]
- Karmakar, B.; Dhawane, S.H.; Halder, G. Optimization of biodiesel production from castor oil by Taguchi design. J. Environ. Chem. Eng. 2018, 6, 2684–2695. [Google Scholar] [CrossRef]
- Betiku, E.; Etim, A.O.; Pereao, O.; Ojumu, T.V. Two-Step Conversion of Neem (Azadirachta indica) Seed Oil into Fatty Methyl Esters Using a Heterogeneous Biomass-Based Catalyst: An Example of Cocoa Pod Husk. Energy Fuels 2017, 31, 6182–6193. [Google Scholar] [CrossRef]
- Chuah, L.F.; Klemeš, J.J.; Yusup, S.; Bokhari, A.; Akbar, M.M. Influence of fatty acids in waste cooking oil for cleaner biodiesel. Clean Technol. Environ. Policy 2017, 19, 859–868. [Google Scholar] [CrossRef]
- Krisnangkura, K. A simple method for estimation of cetane index of vegetable oil methyl esters. J. Am. Oil Chem. Soc. 1986, 63, 552–553. [Google Scholar] [CrossRef]
- Demirbaş, A. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 1998, 77, 1117–1120. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists; AOAC: Arlington, VA, USA, 1995; pp. 503–515. [Google Scholar]
- Barabas, I.; Todoru, I.-A. Biodiesel Quality, Standards and Properties; InTech: Pleasanton, CA, USA, 2011. [Google Scholar] [CrossRef]
- Etim, A.O.; Musonge, P.; Eloka-Eboka, A.C. Transesterification via Parametric Modelling and Optimization of Marula (Sclerocarya birrea) Seed Oil Methyl Ester Synthesis. J. Oleo Sci. 2021, 70, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, I.; Rubiyanto, D.; Taushiyah, A.; Najah, F.B.; Azmi, U.; Sim, Y.-L. Use of ZrO2 supported on bamboo leaf ash as a heterogeneous catalyst in microwave-assisted biodiesel conversion. Sustain. Chem. Pharm. 2019, 12, 100129. [Google Scholar] [CrossRef]
- Marinković, D.M.; Stanković, M.V.; Veličković, A.V.; Avramović, J.M.; Miladinović, M.R.; Stamenković, O.O.; Veljković, V.B.; Jovanović, D.M. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renew. Sustain. Energy Rev. 2016, 56, 1387–1408. [Google Scholar] [CrossRef]
- Tan, Y.H.; Abdullah, M.O.; Kansedo, J.; Mubarak, N.M.; Chan, Y.S.; Nolasco-Hipolito, C. Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renew. Energy 2019, 139, 696–706. [Google Scholar] [CrossRef]
- Sulaiman, S.; Khairudin, N.; Jamal, P.; Alam, M.Z.; Zainudin, Z.; Azmi, S. Characterization of Fish Bone Catalyst for Bio-diesel Production. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2014, 8, 476–478. [Google Scholar]
- Amenaghawon, A.N.; Evbarunegbe, N.I.; Obahiagbon, K. Optimum biodiesel production from waste vegetable oil using functionalized cow horn catalyst: A comparative evaluation of some expert systems. Clean. Eng. Technol. 2021, 4, 100184. [Google Scholar] [CrossRef]
- Hazmi, B.; Rashid, U.; Taufiq-Yap, Y.H.; Ibrahim, M.L.; Nehdi, I.A. Supermagnetic Nano-Bifunctional Catalyst from Rice Husk: Synthesis, Characterization and Application for Conversion of Used Cooking Oil to Biodiesel. Catalysts 2020, 10, 225. [Google Scholar] [CrossRef]
- Eldiehy, K.S.; Gohain, M.; Daimary, N.; Borah, D.; Mandal, M.; Deka, D. Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil. Renew. Energy 2022, 191, 888–901. [Google Scholar] [CrossRef]
- Vargas, E.M.; Neves, M.C.; Tarelho, L.A.; Nunes, M.I. Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renew. Energy 2019, 136, 873–883. [Google Scholar] [CrossRef]
- Risso, R.; Ferraz, P.; Meireles, S.; Fonseca, I.; Vital, J. Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Appl. Catal. A Gen 2018, 567, 56–64. [Google Scholar] [CrossRef]
- Rahman, W.U.; Fatima, A.; Anwer, A.H.; Athar, M.; Khan, M.Z.; Khan, N.A.; Halder, G. Biodiesel synthesis from eucalyptus oil by utilizing waste eggshell derived calcium-based metal oxide catalyst. Process Saf. Environ. Prot. 2019, 122, 313–319. [Google Scholar] [CrossRef]
- Etim, A.O.; Musonge, P.; Eloka-Eboka, A.C. An effective green and renewable from the fusion of bi-component trans-esterification of linseed oil methyl ester. Biofuels Bioprod. Biorefining 2021, 15, 1461–1472. [Google Scholar] [CrossRef]
- Bai, L.; Tajikfar, A.; Tamjidi, S.; Foroutan, R.; Esmaeili, H. Synthesis of MnFe2O4@graphene oxide catalyst for bio-diesel production from waste edible oil. Renew. Energy 2021, 170, 426–437. [Google Scholar] [CrossRef]
- Niju, S.; Begum, K.M.S.; Anantharaman, N. Enhancement of biodiesel synthesis over highly active CaO derived from natural white bivalve clam shell. Arab. J. Chem. 2016, 9, 633–639. [Google Scholar] [CrossRef]
- Jaiyen, S.; Naree, T.; Ngamcharussrivichai, C. Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel. Renew. Energy 2014, 74, 433–440. [Google Scholar] [CrossRef]
- Pandiangan, K.D.; Jamarun, N. The Effect of Calcination Temperatures on the Activity of CaO and CaO/SiO2 Hetero-geneous Catalyst for Transesterification of Rubber Seed Oil in the Presence of Coconut Oil as a Co-reactant. Orient. J. Chem. 2016, 32, 3021–3026. [Google Scholar] [CrossRef]
- Uprety, B.K.; Chaiwong, W.; Ewelike, C.; Rakshit, S.K. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Convers. Manag. 2016, 115, 191–199. [Google Scholar] [CrossRef]
- Pandit, P.R.; Fulekar, M. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology. J. Environ. Manag. 2017, 198, 319–329. [Google Scholar] [CrossRef]
- Chizoo, E.; Chimamkpam, S.; Gabriel, E.; Gerald, U. Adaptive neuro-fuzzy inference system-genetic algorithm versus response surface methodology-desirability function algorithm modelling and optimization of biodiesel synthesis from w... Journal of the Taiwan Institute of Chemical Engineers Adaptive neuro-f. J. Taiwan Inst. Chem. Eng. 2022, 136, 104389. [Google Scholar]
- Odude, V.O.; Adesina, A.J.; Oyetunde, O.O.; Adeyemi, O.O.; Ishola, N.B.; Etim, A.O.; Betiku, E. Application of Agricultural Waste-Based Catalysts to Transesterification of Esterified Palm Kernel Oil into Biodiesel: A Case of Banana Fruit Peel Versus Cocoa Pod Husk. Waste Biomass-Valorization 2019, 10, 877–888. [Google Scholar] [CrossRef]
- Falowo, A.O.; Betiku, E. A novel heterogeneous catalyst synthesis from agrowastes mixture and application in transesterification of yellow oleander-rubber oil: Optimization by Taguchi approach. Fuel 2022, 312, 122999. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Shan, R.; Shi, J.-F.; Yan, B.-B. Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Process. Technol. 2015, 133, 8–13. [Google Scholar] [CrossRef]
- Adedayo, E.; Oluwatumininu, O.; Betiku, E. Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth. Renew. Energy 2020, 166, 163–175. [Google Scholar]
- Falowo, O.A.; Ojumu, T.V.; Pereao, O.; Betiku, E. Sustainable Biodiesel Synthesis from Honne-Rubber-Neem Oil Blend with a Novel Mesoporous Base Catalyst Synthesized from a Mixture of Three Agrowastes. Catalysts 2020, 10, 190. [Google Scholar] [CrossRef]
- Betiku, E.; Okeleye, A.A.; Ishola, N.B.; Osunleke, A.S.; Ojumu, T.V. Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies. Catal. Lett. 2019, 149, 1772–1787. [Google Scholar] [CrossRef]
- Tin, G.; Nee, S.; Tat, K.; Teong, K.; Rahman, A. Optimization and kinetic studies of sea mango Cerbera odollam oil for biodiesel production via supercritical reaction. Energy Convers. Manag. 2015, 99, 242–251. [Google Scholar]
- Salim, S.M.; Izriq, R.; Almaky, M.M.; Al-Abbassi, A.A. Synthesis and characterization of ZnO nanoparticles for the production of biodiesel by transesterification: Kinetic and thermodynamic studies. Fuel 2022, 321, 124135. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. Banana peduncle—A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renew. Energy 2020, 146, 2255–2269. [Google Scholar] [CrossRef]
- Mansir, N.; Teo, S.H.; Ibrahim, M.L.; Hin, T.-Y.Y. Synthesis and application of waste egg shell derived CaO supported W-Mo mixed oxide catalysts for FAME production from waste cooking oil: Effect of stoichiometry. Energy Convers. Manag. 2017, 151, 216–226. [Google Scholar] [CrossRef]
- Etim, A.O.; Jisieike, C.F.; Ibrahim, T.H.; Betiku, E. Biodiesel and its properties. In Production of Biodiesel from Non-Edible Sources; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Pawar, S.; Hole, J.; Bankar, M.; Khan, S.; Wankhade, S. Use of Fatty Acid Chemical Composition for Predicting Higher Calorific Value of Biodiesel. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Mawlid, O.A.; Abdelhady, H.H.; Abd El-Moghny, M.G.; Hamada, A.; Abdelnaby, F.; Kased, M.; Al-Bajouri, S.; Elbohy, R.A.; El-Deab, M.S. Clean approach for catalytic biodiesel production from waste frying oil utilizing K2CO3/Orange peel derived hydrochar via RSM Optimization. J. Clean. Prod. 2024, 442, 140947. [Google Scholar] [CrossRef]
- Yesilyurt, M.K.; Cesur, C.; Aslan, V.; Yilbasi, Z. The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 119, 109574. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Ramavandi, B. Application of walnut shell ash/ZnO/K2CO3 as a new composite catalyst for biodiesel generation from Moringa oleifera oil. Fuel 2022, 311, 122624. [Google Scholar] [CrossRef]
Factors | Symbol | Unit | Coded Factor and Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
Methanol/oil ratio | A | w/w | 9:1 | 12:1 | 15:1 |
Catalyst loading | B | wt% | 3 | 4 | 5 |
Process Reaction time | C | min | 40 | 60 | 80 |
Standard Order | Run | A | B | C | Actual BOME Yield | Predicted BOME Yield |
---|---|---|---|---|---|---|
14 | 1 | 12 | 4 | 60 | 96.55 ± 0.18 | 96.37 |
4 | 2 | 15 | 5 | 60 | 94.64 ± 0.05 | 94.59 |
15 | 3 | 12 | 4 | 60 | 96.31 ± 0.06 | 96.37 |
7 | 4 | 9 | 4 | 80 | 95.42 ± 0.15 | 95.27 |
12 | 5 | 12 | 5 | 80 | 94.62 ± 0.26 | 94.88 |
9 | 6 | 12 | 3 | 40 | 91.42 ± 0.26 | 91.16 |
13 | 7 | 12 | 4 | 60 | 96.26 ± 0.11 | 96.37 |
2 | 8 | 15 | 3 | 60 | 92.20 ± 0.11 | 92.31 |
10 | 9 | 12 | 5 | 40 | 93.57 ± 0.10 | 93.47 |
11 | 10 | 12 | 3 | 80 | 94.60 ± 0.11 | 94.71 |
6 | 11 | 15 | 4 | 40 | 95.14 ± 0.15 | 95.29 |
5 | 12 | 9 | 4 | 40 | 89.73 ± 0.22 | 89.95 |
1 | 13 | 9 | 3 | 60 | 90.80 ± 0.05 | 90.85 |
8 | 14 | 15 | 4 | 80 | 95.15 ± 1.78 | 94.93 |
3 | 15 | 9 | 5 | 60 | 91.16 ± 0.11 | 91.05 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 68.59 | 9 | 7.62 | 101.28 | <0.0001 |
A | 12.55 | 1 | 12.55 | 166.78 | <0.0001 |
B | 3.09 | 1 | 3.09 | 41.03 | 0.0014 |
C | 12.33 | 1 | 12.33 | 163.80 | <0.0001 |
AB | 1.08 | 1 | 1.08 | 14.37 | 0.0127 |
AC | 8.07 | 1 | 8.07 | 107.19 | 0.0001 |
BC | 1.13 | 1 | 1.13 | 15.07 | 0.0116 |
A2 | 13.80 | 1 | 13.80 | 183.33 | <0.0001 |
B2 | 18.53 | 1 | 18.53 | 246.30 | <0.0001 |
C2 | 1.24 | 1 | 1.24 | 16.53 | 0.0097 |
Residual | 0.3762 | 5 | 0.0752 | ||
Lack of Fit | 0.3282 | 3 | 0.1094 | 4.55 | 0.1854 |
Pure Error | 0.0481 | 2 | 0.0240 | ||
Cor Total | 68.96 | 14 | |||
Std. Dev. | 0.2743 | ||||
Fits Statistics dataset | |||||
R2 | 0.9945 | Adjusted R² | 0.9847 | Predicted R2 | 0.9223 |
Adeq Precision | 28.6953 | C.V. (%) | 0.2923 |
Waste Renewable Resources | Calcination Condition | Oil Type | Transesterification Conditions | BOME Yield (%) | References | |||
---|---|---|---|---|---|---|---|---|
Cat. Amt (wt%) | Met/Oil Ratio | Reaction Time (min) | Reaction Temp (°C) | |||||
Cocoa/kola nut/fluted pumpkin | 500 °C, 4 h | Yellow oleander-rubber | 1.5 | 9:1 | 40 | 55 | 95.02 | [53] |
Rice husk/eggshells | 800 °C, 4 h | Palm oil | 7.0 | 9:1 | 240 | 65 | 91.50 | [54] |
Eggshells/moringa leaves | 800 °C, 4 h | Soya beans | 2.0 | 12:1 | 78 | 65 | 94.3 | [6] |
Cocoa husk/plantain peels | 500 °C, 4 h | Honne oil | 4.5 | 15:1 | 90 | 65 | 98.98 | [55] |
Eggshells/papaya peels | 900 °C, 3 h | Used cooking oil | 3.78 | 14.9:1 | 80 | 65 | 91.20 | [43] |
Waste chicken/fish bones | 1000 °C, 4 h | Used cooking oil | 1.98 | 10:1 | 114 | 65 | 89.50 | [36] |
Plantain/cocoa/kola nut | 500 °C, 4 h | Neem/Honne oil, rubber | 1.15 | 12:1 | 60 | 150 W (microwave) | 98.4 | [56] |
White eggshells/banana peels | 800 °C, 4 h | Baobab oil | 4.08 | 12.8:1 | 75 | 65 | 96.70 | This study |
Systematic Name | Symbol | BO | BOME |
---|---|---|---|
% Composition | |||
Myristic acid | C14:0 | 0.35 | 0.49 |
Palmitic acid | C16:0 | 30.86 | 32.9 |
Stearic acid | C18:0 | 5.67 | 6.55 |
Arachidic acid | C20:0 | 1.85 | 0.88 |
Lignoceric acid | C24:0 | - | 0.36 |
Palmitoleic acid | C16:1 | 0.48 | 0.40 |
Oleic acid | C18:1 | 42.17 | 44.16 |
Linoleic acid | C18:2 | 12.46 | 14.01 |
Linolenic acid | C18:3 | 1.30 | 0.23 |
Others | 4.82 | - | |
Total Saturated | 38.73 | 41.18 | |
Total Unsaturated | 56.41 | 58.80 |
Wavenumber (cm−1) | Functional Group | Vibration Type | Intensity | Ref. |
---|---|---|---|---|
3006 | =C-H | stretching | Weak | [59] |
2922 | -C-H (CH2) | Asymmetric stretching vibration | Very strong | [33] |
2853 | -C-H (CH2) | Symmetric | Very strong | [55] |
1744 | -C=O | Stretching | Very strong | |
1464 | -CH2 | Shear-type vibration | Medium | [59] |
1377 | -CH3 | Bending vibration, symmetric deformation | Medium | [18] |
1167 | -C-O-C | Asymmetric stretching vibration | Very strong | [60] |
1159 | -CH2 | Stretching | Medium | [61] |
1097 | C-CH2-C | Asymmetric stretching vibration | Strong | [59] |
722 | -CH2 | Bending out of plane, rocking vibration | Medium | [55] |
Property | Test Method | BOME (at Optimum Conditions) | BOME (All Product) | ASTM D6751 | EN 14214 | SAN 833 |
---|---|---|---|---|---|---|
State/color at room temp | Liquid/golden yellow | Liquid/golden yellow | liquid | liquid | liquid | |
Moisture content (%) | AOAC | <0.01 | <0.01 | <0.05 | 0.050% max | N/S |
Refractive index | AOAC | 1.467 | 1.467 | N/S | N/S | N/S |
Density at 25 °C (g/cm3) | AOAC | 0.87 | 0.88 | 0.85 | 0.86–0.90 | 0.86–0.90 |
Kinematic Viscosity at 40 °C (mm2/s) | AOAC | 3.40 | 4.50 | 1.9–6.0 | 3.5–5.0 | 3.5–5.0 |
Acid Value (mg KOH/g) | AOAC | 0.20 | 0.35 | 0.5 max | 0.5 max | 0.5 max |
FFA (%) | AOAC | 0.10 | 0.17 | 0.2 max | 0.25 max | 0.2 max |
Calorific value (MJ/kg) | [30] | 40.14 | 40.14 | N/S | 35 min | N/S |
Cetane number | [29] | 55.45 | 55.45 | 47 min | 51 min | 51 min |
Flash (°C) | ASTM D93 [32] | 189 | 189 | 130 min | 120 min | 120 min |
Cloud point (°C) | ASTM D2500 [62] | 10 | - | −3 to 12 | N/S | −3 to 12 |
CFPP (°C) | [28] | −9 | - | −32 to 5 | N/S | −4 to 3 |
Copper strip at 50 °C, 3 h (Class) | ASTM D130 [62] | 1 | - | No. 3 max. | Class 1 min | No. 3 max |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etim, A.; Musonge, P. Sustainable Biodiesel Production via Biogenic Catalyzed Transesterification of Baobab Oil Methyl Ester and Optimization Process. Energies 2024, 17, 4418. https://doi.org/10.3390/en17174418
Etim A, Musonge P. Sustainable Biodiesel Production via Biogenic Catalyzed Transesterification of Baobab Oil Methyl Ester and Optimization Process. Energies. 2024; 17(17):4418. https://doi.org/10.3390/en17174418
Chicago/Turabian StyleEtim, Anietie, and Paul Musonge. 2024. "Sustainable Biodiesel Production via Biogenic Catalyzed Transesterification of Baobab Oil Methyl Ester and Optimization Process" Energies 17, no. 17: 4418. https://doi.org/10.3390/en17174418
APA StyleEtim, A., & Musonge, P. (2024). Sustainable Biodiesel Production via Biogenic Catalyzed Transesterification of Baobab Oil Methyl Ester and Optimization Process. Energies, 17(17), 4418. https://doi.org/10.3390/en17174418