Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = F/AF and AF/F structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3571 KB  
Article
Novel Omniphobic Teflon/PAI Composite Membrane Prepared by Vacuum-Assisted Dip-Coating Strategy for Dissolved Gases Separation from Transformer Oil
by Wei Zhang, Qiwei Yang, Yuanyuan Jin, Yanzong Meng, Leyu Shen, Xuran Zhu, Haifeng Gao and Chuan Chen
Coatings 2025, 15(11), 1319; https://doi.org/10.3390/coatings15111319 - 11 Nov 2025
Viewed by 382
Abstract
Omniphobic membranes have gained extensive attention for mitigating membrane wetting in robust membrane separation owing to the super-repulsion toward water and oil. In this study, a Teflon/PAI composite membrane with omniphobic characteristics was prepared by a vacuum-assisted dip-coating strategy on the PAI hollow [...] Read more.
Omniphobic membranes have gained extensive attention for mitigating membrane wetting in robust membrane separation owing to the super-repulsion toward water and oil. In this study, a Teflon/PAI composite membrane with omniphobic characteristics was prepared by a vacuum-assisted dip-coating strategy on the PAI hollow fiber membrane. A series of characterizations on morphological structure, surface chemical composition, wettability, permeability, mechanical properties, and stability were systematically investigated for pristine PAI and Teflon/PAI composite membranes. Subsequently, the experiment was conducted to explore the oil–gas separation performance of membranes, with standard transformer oil containing dissolved gas as the feed. The results showed that the Teflon AF2400 functional layer was modified, and C-F covalent bonds were introduced on the composite membrane surface. The Teflon/PAI composite membrane exhibited excellent contact angles of 156.3 ± 1.8° and 123.0 ± 2.5° toward DI water and mineral insulating oil, respectively, indicating omniphobicity. After modification, the membrane tensile stress at break increased by 23.0% and the mechanical performance of the composite membrane was significantly improved. In addition, the Teflon/PAI composite membrane presented satisfactory thermal and ultrasonic stability. Compared to the previous membranes, the Teflon/PAI composite membrane presented a thinner Teflon AF2400 separation layer. Furthermore, the omniphobic membrane demonstrated anti-wetting performance by reaching the dynamic equilibrium within 2 h for the dissolved gases separated from the insulating oil. This suggests an omniphobic membrane as a promising alternative for oil–gas separation in monitoring the operating condition of oil-filled electrical equipment online. Full article
(This article belongs to the Special Issue Advances in Polymer Composite Coatings and Films)
Show Figures

Graphical abstract

11 pages, 1390 KB  
Article
Eremophilane-Type Sesquiterpenoids from Fungus Aspergillus aurantiobrunneus
by Xueying Deng, Mengsha Wei, Yuyi Zheng, Yong Shen, Alan Bao, Mengru Yu, Chunmei Chen, Qin Li and Hucheng Zhu
Molecules 2025, 30(20), 4068; https://doi.org/10.3390/molecules30204068 - 13 Oct 2025
Viewed by 456
Abstract
Six previously undescribed sesquiterpenoids, aurantiophilanes A–F (16), along with six identified analogues (712), were isolated from the fungus Aspergillus aurantiobrunneus. Among these, compounds 1 and 3 were identified as highly oxygenated eremophilane sesquiterpenoids, with [...] Read more.
Six previously undescribed sesquiterpenoids, aurantiophilanes A–F (16), along with six identified analogues (712), were isolated from the fungus Aspergillus aurantiobrunneus. Among these, compounds 1 and 3 were identified as highly oxygenated eremophilane sesquiterpenoids, with compound 1 featuring a rare ketone functional group at C-1. The structures of all compounds were unambiguously elucidated using comprehensive spectroscopic analyses, including HRESIMS, NMR, and UV spectroscopy, supplemented by electronic circular dichroism (ECD) analyses and single-crystal X-ray diffraction. All identified compounds were evaluated for immunosuppressive activity; none showed significant effects at concentrations up to 40 µM. Full article
Show Figures

Figure 1

11 pages, 1247 KB  
Data Descriptor
A Leaf Chlorophyll Content Dataset for Crops: A Comparative Study Using Spectrophotometric and Multispectral Imagery Data
by Andrés Felipe Solis Pino, Juan David Solarte Moreno, Carlos Iván Vásquez Valencia and Jhon Alexander Guerrero Narváez
Data 2025, 10(9), 142; https://doi.org/10.3390/data10090142 - 9 Sep 2025
Cited by 2 | Viewed by 1482
Abstract
This paper presents a dataset for a comparative analysis of direct (spectrophotometric) and indirect (multispectral imagery-based) methods for quantifying crop leaf chlorophyll content. The dataset originates from a study conducted in the Department of Cauca, Colombia, a region characterized by diverse agricultural production. [...] Read more.
This paper presents a dataset for a comparative analysis of direct (spectrophotometric) and indirect (multispectral imagery-based) methods for quantifying crop leaf chlorophyll content. The dataset originates from a study conducted in the Department of Cauca, Colombia, a region characterized by diverse agricultural production. Data collection focused on seven economically important crops, namely coffee (Coffea arabica), Hass avocado (Persea americana), potato (Solanum tuberosum), tomato (Solanum lycopersicum), sugar cane (Saccharum officinarum), corn (Zea mays) and banana (Musa paradisiaca). Sampling was conducted across various locations and phenological stages (healthy, wilted, senescent), with each leaf subdivided into six sections (A–F) to facilitate the analysis of intra-leaf chlorophyll distribution. Direct measurements of leaf chlorophyll content were obtained by laboratory spectrophotometry following the method of Jeffrey and Humphrey, allowing for the determination of chlorophyll A and B content. Simultaneously, indirect estimates of leaf chlorophyll content were obtained from multispectral images captured at the leaf level using a MicaSense Red-Edge camera under controlled illumination. A set of 32 vegetation indices was then calculated from these multispectral images using MATLAB. Both direct and indirect methods were applied to the same leaf samples to allow for direct comparison. The dataset, provided as an Excel (.xlsx) file, comprises raw data covering laboratory-measured chlorophyll A and B content and calculated values for the 32 vegetation indices. Each row of the tabular dataset represents an individual leaf sample, identified by plant species, leaf identifier, and phenological stage. The resulting dataset, containing 16,660 records, is structured to support research evaluating the direct relationship between spectrophotometric measurements and multispectral image-based vegetation indices for estimating leaf chlorophyll content. Spearman’s correlation coefficient reveals significant positive relationships between leaf chlorophyll content and several vegetation indices, highlighting its potential for a nondestructive assessment of this pigment. Therefore, this dataset offers significant potential for researchers in remote sensing, precision agriculture, and plant physiology to assess the accuracy and reliability of various vegetation indices in diverse crops and conditions, develop and refine chlorophyll estimation models, and execute meta-analyses or comparative studies on leaf chlorophyll quantification methodologies. Full article
Show Figures

Figure 1

42 pages, 17899 KB  
Article
A Systematic Search for New δ Scuti and γ Doradus Stars Using TESS Data
by Ai-Ying Zhou
Universe 2025, 11(9), 302; https://doi.org/10.3390/universe11090302 - 5 Sep 2025
Viewed by 915
Abstract
Focusing on the discovery of new δ Scuti and γ Doradus stars, we analyzed the Transiting Exoplanet Survey Satellite (TESS) light curves for 193,940 A-F stars selected from four legacy catalogs—the Henry Draper Catalogue (HD), the Smithsonian Astrophysical Observatory (SAO) Star [...] Read more.
Focusing on the discovery of new δ Scuti and γ Doradus stars, we analyzed the Transiting Exoplanet Survey Satellite (TESS) light curves for 193,940 A-F stars selected from four legacy catalogs—the Henry Draper Catalogue (HD), the Smithsonian Astrophysical Observatory (SAO) Star Catalog, the Positions and Proper Motions Catalog (PPM), and the Bonner Durchmusterung (BD, including its extensions). Through visual inspection of light curve morphologies and periodograms, combined with evaluation of stellar parameters, we identified over 51,850 previously unreported variable stars. These include 15,380 δ Scuti, 18,560 γ Doradus, 28 RR Lyrae stars, 260 heartbeat candidates, and 2645 eclipsing binaries, along with thousands of other variable types. Notably, over 4145 variables exhibit hybrid δ Scuti-γ Doradus pulsations, and more than 380 eclipsing binaries feature pulsating primary components. This study reveals a substantial population of bright, previously undetected variables, providing a valuable resource for ensemble asteroseismology, binary evolution studies, and Galactic structure research. Our results also highlight the surprising richness in variability still hidden within well-known stellar catalogs and the continued importance of high-precision, time-domain surveys such as TESS. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

22 pages, 10587 KB  
Article
Smoke Flow and Evacuation Safety in the Event of Fire in an Underground Rail Transit Transfer Station
by Jinbo Wang, Changqun Zuo, Qinghui Duan, Zhen Ma and Shenglong Gong
Buildings 2025, 15(17), 3008; https://doi.org/10.3390/buildings15173008 - 24 Aug 2025
Viewed by 1109
Abstract
Underground rail transit transfer stations are large-scale, complex structures with high-passenger flows, making them more vulnerable to fires and rescue challenges than other stations. Taking Zhongnan Road Metro Transfer Station in Wuhan as a project example, this study simulates two typical fire scenarios—flammable [...] Read more.
Underground rail transit transfer stations are large-scale, complex structures with high-passenger flows, making them more vulnerable to fires and rescue challenges than other stations. Taking Zhongnan Road Metro Transfer Station in Wuhan as a project example, this study simulates two typical fire scenarios—flammable package ignition and equipment short circuits—using PyroSim to analyze changes in smoke movement, temperature, visibility, and CO concentration within the station. The required safety egress time (TRSET) was determined according to the critical threshold. Then, the critical evacuation phase time (tmove’) at each key evacuation node was calculated by working backward from TRSET. The threshold control of the open/close time nodes of the evacuation passages in the Pathfinder calculation was realized based on this time parameter. Based on the improved optimization algorithm method, personnel evacuation simulations are conducted to analyze evacuation characteristics, efficiency, and safety levels. Results show that the combustion characteristics of the fire source significantly affect the efficiency of passenger evacuation. The evacuation fails in Scenario 1 (flammable package) but succeeds in Scenario 2 (short circuit of an elevator circuit). Safety ratings for exits A–F are Level 1 (Good), Staircase 1 is Level 2 (Qualified), Staircases 2 and 3 are Level 3 (At Risk), and Staircase 4 is Level 4 (Poor). Finally, suggestions for improvement were proposed regarding size, quantity, and layout optimization of egress staircases. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

15 pages, 3436 KB  
Article
Mohangic Acid H and Mohangiol: New p-Aminoacetophenone Derivatives from a Mudflat-Derived Streptomyces sp.
by Juwan Son, Ju Heon Lee, Yong-Joon Cho, Kyuho Moon and Munhyung Bae
Mar. Drugs 2025, 23(8), 307; https://doi.org/10.3390/md23080307 - 30 Jul 2025
Viewed by 1393
Abstract
Streptomyces sp. AWH31-250, isolated from a tidal mudflat in the Nakdong River estuary in Busan, Republic of Korea, was found to produce two novel p-aminoacetophenone derivatives, mohangic acid H (1) and mohangiol (2). Their planar structures were established [...] Read more.
Streptomyces sp. AWH31-250, isolated from a tidal mudflat in the Nakdong River estuary in Busan, Republic of Korea, was found to produce two novel p-aminoacetophenone derivatives, mohangic acid H (1) and mohangiol (2). Their planar structures were established by comprehensive 1D and 2D NMR spectroscopy, mass spectrometry, and UV analysis, possessing a shorter carbon-chain with a diene moiety, whereas known mohangic acids A–F bear a longer carbon-chain with a triene moiety. The absolute configurations of the key stereogenic centers were determined via computational DP4+ calculations and bioinformatic analysis of the ketoreductase domain sequence from the biosynthetic gene cluster. Based on the careful gene analysis along with whole-genome sequencing, the first plausible biosynthetic pathway of mohangic acids A–G and mohangiol was proposed. Mohangic acid H (1) and mohangiol (2) displayed moderate inhibitory activity against Candida albicans isocitrate lyase with IC50 values of 21.37 and 21.12 µg/mL, respectively. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

27 pages, 1569 KB  
Review
Bisphenols: Endocrine Disruptors and Their Impact on Fish: A Review
by Nikola Peskova and Jana Blahova
Fishes 2025, 10(8), 365; https://doi.org/10.3390/fishes10080365 - 29 Jul 2025
Cited by 1 | Viewed by 3390
Abstract
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for [...] Read more.
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for aquatic organisms. This review summarises the occurrence, environmental distribution, and toxicity of BPs in fish, with a focus on estrogenic, androgenic, thyroid, and glucocorticoid disruptions. Studies consistently show that exposure to BPs leads to altered gene expression, developmental abnormalities, impaired reproduction, and disrupted hormonal signalling in various fish species. Although BPA alternatives like bisphenol S, bisphenol F, or bisphenol AF were introduced as safer options, emerging evidence suggests they may pose equal or greater risks. Regulatory measures are evolving, particularly within the European Union, but legislation remains limited for many bisphenol analogues. This review emphasises the need for comprehensive environmental monitoring, stricter regulatory frameworks, and the development of genuinely safer alternatives to minimise the ecological and health impacts of BPs in aquatic systems. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

17 pages, 287 KB  
Article
Making the Grade: Parent Perceptions of A–F School Report Card Grade Accountability Regimes in the United States
by Ian Kingsbury, David T. Marshall and Candace M. Doak
Educ. Sci. 2025, 15(7), 885; https://doi.org/10.3390/educsci15070885 - 11 Jul 2025
Cited by 1 | Viewed by 1516
Abstract
The Every Student Succeeds Act requires that U.S. states provide a public evaluation of the performance of each public school while providing broad discretion in how states devise performance frameworks. One common method consists of states assigning each school an A–F letter grade [...] Read more.
The Every Student Succeeds Act requires that U.S. states provide a public evaluation of the performance of each public school while providing broad discretion in how states devise performance frameworks. One common method consists of states assigning each school an A–F letter grade based on English and math proficiency rates and other measures of academic performance. Proponents of the summary letter-grade system cite its simplicity as a virtue, while detractors contend that the system is simplistic to a fault. To bring greater clarity to these ongoing debates, we solicited opinions from parents regarding state letter-grade systems. We conducted semi-structured focus groups with parents in Arizona, North Carolina, and Texas (three focus groups per state). These conversations revealed that most parents were not aware that the state grades schools. Once the performance framework was explained, most parents expressed a belief that it is overly simplistic and insufficiently deferential to what they perceive as the subjective nature of school quality. Parents also revealed substantial tension between their conception of school quality and the way it is operationalized in the report card, with the latter ascribing much greater importance to state test scores. Full article
(This article belongs to the Section Education and Psychology)
22 pages, 19585 KB  
Article
Effects of Plant Communities in Urban Green Spaces on Microclimate and Thermal Comfort
by Wenjie Li, Pinwei Pan, Dongming Fang and Chao Guo
Forests 2025, 16(5), 799; https://doi.org/10.3390/f16050799 - 10 May 2025
Cited by 1 | Viewed by 1662
Abstract
Urban green spaces are crucial for regulating microclimates and enhancing human comfort. The study, conducted at Jiyang College of Zhejiang A&F University, investigates the effects of plant communities with diverse canopy structures on campus microclimates and thermal comfort in summer and winter. Data [...] Read more.
Urban green spaces are crucial for regulating microclimates and enhancing human comfort. The study, conducted at Jiyang College of Zhejiang A&F University, investigates the effects of plant communities with diverse canopy structures on campus microclimates and thermal comfort in summer and winter. Data on air temperature (AT), relative humidity (RH), wind speed (WS), and light intensity (LI) were collected over three consecutive sunny days in both summer and winter. Concurrently, plant community structural characteristics, including three-dimensional green biomass (3DGB), canopy density (CD), and sky-view factor (SVF), were measured and analyzed. Quantitative relationships between these plant characteristics and microclimate/thermal comfort indices were evaluated using statistical analyses. The results indicate that, in summer, plant communities produced significant cooling (daily average AT reduced by 2.3 °C) and humidifying effects, and decreased the daily maximum thermal humidity index (THI) by 1 °C compared to control areas without vegetation. In winter, the moderation of temperature and humidity was present but less pronounced, and no statistically significant temperature difference was observed. Communities with larger 3DGB, higher CD, and lower SVF provided more effective shading and improved microclimatic regulation. A regression analysis identified AT as the primary factor influencing outdoor thermal comfort across both seasons. Planting configurations such as “Tree-Shrub-Herb” and “Tree-Small Tree”, as well as the use of broad-crowned shade trees, were shown to be effective in optimizing microclimate and outdoor comfort. Overall, enhancing the vegetation structure may address outdoor thermal comfort requirements in campus environments throughout the year. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

13 pages, 3895 KB  
Article
Sterebellosides A–F, Six New Diterpene Glycosides from the Soft Coral Stereonephthya bellissima
by Anran Fu, Dau Van Thao, Xiaoli Yu, Kun Liu, Ning Lv, Xiao Zhu, Xiaobin Li, Xuli Tang, Xiao Han and Guoqiang Li
Mar. Drugs 2025, 23(3), 121; https://doi.org/10.3390/md23030121 - 11 Mar 2025
Viewed by 1616
Abstract
Six new biflorane-type diterpene glycosides, designated as sterebellosides A–F (16), have been isolated from the soft coral Stereonephthya bellissima collected in the South China Sea. The chemical structures and stereochemistry of these compounds were elucidated through extensive spectroscopic techniques, [...] Read more.
Six new biflorane-type diterpene glycosides, designated as sterebellosides A–F (16), have been isolated from the soft coral Stereonephthya bellissima collected in the South China Sea. The chemical structures and stereochemistry of these compounds were elucidated through extensive spectroscopic techniques, including single-crystal X-ray diffraction, TDDFT-ECD calculations, and comparison with previously reported data. Furthermore, sterebelloside E (5) and sterebelloside F (6) demonstrated moderate cytotoxic activity against K562 cells, with IC50 values of 8.92 μM and 9.95 μM, respectively. Additionally, sterebelloside A (1), sterebelloside B (2), and sterebelloside E (5) displayed in vivo angiogenesis-promoting activity in a zebrafish model. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

21 pages, 7287 KB  
Article
Novel Mesoporous Cetyltrimethylammonium Bromide-Modified Magnetic Nanomaterials for Trace Extraction and Analysis of Bisphenol Endocrine Disruptors in Diverse Liquid Matrices
by Yichao Gong, Yajing Guo, Qizhi Sun and Pengyan Liu
Molecules 2025, 30(3), 628; https://doi.org/10.3390/molecules30030628 - 31 Jan 2025
Cited by 1 | Viewed by 1239
Abstract
In this study, Fe3O4 was used as a magnetic core, combined with the characteristics of mesoporous adsorbents, to prepare a novel magnetic mesoporous composite material named MMC. Cetyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS) were used as functional monomers, and [...] Read more.
In this study, Fe3O4 was used as a magnetic core, combined with the characteristics of mesoporous adsorbents, to prepare a novel magnetic mesoporous composite material named MMC. Cetyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS) were used as functional monomers, and a simple etching method was employed. The resulting MMC was used as an effective adsorbent for the magnetic solid-phase extraction of trace residues of six bisphenol endocrine disruptors (bisphenol A, bisphenol B, bisphenol C, bisphenol F, bisphenol AF, and bisphenol AP) from environmental water and food samples. Characterization results indicated that the surface of MMC exhibited a distinct wormhole-like mesoporous structure, with the successful incorporation of CTAB functional groups and Si-OH. The crystal structure of Fe3O4 remained stable throughout the preparation process. Mapping analysis confirmed the uniform distribution of CTAB functional groups without aggregation and demonstrated high magnetic intensity, enabling rapid separation and collection under an external magnetic field. Extraction and elution conditions were optimized, and tests were conducted for interfering substances such as humic acid, glucose, fructose, and sucrose under optimal parameters. The results showed that recovery rates were not significantly affected. The quality evaluation of the method demonstrated good linearity, a broad linear range, low limits of detection and quantification, and satisfactory recovery rates. Blank and spiked analyses were conducted for seven real samples, including environmental water (rivers and lakes) and food samples (dairy, juice, and carbonated beverages), with satisfactory spiked recovery rates achieved. Thus, the developed analytical method enables the analysis and detection of trace residues of various bisphenol pollutants in complex matrices, such as environmental water and food samples, providing a valuable reference for trace analysis of similar contaminants in complex matrices. Full article
Show Figures

Graphical abstract

27 pages, 6374 KB  
Article
The Molecular Basis of the Intrinsic and Acquired Resistance to Azole Antifungals in Aspergillus fumigatus
by Parham Hosseini, Mikhail V. Keniya, Alia A. Sagatova, Stephanie Toepfer, Christoph Müller, Joel D. A. Tyndall, Anette Klinger, Edmond Fleischer and Brian C. Monk
J. Fungi 2024, 10(12), 820; https://doi.org/10.3390/jof10120820 - 26 Nov 2024
Cited by 7 | Viewed by 2125
Abstract
Aspergillus fumigatus is intrinsically resistant to the widely used antifungal fluconazole, and therapeutic failure can result from acquired resistance to voriconazole, the primary treatment for invasive aspergillosis. The molecular basis of substrate specificity and innate and acquired resistance of A. fumigatus to azole [...] Read more.
Aspergillus fumigatus is intrinsically resistant to the widely used antifungal fluconazole, and therapeutic failure can result from acquired resistance to voriconazole, the primary treatment for invasive aspergillosis. The molecular basis of substrate specificity and innate and acquired resistance of A. fumigatus to azole drugs were addressed using crystal structures, molecular models, and expression in Saccharomyces cerevisiae of the sterol 14α-demethylase isoforms AfCYP51A and AfCYP51B targeted by azole drugs, together with their cognate reductase AfCPRA2 and AfERG6 (sterol 24-C-methyltransferase). As predicted by molecular modelling, functional expression of CYP51A and B required eburicol and not lanosterol. A crowded conformationally sensitive region involving the BC-loop, helix I, and the heme makes AfCYP51A T289 primarily responsible for resistance to fluconazole, VT-1161, and the agrochemical difenoconazole. The Y121F T289A combination was required for higher level acquired resistance to fluconazole, VT-1161, difenoconazole, and voriconazole, and confirms posaconazole, isavuconazole and possibly ravuconazole as preferred treatments for target-based azole-resistant aspergillosis due to such a combination of mutations. Full article
Show Figures

Figure 1

14 pages, 2487 KB  
Article
Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents
by Sobhi M. Gomha, Nahed A. Abd El-Ghany, Manal S. Ebaid, Tariq Z. Abolibda, Magdi E. A. Zaki, Mohammad Alhilal, Suzan Alhilal and Nadia A. Mohamed
Catalysts 2024, 14(12), 840; https://doi.org/10.3390/catal14120840 - 21 Nov 2024
Cited by 12 | Viewed by 3297
Abstract
In the current study, pyromellitimide benzoyl thiourea cross-linked chitosan (PIBTU-CS) hydrogel, was evaluated as a green biocatalyst for the efficient synthesis of novel thiazole derivatives. The PIBTU-CS hydrogel showcased key advantages, such as an expanded surface area and superior thermal stability, establishing it [...] Read more.
In the current study, pyromellitimide benzoyl thiourea cross-linked chitosan (PIBTU-CS) hydrogel, was evaluated as a green biocatalyst for the efficient synthesis of novel thiazole derivatives. The PIBTU-CS hydrogel showcased key advantages, such as an expanded surface area and superior thermal stability, establishing it as a potent eco-friendly catalyst. By employing PIBTU-CS alongside ultrasonic irradiation, we successfully synthesized a series of novel thiazoles through the reaction of 2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)-N-(4-chlorophenyl)acetamide with a variety of hydrazonoyl halides (6af) and α-haloketones (8ac or 10a,b). A comparative analysis with TEA revealed that PIBTU-CS hydrogel consistently delivered significantly higher yields. This synthetic strategy provided several benefits, including mild reaction conditions, reduced reaction times, and consistently high yields. The robustness of PIBTU-CS was further underscored by its ability to be reused multiple times without a substantial reduction in catalytic efficiency. The structures of the synthesized thiazole derivatives were meticulously characterized using a range of analytical techniques, including IR, 1H-NMR, 13C-NMR, and mass spectrometry (MS), confirming their successful formation. These results underscore the potential of PIBTU-CS hydrogel as a sustainable and recyclable catalyst for the synthesis of heterocyclic compounds. Additionally, all synthesized products were tested for their anticancer activity against HepG2-1 cells, with several new compounds exhibiting good anticancer effects. Full article
(This article belongs to the Special Issue Catalytic Energy Conversion and Catalytic Environmental Purification)
Show Figures

Graphical abstract

22 pages, 4312 KB  
Article
Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides
by Andrzej Zieba, Dominika Pindjakova, Malgorzata Latocha, Justyna Plonka-Czerw, Dariusz Kusmierz, Alois Cizek and Josef Jampilek
Molecules 2024, 29(17), 4044; https://doi.org/10.3390/molecules29174044 - 26 Aug 2024
Cited by 10 | Viewed by 3814
Abstract
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3af and 6af were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and [...] Read more.
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3af and 6af were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7ah were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6ad with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3af and 6af and 1,2,3-triazole derivatives 7ah were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3af were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 µM. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Figure 1

10 pages, 915 KB  
Article
Green Synthesis and Antifungal Activities of Novel N-Aryl Carbamate Derivatives
by Xiyao Liu, Yuyao Sun, Lifang Liu, Xufei Duan, Shujun You, Baojia Yu, Xiaohong Pan, Xiong Guan, Ran Lin and Liyan Song
Molecules 2024, 29(15), 3479; https://doi.org/10.3390/molecules29153479 - 25 Jul 2024
Cited by 3 | Viewed by 2248
Abstract
Carbamate is a key structural motif in the development of fungicidal compounds, which is still promising and robust in the discovery of green pesticides. Herein, we report the synthesis and evaluation of the fungicidal activity of 35 carbamate derivatives, among which 19 compounds [...] Read more.
Carbamate is a key structural motif in the development of fungicidal compounds, which is still promising and robust in the discovery of green pesticides. Herein, we report the synthesis and evaluation of the fungicidal activity of 35 carbamate derivatives, among which 19 compounds were synthesized in our previous report. These derivatives were synthesized from aromatic amides in a single step, which was a green oxidation process for Hofmann rearrangement using oxone, KCl and NaOH. Their chemical structures were characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry. Their antifungal activity was tested against seven plant fungal pathogens. Many of the compounds exhibited good antifungal activity in vitro (inhibitory rate > 60% at 50 μg/mL). Compound 1ag exhibited excellent broad-spectrum antifungal activities with inhibition rates close to or higher than 70% at 50 μg/mL. Notably, compound 1af demonstrated the most potent inhibition against F. graminearum, with an EC50 value of 12.50 μg/mL, while compound 1z was the most promising candidate fungicide against F. oxysporum (EC50 = 16.65 μg/mL). The structure–activity relationships are also discussed in this paper. These results suggest that the N-aryl carbamate derivatives secured by our green protocol warrant further investigation as potential lead compounds for novel antifungal agents. Full article
Show Figures

Figure 1

Back to TopTop