A Leaf Chlorophyll Content Dataset for Crops: A Comparative Study Using Spectrophotometric and Multispectral Imagery Data
Abstract
1. Dataset Specifications
2. Value of Data
- This dataset provides an empirical framework for evaluating and validating indirect leaf chlorophyll content (LCC) estimations derived from multispectral imagery against direct spectrophotometric measurements.
- The dataset includes measurements of seven economically important crops in the department of Cauca, Colombia, such as coffee, avocado, potato, tomato, sugar cane, corn, and banana. Including this diverse range of plant species facilitates comparative analyses of their distinct physiological characteristics and supports the development of crop-specific and generalized LCC prediction models.
- The dataset covers various variables, including laboratory-measured chlorophyll A and B content and 32 vegetation indices derived from multispectral imagery. This dataset allows researchers to evaluate the performance of various vegetation indices in estimating LCC and to identify optimal indices for different crops or conditions.
- This resource constitutes an essential contribution to remote sensing and precision agriculture. It furnishes the necessary data for developing, refining, and validating remote sensing-based chlorophyll estimation algorithms while enabling data reuse for large-scale meta-analyses and cross-regional or inter-species comparative studies.
3. Summary
4. Data Description
5. Methods
6. Study Area and Plant Materials
7. Estimation of LCC by Laboratory Spectrophotometry
8. Multispectral Image Acquisition and Processing for Estimating Vegetation Indices
9. Statistical Pipeline of the Data
10. Correlations Between Spectrophotometry Measurements and Vegetation Indices
11. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solis, A.F.; Luna, D.A.R.; Ceballos, D.A.C.; López, C.A.G. Correlación del contenido de clorofila foliar de la especie Coffea arabica con índices espectrales en imágenes. Biotecnol. Sect. Agropecu. Agroind. 2021, 19, 51–68. [Google Scholar] [CrossRef]
- Mopan, Y.E.A.; Pino, A.F.S.; Rubiano-Ovalle, O.; Paz, H.; Mejia, I.R. Spatial Analysis of the Suitability of Hass Avocado Cultivation in the Cauca Department, Colombia, Using Multi-Criteria Decision Analysis and Geographic Information Systems. ISPRS Int. J. Geo-Inf. 2023, 12, 136. [Google Scholar] [CrossRef]
- Realpe, I.D.S.B.; Pardo, C.A.A.; Peinado, F.J.M. Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agronómica 2014, 63, 164–174. [Google Scholar] [CrossRef]
- Ceballos Aguirre, N.; Vallejo Cabrera, F.A. Evaluating the fruit production and quality of cherry tomato (Solanum lycopersicum var. cerasiforme). Rev. Fac. Nac. Agron. Medellín 2012, 65, 6593–6604. [Google Scholar]
- Villalobos, C.A.M.; Acevedo, J.A.R. Analysis of the Concentration and Specialization of the Sugarcane Production (Saccharum officinarum L.) in Colombian Municipalities between 2007 and 2021. Res. World Agric. Econ. 2024, 5, 10-36956. [Google Scholar] [CrossRef]
- Lobo-Hernández, M.I.; Saldamando-Benjumea, C.I. Caracterización Molecular y Diferenciación Genética de Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae) en Cultivos de Maíz, Arroz, y Algodonero de Colombia con el uso de AFLP. Southwest. Entomol. 2012, 37, 2. [Google Scholar] [CrossRef]
- Jamet, E. An eye-tracking study of cueing effects in multimedia learning. Biotecnol. Sect. Agropecu. AgroInd. 2015, 13, 76–85. [Google Scholar] [CrossRef]
- Grossmann, K.; Frankenberg, C.; Magney, T.S.; Hurlock, S.C.; Seibt, U.; Stutz, J. PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sens. Environ. 2018, 216, 311–327. [Google Scholar] [CrossRef]
- de Souza, R.; Peña-Fleitas, M.T.; Thompson, R.B.; Gallardo, M.; Grasso, R.; Padilla, F.M. The Use of Chlorophyll Meters to Assess Crop N Status and Derivation of Sufficiency Values for Sweet Pepper. Sensors 2019, 19, 2949. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Lu, F.; You, W.; Wang, Z.; Liu, Y.; Omasa, K. A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons. Plant Methods 2018, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Aasen, H.; Gnyp, M.L.; Miao, Y.; Bareth, G. Automated Hyperspectral Vegetation Index Retrieval from Multiple Correlation Matrices with HyperCor. Photogramm. Eng. Remote Sens. 2014, 80, 785–795. [Google Scholar] [CrossRef]
- Choi, M.; Kim, R.Y.; Nam, M.-R.; Kim, H.O. Fusion of Multispectral and Panchromatic Satellite Images Using the Curvelet Transform. IEEE Geosci. Remote Sens. Lett. 2005, 2, 136–140. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Kim, D.-W.; Silva, R.R.; Kim, J.-S.; Kim, Y.; Kim, H.-J.; Chung, Y.S. Comparison of Various Kinds of Vegetative Indices for Chlorophyll Contents Using Low-Resolution Camera. J. Crop. Sci. Biotechnol. 2019, 23, 73–79. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Aripta, T.P.; Suciyati, S.W.; Supriyanto, A.; Junaidi, J. Prototype Measuring Levels of Dissolved Ammonia Based on TSL2561 Sensor Calibrated Thermo Scientific Genesys 30 Visible Spectrophotometer. J. Energy Mater. Instrum. Technol. 2022, 3, 89–98. [Google Scholar] [CrossRef]
- Simon, D.; Helliwell, S. Extraction and quantification of chlorophyll a from freshwater green algae. Water Res. 1998, 32, 2220–2223. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Zhang, L.; Zan, O.; Yan, X.; Feng, K. Spectral detection of leaf carbon and nitrogen as a proxy for remote assessment of photosynthetic capacity for wheat and maize under nitrogen stress. Comput. Electron. Agric. 2024, 224, 109174. [Google Scholar] [CrossRef]
- Afan, H.A.; Kamel, A.H.; Al-Hadeethi, B.; Almawla, A.S. The Impact of the Project (The University of Anbar is a Green Oasis) on Improving Vegetation Cover. In Advanced Studies on Environmental Sustainability; Obaid, A.J., Al-Heety, E.A., Radwan, N., Polkowski, Z., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 73–87. [Google Scholar]
- Alsaqr, A.M. Remarks on the use of Pearson’s and Spearman’s correlation coefficients in assessing relationships in ophthalmic data. Afr. Vis. Eye Health 2021, 80, 10. [Google Scholar] [CrossRef]
Subject | Earth and Environmental Sciences |
---|---|
Specific subject area | Comparison of direct (spectrophotometric) and indirect (multispectral imagery-based vegetation indices) methods for quantifying leaf chlorophyll content in key crops. |
Type of data | .xlsx file (dataset with numbers) |
Data collection | Data were obtained by laboratory spectrophotometry and multispectral imaging. Leaves from seven crops were collected and analyzed. For spectrophotometry, chlorophyll was extracted from leaf tissue to determine chlorophyll A and B content. A MicaSense Red-Edge camera (Kansas, United States) captured images in five spectral bands under controlled illumination for multispectral imaging. Vegetation indices were calculated from these images. Both methods were applied to the same leaf samples to allow for a direct comparison of chlorophyll quantification approaches. Data were meticulously recorded and processed using MATLAB and statistical software. |
Data source location | Data collection for this research was conducted in the department of Cauca, Colombia, a region known for its varied agricultural production. The study selected sites within Cauca to represent the varied growing conditions of different crops. Samples of coffee, Hass avocado, sugarcane, banana, tomato, and cassava were collected in Popayan, Cauca, at various locations in this area. For the maize crop, samples were collected in the rural area of Cajibío, also located in Cauca. Finally, potato samples were obtained in Paletará, which finalized the geographic scope of data collection within the department of Cauca, Colombia. |
Data accessibility | Repository name: Zenodo Data identification number: https://doi.org/10.5281/zenodo.15002560 Direct URL to data: https://zenodo.org/records/15002561 (accessed on 8 September 2025) This archive is supported by the Corporación Universitaria Comfacauca—Unicomfacauca and hosted by Zenodo |
Related research article | None |
Column Name | Description | Data Type |
---|---|---|
Plant species | Scientific name of the plant species | Text |
Leaf | Identifier for the leaf sample, including leaf number and replicate (A–F) | Text |
Chlorophyll A | Measurement of chlorophyll A content in the leaf sample | Numerical |
Chlorophyll B | Measurement of chlorophyll B content in the leaf sample | Numerical |
NDVI | Normalized Difference Vegetation Index | Numerical |
GNDVI | Green Normalized Difference Vegetation Index | Numerical |
NDRE | Normalized Difference Red Edge index | Numerical |
OSAVI | Optimized Soil Adjusted Vegetation Index | Numerical |
CVI | Chlorophyll Vegetation Index | Numerical |
CCCI | Canopy Chlorophyll Content Index | Numerical |
EVI | Enhanced Vegetation Index | Numerical |
ARVI | Atmospherically Resistant Vegetation Index | Numerical |
ARVI2 | Atmospherically Resistant Vegetation Index 2 | Numerical |
GLI | Green Leaf Index | Numerical |
ATSAVI | Adjusted Transformed Soil Adjusted Vegetation Index | Numerical |
RBNDVI | Red-Blue Normalized Difference Vegetation Index | Numerical |
NGRDI | Normalized Green Red Difference Index | Numerical |
DVI | Difference Vegetation Index | Numerical |
GARI | Green Atmospherically Resistant Index | Numerical |
RDVI | Renormalized Difference Vegetation Index | Numerical |
NLI | Non-linear Index | Numerical |
MNLI | Modified Non-linear Index | Numerical |
MSAVI2 | Modified Soil Adjusted Vegetation Index 2 | Numerical |
TDVI | Transformed Difference Vegetation Index | Numerical |
GEMI | Global Environment Monitoring Index | Numerical |
CIGreen | Chlorophyll Index Green | Numerical |
SR | Simple ratio | Numerical |
IPVI | Infrared Percentage Vegetation Index | Numerical |
GRNDVI | Green-Red Normalized Difference Vegetation Index | Numerical |
GBNDVI | Green-Blue Normalized Difference Vegetation Index | Numerical |
BNDVI | Blue Normalized Difference Vegetation Index | Numerical |
CIrededge | Chlorophyll Index Red Edge | Numerical |
NDWI | Normalized Difference Water Index | Numerical |
RENDVI | Red Edge Normalized Difference Vegetation Index | Numerical |
RENDVI2 | Red Edge Normalized Difference Vegetation Index 2 | Numerical |
MTCI | MERIS Terrestrial Chlorophyll Index | Numerical |
Leaf stage | Phenological stage of the leaf | Numerical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solis Pino, A.F.; Solarte Moreno, J.D.; Vásquez Valencia, C.I.; Guerrero Narváez, J.A. A Leaf Chlorophyll Content Dataset for Crops: A Comparative Study Using Spectrophotometric and Multispectral Imagery Data. Data 2025, 10, 142. https://doi.org/10.3390/data10090142
Solis Pino AF, Solarte Moreno JD, Vásquez Valencia CI, Guerrero Narváez JA. A Leaf Chlorophyll Content Dataset for Crops: A Comparative Study Using Spectrophotometric and Multispectral Imagery Data. Data. 2025; 10(9):142. https://doi.org/10.3390/data10090142
Chicago/Turabian StyleSolis Pino, Andrés Felipe, Juan David Solarte Moreno, Carlos Iván Vásquez Valencia, and Jhon Alexander Guerrero Narváez. 2025. "A Leaf Chlorophyll Content Dataset for Crops: A Comparative Study Using Spectrophotometric and Multispectral Imagery Data" Data 10, no. 9: 142. https://doi.org/10.3390/data10090142
APA StyleSolis Pino, A. F., Solarte Moreno, J. D., Vásquez Valencia, C. I., & Guerrero Narváez, J. A. (2025). A Leaf Chlorophyll Content Dataset for Crops: A Comparative Study Using Spectrophotometric and Multispectral Imagery Data. Data, 10(9), 142. https://doi.org/10.3390/data10090142