Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = ExoMol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1433 KiB  
Article
Insights into Chemopreventive Effects of Rosmarinic Acid Against Aflatoxin B1-Induced Genotoxic Effects
by Veronika Furlan, Matjaž Novak, Martina Štampar, Alja Štern, Bojana Žegura and Urban Bren
Foods 2025, 14(12), 2111; https://doi.org/10.3390/foods14122111 - 16 Jun 2025
Viewed by 392
Abstract
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation [...] Read more.
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation of the chemical reactions between rosmarinic acid and the carcinogenic metabolite of AFB1, aflatoxin B1 exo-8,9-epoxide (AFBO), was conducted by activation free energies calculations with DFT functionals M11-L and MN12-L, in conjunction with the 6-311++G(d,p) flexible basis set and implicit solvation model density (SMD), according to a newly developed quantum mechanics-based protocol for the evaluation of carcinogen scavenging activity (QM-CSA). Following the computational analyses, the chemoprotective effects of RA were further studied in vitro in human hepatocellular carcinoma HepG2 cells by analyzing its influence on AFB1-induced genotoxicity using a comet assay, γH2AX, and p-H3, while its impact on cell proliferation and cell cycle modulation was assessed using flow cytometry. Our computational results revealed that the activation free energy required for the reaction of RA with AFBO (14.86 kcal/mol) is significantly lower than the activation free energy for the competing reaction of AFBO with guanine (16.88 kcal/mol), which indicates that RA acts as an efficient natural scavenger of AFBO, potentially preventing AFB1-specific DNA adduct formation. The chemoprotective activity of RA was confirmed through in vitro experiments, which demonstrated a statistically significant (p < 0.05) reduction in AFB1-induced single- and double-strand breaks in HepG2 cells exposed to a mixture of AFB1 and RA at non-cytotoxic concentrations. In addition, RA reversed the AFB1-induced reduction in cell proliferation. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Graphical abstract

13 pages, 1100 KiB  
Article
Easy ROMP of Quinine Derivatives Toward Novel Chiral Polymers That Discriminate Mandelic Acid Enantiomers
by Mariusz Majchrzak, Karol Kacprzak, Marta Piętka, Jerzy Garbarek and Katarzyna Taras-Goślińska
Polymers 2025, 17(12), 1661; https://doi.org/10.3390/polym17121661 - 15 Jun 2025
Viewed by 520
Abstract
A novel and general approach to the practical ROMP polymerization of cinchona alkaloid derivatives providing novel hybrid materials having quinine attached on a poly(norbornene-5,6-dicarboxyimide) matrix is presented. The concept involves an easy modification of quinine (in general, any cinchona alkaloid) toward clickable 9-azide [...] Read more.
A novel and general approach to the practical ROMP polymerization of cinchona alkaloid derivatives providing novel hybrid materials having quinine attached on a poly(norbornene-5,6-dicarboxyimide) matrix is presented. The concept involves an easy modification of quinine (in general, any cinchona alkaloid) toward clickable 9-azide that reacts with N-propargyl-cis-5-norbornene-exo-2,3-dicarboxylic imide in Cu(I)-catalyzed Huisgen cycloaddition (click chemistry). The resulting monomers undergo a controllable ROMP reaction that leads to novel polymers of a desired length and solubility. This sequence allows for the facile preparation of a regularly decorated polymeric material having one quinine moiety per single mer of the polymer chain inaccessible using typical immobilization methods. A poly(norbornene-5,6-dicarboxyimide) type of polymeric matrix was selected due to the high reactivity of the exo-norbornene motif in Ru(II)-catalyzed ROMP and its chemical and thermal stability as well as convenient, scalable access from inexpensive cis-5-norbornene-exo-2,3-dicarboxylic anhydride (‘one-pot’ Diels–Alder reaction of dicyclopentadiene and maleic anhydride). An appropriate combination of a Grubbs catalyst, Ru(II) (G1, G2), and ROMP conditions allowed for the efficient synthesis of well-defined soluble polymers with mass parameters in the range Mn = 2.24 × 104 – 2.26 × 104 g/mol and Mw = 2.90 × 104–3.05 × 104 g/mol with good polydispersity, ĐM = 1.32–1.35, and excellent thermal stability (up to 309°C Td10). Spectroscopic studies (NMR and electronic circular dichroism (ECD)) of these products revealed a linear structure with the slight advantage of a trans-configuration of an olefinic double bond. The resulting short-chain polymer discriminates mandelic acid enantiomers with a preference for the (R)-stereoisomer in spectrofluorimetric assays. This concept seems to be rather general with respect to other molecules dedicated to incorporation into the poly(norbornene-5,6-dicarboxyimide) chain. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

12 pages, 1551 KiB  
Article
Experimental Attempts at and Theoretical Study of the Thermal Generation of o-Carborane-Supported N-Heterocyclic Carbenes
by Mei-Juan Liang, Ke-Cheng Chen, Zhongzheng Cui, Yan-Chang Zhou, Yan Wang, Fan Qi and Xu-Qiong Xiao
Inorganics 2025, 13(6), 179; https://doi.org/10.3390/inorganics13060179 - 25 May 2025
Viewed by 511
Abstract
N-Heterocyclic carbenes (NHCs) have been widely utilized over the past three decades due to their broad applications, yet synthetic methods for their preparation remain limited. A promising approach for NHC generation involves the thermolysis of NHC adducts. Herein, we report the synthesis of [...] Read more.
N-Heterocyclic carbenes (NHCs) have been widely utilized over the past three decades due to their broad applications, yet synthetic methods for their preparation remain limited. A promising approach for NHC generation involves the thermolysis of NHC adducts. Herein, we report the synthesis of NHC pentafluorobenzene adducts featuring an o-carboranyl group in the backbone (2), which, unlike previously studied systems, resists thermal decomposition. Density functional theory (DFT) calculations were used to investigate the discrepancy, revealing that the decomposition reaction is kinetically controlled. For widely studied NHC systems like IMes and SIMes, the activation barriers were calculated to be 246.3 kJ/mol and 267.3 kJ/mol, respectively, aligning with reactions requiring heating. In contrast, the o-carborane system exhibited a significantly higher barrier of 320.5 kJ/mol, primarily due to the structural influence of the o-carborane backbone. Further analysis indicates that delocalization of π-electrons from the backbone into the NHC’s p-orbitals lowers the activation barrier, whereas delocalization into an exo-NHC ring increases it. These findings provide new insights into the thermal generation of NHCs and we hope it can offer guidance for future NHC design and synthesis. Full article
(This article belongs to the Topic Heterocyclic Carbene Catalysis)
Show Figures

Graphical abstract

23 pages, 581 KiB  
Article
Screening of Non-Conventional Yeasts on Low-Cost Carbon Sources and Valorization of Mizithra Secondary Cheese Whey for Metabolite Production
by Gabriel Vasilakis, Rezart Tefa, Antonios Georgoulakis, Dimitris Karayannis, Ioannis Politis and Seraphim Papanikolaou
BioTech 2025, 14(2), 24; https://doi.org/10.3390/biotech14020024 - 1 Apr 2025
Viewed by 662
Abstract
The production of microbial metabolites such as (exo)polysaccharides, lipids, or mannitol through the cultivation of microorganisms on sustainable, low-cost carbon sources is of high interest within the framework of a circular economy. In the current study, two non-extensively studied, non-conventional yeast strains, namely, [...] Read more.
The production of microbial metabolites such as (exo)polysaccharides, lipids, or mannitol through the cultivation of microorganisms on sustainable, low-cost carbon sources is of high interest within the framework of a circular economy. In the current study, two non-extensively studied, non-conventional yeast strains, namely, Cutaneotrichosporon curvatus NRRL YB-775 and Papiliotrema laurentii NRRL Y-3594, were evaluated for their capability to grow on semi-defined lactose-, glycerol-, or glucose-based substrates and produce value-added metabolites. Three different nitrogen-to-carbon ratios (i.e., 20, 80, 160 mol/mol) were tested in shake-flask batch experiments. Pretreated secondary cheese whey (SCW) was used for fed-batch bioreactor cultivation of P. laurentii NRRL Y-3594, under nitrogen limitation. Based on the screening results, both strains can grow on low-cost substrates, yielding high concentrations of microbial biomass (>20 g/L) under nitrogen-excess conditions, with polysaccharides comprising the predominant component (>40%, w/w, of dry biomass). Glucose- and glycerol-based cultures of C. curvatus promote the secretion of mannitol (13.0 g/L in the case of glucose, under nitrogen-limited conditions). The lipids (maximum 2.2 g/L) produced by both strains were rich in oleic acid (≥40%, w/w) and could potentially be utilized to produce second-generation biodiesel. SCW was nutritionally sufficient to grow P. laurentii strain, resulting in exopolysaccharides secretion (25.6 g/L), along with dry biomass (37.9 g/L) and lipid (4.6 g/L) production. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

17 pages, 5520 KiB  
Article
Insights of Density Functional Theory into JP-10 Tetrahydrodicyclopentadiene Fuel Properties
by Dilip Rijal, Vladislav Vasilyev, Yunxia Yang and Feng Wang
Processes 2025, 13(2), 543; https://doi.org/10.3390/pr13020543 - 14 Feb 2025
Viewed by 990
Abstract
This study aims to investigate the structural, spectroscopic, and electronic properties of the synthetic missile fuel exo- and endo-tetrahydrodicyclopentadiene (THDCPD, JP-10) using density functional theory (DFT). It is to understand the dominance of the liquid exo-isomer (96%) of the jet fuel from the [...] Read more.
This study aims to investigate the structural, spectroscopic, and electronic properties of the synthetic missile fuel exo- and endo-tetrahydrodicyclopentadiene (THDCPD, JP-10) using density functional theory (DFT). It is to understand the dominance of the liquid exo-isomer (96%) of the jet fuel from the subtle differences between the isomers. The present DFT calculations reveal that the exo-isomer is 15.51 kJ/mol more stable than the endo-isomer, attributed to the flipping of the triangular ΔC8-C10-C9 ring in its norbornane skeleton. Calculated nuclear magnetic resonance (13C-NMR) and infrared (IR) spectra, validated by experimental data, reveal larger chemical shifts for junction carbons (C1/C2 and C3/C4) due to reduced electron shielding and show distinct vibrational patterns. Charge analysis indicates that all carbon atoms are negatively charged except for the C1/C2 carbons which are positively charged in both isomers. While overall IR spectra of the isomers appear similar, bands near 3000 cm−1 correspond to distinctly different vibrational modes. The exo-isomer’s electronic structure features a more delocalized HOMO and a larger HOMO-LUMO gap (7.63 eV) than the endo-isomer (7.37 eV). All such differences contribute to the properties of exo-THDCPD and, therefore, why the exo-isomer dominates JP-10 fuel. Full article
(This article belongs to the Special Issue Novel Fuel Technologies: Synthesis, Production and Property Analysis)
Show Figures

Figure 1

16 pages, 2571 KiB  
Article
Effective One-Component Organocatalysts for Eco-Friendly Production of Cyclic Carbonates
by Enrique Francés-Poveda, Marta Navarro, Monserrat Beroíza-Duhart, Genesys L. Mahecha, Julio I. Urzúa, María Luisa Valenzuela, Felipe de la Cruz-Martínez, Oscar A. Douglas-Gallardo, Francisca Werlinger, Agustín Lara-Sánchez and Javier Martínez
Reactions 2025, 6(1), 8; https://doi.org/10.3390/reactions6010008 - 13 Jan 2025
Viewed by 1522
Abstract
One-component or bifunctional organocatalysts are some of the most capable compounds to perform the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2) since the presence of a co-catalyst is not required. In this study, we designed, synthesized, and evaluated [...] Read more.
One-component or bifunctional organocatalysts are some of the most capable compounds to perform the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2) since the presence of a co-catalyst is not required. In this study, we designed, synthesized, and evaluated five halogenated compounds as bifunctional organocatalysts for this catalytic transformation. Among them, 1,3-dimethylimidazolium iodide (1) exhibited the highest catalytic efficiency, enabling the synthesis of a broad range of monosubstituted cyclic carbonates with diverse functional groups under mild conditions (80 °C, 20 bar CO2) within 1 h, using only 1 mol% catalyst loading. Remarkably, this organocatalyst also facilitated the synthesis of five internal cyclic carbonates and a carvone-derived exo-cyclic carbonate, which was obtained for the first time without the use of a metal catalyst, under more demanding conditions. A mechanistic proposal was developed through a combination of 1H-NMR studies and density functional theory (DFT) simulations. Styrene oxide and cyclohexene oxide were used as model substrates to investigate the reaction pathway, which was computed using an optimized climbing-image nudged elastic band (CI-NEB) method. The results revealed the critical role of 1,3-dimethylimidazolium iodide in key reaction steps, particularly in facilitating the epoxy ring opening process. These findings highlight the potential use of bifunctional compounds as efficient and versatile catalysts for CO2 valorization. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

13 pages, 3302 KiB  
Article
Unveiling the Unusual Mn(CO)3 Migration in a Manganese Cyclohexenyl Complex by DFT Computations
by Guangchao Liang and Min Zhang
Molecules 2024, 29(12), 2945; https://doi.org/10.3390/molecules29122945 - 20 Jun 2024
Viewed by 1188
Abstract
Homogeneous catalysis involving a transition metal agostic interaction (TMHC) is an attractive strategy for C–H bond activation, in which the transition metal agostic intermediates serve as the critical component. To investigate the roles of manganese agostic intermediates in the [...] Read more.
Homogeneous catalysis involving a transition metal agostic interaction (TMHC) is an attractive strategy for C–H bond activation, in which the transition metal agostic intermediates serve as the critical component. To investigate the roles of manganese agostic intermediates in the unusual migration of the Mn(CO)3 fragment in the (exo-phenyl)(η3-cyclohexenyl)manganese tricarbonyl [(Ph)(η3-C6H8)Mn(CO)3] (complex 1) under the protonation of tetrafluoroboric acid–diethyl ether (HBF4.Et2O), a comprehensive density functional theory (DFT) theoretical study was performed. The computational results showed that formation of the [(cyclohex-3-enyl)-η6-benzene]manganese tricarbonyl complex [(C6H9)(η6-Ph)Mn(CO)3+][BF4] (complex 2) was achieved via a series of mono-agostic and di-agostic intermediates. The overall rate-limiting step for this unusual migration of the Mn(CO)3 fragment is the formation of the di-agostic (η2-phenyl)manganese complex 8 (458) with a Gibbs barrier of 15.4 kcal mol−1. The agostic intermediates with TMHC agostic interactions were well-characterized by geometry parameters, Atoms-In-Molecules (AIM) analyses, and the Natural Adaptive Orbitals (NAdOs). The located pathways in the current study successfully explained the experimental observations, and the findings on the TMHC agostic interaction provided a new aspect of the catalytic reaction with the manganese complex. Full article
Show Figures

Graphical abstract

16 pages, 3555 KiB  
Article
Multi-Target Effect of Aloeresin-A against Bacterial and Host Inflammatory Targets Benefits Contact Lens-Related Keratitis: A Multi-Omics and Quantum Chemical Investigation
by Jency Roshni, Sheikh F. Ahmad, Abubakar Wani and Shiek S. S. J. Ahmed
Molecules 2023, 28(19), 6955; https://doi.org/10.3390/molecules28196955 - 6 Oct 2023
Cited by 4 | Viewed by 2260
Abstract
Contact lens-mediated microbial keratitis caused by Pseudomonas aeruginosa and Streptococcus pneumoniae provokes corneal damage and vision loss. Recently, natural phytochemicals have become complementary medicines for corneal destruction. Herein, we aimed to identify multi-targeting Aloe vera-derived phytochemicals capable of inhibiting bacterial and host [...] Read more.
Contact lens-mediated microbial keratitis caused by Pseudomonas aeruginosa and Streptococcus pneumoniae provokes corneal damage and vision loss. Recently, natural phytochemicals have become complementary medicines for corneal destruction. Herein, we aimed to identify multi-targeting Aloe vera-derived phytochemicals capable of inhibiting bacterial and host targets of keratitis through ADME (absorption, distribution, metabolism, and excretion), docking, molecular dynamics (MD) simulation, MMGBSA (molecular mechanics generalized Born surface area) and density functional theory (DFT) investigations. An extensive literature search revealed ExoU, ExoS, ExoT, ExoY, and PLY as virulent bacterial targets. Simultaneously, differential gene expression (DGE) and pathway enrichment analysis-specified host transcription factor (SPI1) influences keratitis pathogenesis. Molecular docking analysis uncovered aloeresin-A as a promising inhibitor against bacterial and host targets, demonstrating strong binding energies ranging from −7.59 to −6.20 kcal/mol. Further, MMGBSA and MD simulation analysis reflect higher binding free energies and stable interactions of aloeresin-A with the targets. In addition, DFT studies reveal the chemical reactiveness of aloeresin-A through quantum chemical calculations. Hence, our findings show aloeresin-A to be a promising candidate for effectively inhibiting keratitis. However, additional research is imperative for potential integration into lens care solutions. Full article
(This article belongs to the Special Issue Application of Natural or Synthetic Products in Computer-Aided Drugs)
Show Figures

Figure 1

16 pages, 1171 KiB  
Article
Cyanide Molecular Laser-Induced Breakdown Spectroscopy with Current Databases
by Christian G. Parigger
Atoms 2023, 11(4), 62; https://doi.org/10.3390/atoms11040062 - 1 Apr 2023
Cited by 3 | Viewed by 2186
Abstract
This work discusses diatomic molecular spectroscopy of laser-induced plasma and analysis of data records, specifically signatures of cyanide, CN. Line strength data from various databases are compared for simulation of the CN, B2Σ+X2Σ+, [...] Read more.
This work discusses diatomic molecular spectroscopy of laser-induced plasma and analysis of data records, specifically signatures of cyanide, CN. Line strength data from various databases are compared for simulation of the CN, B2Σ+X2Σ+, Δv=0 sequence. Of interest are recent predictions using an astrophysical database, i.e., ExoMol, a laser-induced fluorescence database, i.e., LIFBASE, and a program for simulating rotational, vibrational, and electronic spectra, i.e., PGOPHER. Cyanide spectra that are predicted from these databases are compared with line-strength data that have been in use by the author for the last three decades in the analysis of laser–plasma emission spectra. Comparisons with experimental laser–plasma records are communicated as well for spectral resolutions of 33 and 110 picometer. The accuracy of the CN line-strength data is better than one picometer. Laboratory experiments utilize 308 nm, 35 picosecond bursts within an overall 1 nanosecond pulse-width, and 1064 nm, 6 ns pulse-width radiation. Experimental results are compared with predictions. Differences of the databases are elaborated for equilibrium of rotational and vibrational modes and at an internal, molecular temperature of the order of 8,000 Kelvin. Applications of accurate CN data include, for example, combustion diagnosis, chemistry, and supersonic and hypersonic expansion diagnosis. The cyanide molecule is also of interest in the study of astrophysical phenomena. Full article
(This article belongs to the Special Issue Atomic and Molecular Data in Astronomy and Astrophysics)
Show Figures

Figure 1

21 pages, 2060 KiB  
Article
On Analogies in Proton-Transfers for Pyrimidine Bases in the Gas Phase (Apolar Environment)—Cytosine Versus Isocytosine
by Ewa D. Raczyńska
Symmetry 2023, 15(2), 342; https://doi.org/10.3390/sym15020342 - 26 Jan 2023
Cited by 4 | Viewed by 1778
Abstract
Inter- and intra-molecular proton-transfers between functional groups in nucleobases play a principal role in their interactions (pairing) in nucleic acids. Although prototropic rearrangements (intramolecular proton-transfers) for neutral pyrimidine bases are well documented, they have not always been considered for their protonated and deprotonated [...] Read more.
Inter- and intra-molecular proton-transfers between functional groups in nucleobases play a principal role in their interactions (pairing) in nucleic acids. Although prototropic rearrangements (intramolecular proton-transfers) for neutral pyrimidine bases are well documented, they have not always been considered for their protonated and deprotonated forms. The complete isomeric mixtures in acid-base equilibria and in acidity–basicity parameters have not yet been examined. Taking into account the lack of literature and data, research into the question of prototropy for the ionic (protonated and deprotonated) forms has been undertaken in this work. For the purposes of this investigation, two isomeric pyrimidine bases (C—cytosine and iC—isocytosine) were chosen. They exhibit analogous (symmetrical) general acid-base equilibria (intermolecular proton-transfers). Being similar polyfunctional tautomeric systems, C and iC possess two labile protons and five conjugated tautomeric sites. However, positions of exo groups are different. Consequently, structural conversions such as prototropy, rotational, and geometrical isomerism of exo groups (=O/−OH and =NH/−NH2) and their intramolecular interactions with endo groups (=N−/>NH) possible in neutral C and iC and in their ionic forms lead to some differences in compositions of isomeric mixtures. By application of quantum–chemical methods to the isolated (in vacuo) species, stability of all possible neutral and ionic isomers has been examined and the candidate isomers selected. The complete isomeric mixtures have been considered for the first time for di-deprotonated, mono-deprotonated, mono-protonated, and di-protonated forms. Protonation–deprotonation reactions have been analyzed in the gas phase that models non-polar environment. The gas-phase microscopic (kinetic) and macroscopic (thermodynamic) acidity–basicity parameters have been estimated for each step of acid-base equilibria. When proceeding from di-anion to di-cation in four steps of protonation–deprotonation reaction, the macroscopic proton affinities for C and iC differ by less than 10 kcal mol−1. Their DFT-calculated values are as follows: 451 and 457, 340 and 339, 228 and 224, and 100 and 104 kcal mol−1, respectively. Differences between the microscopic proton affinities for analogous isomers of C and iC seem to be larger for the exo than endo groups. Owing to variations of relative stabilities for neutral and ionic isomers, in some cases they are even larger than 10 kcal mol−1. Full article
(This article belongs to the Special Issue Symmetry in Acid-Base Chemistry II)
Show Figures

Figure 1

12 pages, 2261 KiB  
Article
Polymerization of Isobutylene in a Rotating Packed Bed Reactor: Experimental and Modeling Studies
by Wenhui Hou, Wei Wang, Yang Xiang, Yingjiao Li, Guangwen Chu, Haikui Zou and Baochang Sun
Appl. Sci. 2021, 11(21), 10194; https://doi.org/10.3390/app112110194 - 30 Oct 2021
Cited by 1 | Viewed by 2688
Abstract
Polymerization of isobutylene (IB) for synthesizing highly reactive polyisobutylene (HRPIB) is characterized by a complicated fast intrinsic reaction rate; therefore, the features of its products exhibit a strong dependence on mixing efficiency. To provide uniform and efficient mixing, a rotating packed bed was [...] Read more.
Polymerization of isobutylene (IB) for synthesizing highly reactive polyisobutylene (HRPIB) is characterized by a complicated fast intrinsic reaction rate; therefore, the features of its products exhibit a strong dependence on mixing efficiency. To provide uniform and efficient mixing, a rotating packed bed was employed as a reactor for polymerization of IB. The effects of operating parameters including polymerization temperature (T), rotating speed (N) and relative dosage of monomers and initiating systems ([M]0/[I]0) on number-average molecular weight (Mn) of HRPIB were studied. HRPIB with Mn of 2550 g·mol−1 and exo-olefin terminal content of 85 mol% were efficiently obtained at suitable conditions as T of 283 K, N of 1600 rpm and [M]0/[I]0 of 49. Moreover, the Mn can be regulated by changing T, N and [M]0/[I]0. Based on the presumptive-steady-state analysis method and the coalescence–redispersion model, a model for prediction of the Mn was developed and validated, and the calculated Mn values agreed well with experimental results, with a deviation of ±10%. The results demonstrate that RPB is a promising reactor for synthesizing HRPIB, and the given model for Mn can be applied for the design of RPB and process optimization. Full article
(This article belongs to the Special Issue Process Intensification via Rotating Packed Bed (Higee))
Show Figures

Figure 1

20 pages, 3142 KiB  
Article
Unveiling the Intramolecular Ionic Diels–Alder Reactions within Molecular Electron Density Theory
by Luis R. Domingo, Mar Ríos-Gutiérrez and María José Aurell
Chemistry 2021, 3(3), 834-853; https://doi.org/10.3390/chemistry3030061 - 3 Aug 2021
Cited by 2 | Viewed by 3140
Abstract
The intramolecular ionic Diels–Alder (IIDA) reactions of two dieniminiums were studied within the Molecular Electron Density Theory (MEDT) at the ωB97XD/6-311G(d,p) computational level. Topological analysis of the electron localization function (ELF) of dieniminiums showed that their electronic structures can been seen as the [...] Read more.
The intramolecular ionic Diels–Alder (IIDA) reactions of two dieniminiums were studied within the Molecular Electron Density Theory (MEDT) at the ωB97XD/6-311G(d,p) computational level. Topological analysis of the electron localization function (ELF) of dieniminiums showed that their electronic structures can been seen as the sum of those of butadiene and ethaniminium. The superelectrophilic character of dieniminiums accounts for the high intramolecular global electron density transfer taking place from the diene framework to the iminium one at the transition state structures (TSs) of these IIDA reactions, which are classified as the forward electro density flux. The activation enthalpy associated with the IIDA reaction of the experimental dieniminium, 8.7 kcal·mol−1, was closer to that of the ionic Diels–Alder (I-DA) reaction between butadiene and ethaniminium, 9.3 kcal·mol−1. However, the activation Gibbs free energy of the IIDA reaction was 12.7 kcal·mol−1 lower than that of the intermolecular I-DA reaction. The strong exergonic character of the IIDA reaction, higher than 20.5 kcal·mol−1, makes the reaction irreversible. These IIDA reactions present a total re/exo and si/endo diastereoselectivity, which is controlled by the most favorable chair conformation of the tetramethylene chain. ELF topological analysis of the single bond formation indicated that these IIDA reactions take place through a non-concerted two-stage one-step mechanism. Finally, ELF and atoms-in-molecules (AIM) topological analyses of the TS associated with the inter and intramolecular processes showed the great similarity between them. Full article
(This article belongs to the Special Issue 2021 Profile Papers by Chemistry' Editorial Board Members)
Show Figures

Graphical abstract

18 pages, 5840 KiB  
Article
Comparative Analysis of Ethylene/Diene Copolymerization and Ethylene/Propylene/Diene Terpolymerization Using Ansa-Zirconocene Catalyst with Alkylaluminum/Borate Activator: The Effect of Conjugated and Nonconjugated Dienes on Catalytic Behavior and Polymer Microstructure
by Amjad Ali, Muhammad Khurram Tufail, Muhammad Imran Jamil, Waleed Yaseen, Nafees Iqbal, Munir Hussain, Asad Ali, Tariq Aziz, Zhiqiang Fan and Li Guo
Molecules 2021, 26(7), 2037; https://doi.org/10.3390/molecules26072037 - 2 Apr 2021
Cited by 25 | Viewed by 4105
Abstract
The copolymerization of ethylene‒diene conjugates (butadiene (BD), isoprene (IP) and nonconjugates (5-ethylidene-2-norbornene (ENB), vinyl norbornene VNB, 4-vinylcyclohexene (VCH) and 1, 4-hexadiene (HD)), and terpolymerization of ethylene-propylene-diene conjugates (BD, IP) and nonconjugates (ENB, VNB, VCH and HD) using two traditional catalysts of C2 [...] Read more.
The copolymerization of ethylene‒diene conjugates (butadiene (BD), isoprene (IP) and nonconjugates (5-ethylidene-2-norbornene (ENB), vinyl norbornene VNB, 4-vinylcyclohexene (VCH) and 1, 4-hexadiene (HD)), and terpolymerization of ethylene-propylene-diene conjugates (BD, IP) and nonconjugates (ENB, VNB, VCH and HD) using two traditional catalysts of C2-symmetric metallocene—silylene-bridged rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 (complex A) and ethylene-bridged rac-Et(Ind)2ZrCl2 (complex B)—with a [Ph3C][B(C6F5)4] borate/TIBA co-catalyst, were intensively studied. Compared to that in the copolymerization of ethylene diene, the catalytic activity was more significant in E/P/diene terpolymerization. We obtained a maximum yield of both metallocene catalysts with conjugated diene between 3.00 × 106 g/molMt·h and 5.00 × 106 g/molMt·h. ENB had the highest deactivation impact on complex A, and HD had the most substantial deactivation effect on complex B. A 1H NMR study suggests that dienes were incorporated into the co/ter polymers’ backbone through regioselectivity. ENB and VNB, inserted by the edo double bond, left the ethylidene double bond intact, so VCH had an exo double bond. Complex A’s methyl and phenyl groups rendered it structurally stable and exhibited a dihedral angle greater than that of complex B, resulting in 1, 2 isoprene insertion higher than 1, 4 isoprene that is usually incapable of polymerization coordination. High efficiency in terms of co- and ter- monomer incorporation with higher molecular weight was found for complex 1. The rate of incorporation of ethylene and propylene in the terpolymer backbone structure may also be altered by the conjugated and nonconjugated dienes. 13C-NMR, 1H-NMR, and GPC techniques were used to characterize the polymers obtained. Full article
(This article belongs to the Special Issue Copolymers: Preparation and Applications)
Show Figures

Graphical abstract

17 pages, 4855 KiB  
Article
Biobased Polymers via Radical Homopolymerization and Copolymerization of a Series of Terpenoid-Derived Conjugated Dienes with exo-Methylene and 6-Membered Ring
by Takenori Nishida, Kotaro Satoh and Masami Kamigaito
Molecules 2020, 25(24), 5890; https://doi.org/10.3390/molecules25245890 - 12 Dec 2020
Cited by 15 | Viewed by 4156
Abstract
A series of exo-methylene 6-membered ring conjugated dienes, which are directly or indirectly obtained from terpenoids, such as β-phellandrene, carvone, piperitone, and verbenone, were radically polymerized. Although their radical homopolymerizations were very slow, radical copolymerizations proceeded well with various common vinyl monomers, [...] Read more.
A series of exo-methylene 6-membered ring conjugated dienes, which are directly or indirectly obtained from terpenoids, such as β-phellandrene, carvone, piperitone, and verbenone, were radically polymerized. Although their radical homopolymerizations were very slow, radical copolymerizations proceeded well with various common vinyl monomers, such as methyl acrylate (MA), acrylonitrile (AN), methyl methacrylate (MMA), and styrene (St), resulting in copolymers with comparable incorporation ratios of bio-based cyclic conjugated monomer units ranging from 40 to 60 mol% at a 1:1 feed ratio. The monomer reactivity ratios when using AN as a comonomer were close to 0, whereas those with St were approximately 0.5 to 1, indicating that these diene monomers can be considered electron-rich monomers. Reversible addition fragmentation chain-transfer (RAFT) copolymerizations with MA, AN, MMA, and St were all successful when using S-cumyl-S’-butyl trithiocarbonate (CBTC) as the RAFT agent resulting in copolymers with controlled molecular weights. The copolymers obtained with AN, MMA, or St showed glass transition temperatures (Tg) similar to those of common vinyl polymers (Tg ~ 100 °C), indicating that biobased cyclic structures were successfully incorporated into commodity polymers without losing good thermal properties. Full article
(This article belongs to the Special Issue Natural Polymers and Biopolymers II)
Show Figures

Graphical abstract

15 pages, 792 KiB  
Article
The Acid-Base Through-the-Cage Interaction as an Example of an Inversion in a Cage Isomerism
by Jan Cz. Dobrowolski and Sławomir Ostrowski
Symmetry 2020, 12(8), 1291; https://doi.org/10.3390/sym12081291 - 3 Aug 2020
Cited by 3 | Viewed by 3040
Abstract
We define a new inversion in a cage isomerism (ic): X@CYicY@CX, ( is the isomerism relation) as an isomerism in the three-component system of molecules X, Y [...] Read more.
We define a new inversion in a cage isomerism (ic): X@CYicY@CX, ( is the isomerism relation) as an isomerism in the three-component system of molecules X, Y, and a cage C, in which one of the molecules is located inside and the other outside the cage. The ic isomerism is similar to the endo-exo one, which occurs only if either the interior or exterior of C is empty. By contrast, ic occurs only if neither the interior nor the exterior of C is empty. We also discuss the other closely related types of isomerisms are also discussed. Calculations of the XH⋯NH3@C60 and NH3⋯HX@C60ic isomers were performed at the ωB97XD/Def2TZVP level. The calculated energies demonstrated that the systems with the HX acid outside (X = F, Cl) and the NH3 base inside the cage, XH⋯NH3@C60, are more stable than their ic isomers, NH3⋯HX@C60, by about 4–8 kcal/mol. This is because NH3 is more stabilized inside the cage than HX (a matter of 6.5 kcal/mol). In the studied systems and subsystems, the HX molecules are Lewis acids and the NH3 molecule is always a Lewis base. The C60 molecule with HX inside or outside the cage is also an acid for the NH3 base positioned outside or inside the cage. On the other hand, the C60 cage is truly amphoteric because it is simultaneously an acid and a base. Full article
(This article belongs to the Special Issue Symmetry in Acid-Base Chemistry)
Show Figures

Graphical abstract

Back to TopTop