Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = Eucommia ulmoides Oliver

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6584 KiB  
Article
Identification of Key Active Constituents in Eucommia ulmoides Oliv. Leaves Against Parkinson’s Disease and the Alleviative Effects via 4E-BP1 Up-Regulation
by Yuqing Li, Ruidie Shi, Lijie Xia, Xuanming Zhang, Pengyu Zhang, Siyuan Liu, Kechun Liu, Attila Sik, Rostyslav Stoika and Meng Jin
Int. J. Mol. Sci. 2025, 26(6), 2762; https://doi.org/10.3390/ijms26062762 - 19 Mar 2025
Cited by 1 | Viewed by 896
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder, affecting an increasing number of older adults. Despite extensive research, a definitive cure remains elusive. Eucommia ulmoides Oliv. leaves (EUOL) have been reported to exhibit protective effects on neurodegenerative diseases, however, their [...] Read more.
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder, affecting an increasing number of older adults. Despite extensive research, a definitive cure remains elusive. Eucommia ulmoides Oliv. leaves (EUOL) have been reported to exhibit protective effects on neurodegenerative diseases, however, their efficacy, key active constituents, and pharmacological mechanisms are not yet understood. This study aims to explore the optimal constituents of EUOL regarding anti-PD activity and its underlying mechanisms. Using a zebrafish PD model, we found that the 30% ethanol fraction extract (EF) of EUOL significantly relieved MPTP-induced locomotor impairments, increased the length of dopaminergic neurons, inhibited the loss of neuronal vasculature, and regulated the misexpression of autophagy-related genes (α-syn, lc3b, p62, and atg7). Assays of key regulators involved in PD further verified the potential of the 30% EF against PD in the cellular PD model. Reverse phase protein array (RPPA) analysis revealed that 30% EF exerted anti-PD activity by activating 4E-BP1, which was confirmed by Western blotting. Phytochemical analysis indicated that cryptochlorogenic acid, chlorogenic acid, asperuloside, caffeic acid, and asperulosidic acid are the main components of the 30% EF. Molecular docking and surface plasmon resonance (SPR) indicated that the main components of the 30% EF exhibited favorable binding interactions with 4E-BP1, further highlighting the roles of 4E-BP1 in this process. Accordingly, these components were observed to ameliorate PD-like behaviors in the zebrafish model. Overall, this study revealed that the 30% EF is the key active constituent of EUOL, which had considerable ameliorative effects on PD by up-regulating 4E-BP1. This suggests that EUOL could serve as a promising candidate for the development of novel functional foods aimed at supporting PD treatment. Full article
Show Figures

Figure 1

19 pages, 1604 KiB  
Article
Eucommiae cortex Comprehensive Phytochemical Analysis Connected with Its In Vitro Anti-Inflammatory Activity in Human Immune Cells
by Małgorzata Kołtun-Jasion, Marta Katarzyna Dudek and Anna Karolina Kiss
Molecules 2025, 30(6), 1364; https://doi.org/10.3390/molecules30061364 - 18 Mar 2025
Viewed by 641
Abstract
Eucommia ulmoides Oliv., commonly known as “plant gold”, is a species of the Eucommiaceae family, native to East Asia and widely utilized in medicine, food, and the chemical industry. In Traditional Chinese Medicine, the bark of E. ulmoides plays a special role, used [...] Read more.
Eucommia ulmoides Oliv., commonly known as “plant gold”, is a species of the Eucommiaceae family, native to East Asia and widely utilized in medicine, food, and the chemical industry. In Traditional Chinese Medicine, the bark of E. ulmoides plays a special role, used to nourish the liver and kidneys and to strengthen tendons and bones. Due to its extensive pharmacological profile, including anti-inflammatory, antioxidant, hypoglycemic, hypotensive, and cardio- and neuroprotective effects, there has been growing interest in elucidating the molecular mechanisms underlying its biological effects. However, many of these mechanisms remain poorly understood to date. This study analyzed the phytochemical composition of E. ulmoides bark infusions and tinctures and their dominant compounds using the HPLC-DAD-MS/MS method, and evaluated their anti-inflammatory effects in human immune cell models. The analysis identified lignans, iridoids, and caffeic acid derivatives as the dominant constituents of the tested samples. The extracts significantly inhibited the secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, MCP-1) in neutrophils, PBMC-derived monocytes/macrophages, and THP-1 cells. The results presented herein offer significant insights into the detailed phytochemical composition of E. ulmoides bark, and contribute to a deeper understanding of its anti-inflammatory mechanisms in human immune cells. Full article
(This article belongs to the Special Issue Medicinal Value of Natural Bioactive Compounds and Plant Extracts II)
Show Figures

Graphical abstract

22 pages, 12827 KiB  
Article
Network Pharmacology Combined with Experimental Validation to Investigate the Effects and Mechanisms of Aucubin on Aging-Related Muscle Atrophy
by Wenan Li, Kaishu Deng, Mengyue Zhang, Yan Xu, Jingxi Zhang, Qingsheng Liang, Zhiyou Yang, Leigang Jin, Chuanyin Hu and Yun-Tao Zhao
Int. J. Mol. Sci. 2025, 26(6), 2626; https://doi.org/10.3390/ijms26062626 - 14 Mar 2025
Viewed by 970
Abstract
Aucubin (AU) is one of the main components of the traditional Chinese medicine Eucommia ulmoides Oliv (EU). This study investigated the effects of AU on aging-related skeletal muscle atrophy in vitro and in vivo. The results of network pharmacology revealed the potential therapeutic [...] Read more.
Aucubin (AU) is one of the main components of the traditional Chinese medicine Eucommia ulmoides Oliv (EU). This study investigated the effects of AU on aging-related skeletal muscle atrophy in vitro and in vivo. The results of network pharmacology revealed the potential therapeutic effects of AU on muscle atrophy. In vitro, AU effectively attenuated D-gal-induced cellular damage, reduced the number of senescence-associated β-galactosidase (SA-β-Gal)-positive cells, down-regulated the expression levels of muscle atrophy-related proteins Atrogin-1 and MuRF1, and improved myotube differentiation, thereby mitigating myotube atrophy. Notably, AU was found to attenuate oxidative stress and apoptosis in skeletal muscle cells by reducing ROS production, regulating Cleaved caspase3 and BAX/Bcl-2 expression in apoptotic pathways, and enhancing Sirt1 and PGC-1α signaling pathways. In vivo studies demonstrated that AU treatment extended the average lifespan of Caenorhabditis elegans (C. elegans), increased locomotor activity, improved body wall muscle mitochondrial content, and alleviated oxidative damage in C. elegans. These findings suggested that AU can ameliorate aging-related muscle atrophy and show significant potential in preventing and treating muscle atrophy. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 4341 KiB  
Article
Eucommia ulmoides Oliv. Bark Extracts Alleviate MCAO/Reperfusion-Induced Neurological Dysfunction by Suppressing Microglial Inflammation in the Gray Matter
by Jiarong Pan, Xuejun Chai, Cixia Li, Yongji Wu, Yue Ma, Songlin Wang, Yuhuan Xue, Yongkang Zhao, Shulin Chen, Xiaoyan Zhu and Shanting Zhao
Int. J. Mol. Sci. 2025, 26(4), 1572; https://doi.org/10.3390/ijms26041572 - 13 Feb 2025
Viewed by 1103
Abstract
Ischemic stroke ranks as the second leading cause of global mortality. The limited time for effective thrombolytic treatment has prompted the exploration of alternative prevention approaches. Eucommia ulmoides (E. ulmoides) Oliv. bark has shown multiple pharmacological effects, including neuroprotection, anti-inflammation and [...] Read more.
Ischemic stroke ranks as the second leading cause of global mortality. The limited time for effective thrombolytic treatment has prompted the exploration of alternative prevention approaches. Eucommia ulmoides (E. ulmoides) Oliv. bark has shown multiple pharmacological effects, including neuroprotection, anti-inflammation and autophagy modulation. This study aims to elucidate the neuroprotective effects of water extract of E. ulmoides (WEU) supplementation in a middle cerebral artery occlusion (MCAO) mouse model and to further explore the underlying molecular mechanisms. Seven bioactive compounds in WEU—aucubin, chlorogenic acid, geniposidic acid, quercetin, protocatechuic acid, betulin and pinoresinol diglucoside—were identified using HPLC-MS. Our results showed that WEU supplementation significantly decreased infarct volume and ameliorated neurological dysfunction in mice following MCAO/reperfusion (MCAO/R) injury. Furthermore, the administration of WEU significantly attenuated microglia activation induced by cortical ischemia in mice and inhibited the production of pro-inflammatory mediators, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Importantly, in contrast with the vehicle group, the protein expression levels of Toll-like receptor 4 (TLR4), phospho-p38 (p-p38) and nuclear factor kappa B (NF-κB) were reduced in the WEU group. Therefore, this present study provides evidence that E. ulmoides improves neurological behaviors by suppressing neuroinflammation and inhibiting the activation of the TLR4/ p38 MAPK and NF-κB pathways in mice after ischemia, which indicates that E.ulmoides is a promising candidate for alleviating gray matter ischemic change. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

17 pages, 8835 KiB  
Essay
Overexpression of the EuSIP5 Gene to Improve Drought Resistance in Tobacco
by Yueling Lin, Xi Chen, Degang Zhao and Chao Li
Horticulturae 2024, 10(9), 1010; https://doi.org/10.3390/horticulturae10091010 - 23 Sep 2024
Viewed by 1187
Abstract
Soluble inorganic pyrophosphatase (s-PPase), a pyrophosphate hydrolase, is crucial for various physiological processes including plant growth and development, metabolic functions, and responses to abiotic stresses. However, research on s-PPase in woody plants is limited. To investigate the potential role of soluble inorganic pyrophosphatase [...] Read more.
Soluble inorganic pyrophosphatase (s-PPase), a pyrophosphate hydrolase, is crucial for various physiological processes including plant growth and development, metabolic functions, and responses to abiotic stresses. However, research on s-PPase in woody plants is limited. To investigate the potential role of soluble inorganic pyrophosphatase in Eucommia ulmoides Oliver (E. ulmoides) in drought stress, the E. ulmoides soluble inorganic pyrophosphatase 5 (EuSIP5) cDNA sequence was amplified via RT-PCR. A bioinformatic analysis suggested that EuSIP5 may be an unstable amphipathic protein predominantly localized in the cytoplasm. In E. ulmoides, the highest expression of the EuSIP5 gene was detected in the leaves and pericarp of male plants from April to October, and in the leaves in July and September. Under drought conditions, the expression of EuSIP5 in E. ulmoides leaves was significantly greater than that in the control. An overexpression vector containing EuSIP5 was constructed and introduced into Nicotiana tabacum L. cv. Xanthi (N. tabacum L.). Compared with that in wild-type (WT) plants, wilting in N. tabacum L. EuSIP5-overexpressing (OE) plants was delayed by 4 days under drought stress. Additionally, the expression levels of the drought-related genes DET2, CYP85A1, P5CS, ERF1, F-box, and NCED1 were elevated in the leaves of transgenic N. tabacum L. Moreover, the activities of the protective enzymes peroxidase, superoxide dismutase, and catalase were significantly greater, whereas the malondialdehyde content was lower in the transgenic plants than in the WT plants. These findings suggest that the introduction of the EuSIP5 gene into N. tabacum L. enhances drought-related gene expression, increases antioxidant capacity, and reduces oxidative stress damage, thereby improving drought resistance. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

18 pages, 8633 KiB  
Article
Investigating the Pharmacological Mechanisms of Total Flavonoids from Eucommia ulmoides Oliver Leaves for Ischemic Stroke Protection
by Jing Qin, Kewei Chen, Xiaomin Wang, Sirong He, Jiaqi Chen, Qianlin Zhu, Zhizhou He, Pengcheng Lv and Kun Chen
Int. J. Mol. Sci. 2024, 25(11), 6271; https://doi.org/10.3390/ijms25116271 - 6 Jun 2024
Cited by 1 | Viewed by 1865
Abstract
The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group [...] Read more.
The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group (p < 0.05) after treatment with the total flavonoids of EULs. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) decreased, while catalase (CAT) and glutathione (GSH) increased, indicating that the total flavonoids of EULs can significantly alleviate neurological damage caused by ischemic stroke by inhibiting oxidative stress (p < 0.01). The mRNA expression level of VEGF increased (p < 0.01), which was consistent with the protein expression results. Meanwhile, the protein expression of ERK and CCND1 increased (p < 0.01), suggesting that the total flavonoids of EULs could protect PC12 cells from ischemic injury via VEGF-related pathways. MCAO rat models indicated that the total flavonoids of EULs could reduce brain ischemia–reperfusion injury. In conclusion, this study demonstrates the potential mechanisms of the total flavonoids of EULs in treating ischemic stroke and their potential therapeutic effects in reducing ischemic injury, which provides useful information for ischemic stroke drug discovery. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 3277 KiB  
Article
The Physiological Mechanism of Low-Temperature Tolerance Following the UV-B Radiation of Eucommia ulmoides Oliver
by Ying Zhang, Xuchen Tian, Wenling Zhou, Zhonghua Tang, Jing Yang, Ye Zhang, Xiaoqing Tang, Dewen Li and Ying Liu
Agriculture 2024, 14(6), 878; https://doi.org/10.3390/agriculture14060878 - 31 May 2024
Viewed by 929
Abstract
Eucommia ulmoides Oliver with rich active components, such as flavonoids, lignans, polysaccharides, is used as a medicinal plant. Unfortunately, its popularization and cultivation are limited due to its low-temperature sensitivity. In this study, we aimed to explore the effect of different doses of [...] Read more.
Eucommia ulmoides Oliver with rich active components, such as flavonoids, lignans, polysaccharides, is used as a medicinal plant. Unfortunately, its popularization and cultivation are limited due to its low-temperature sensitivity. In this study, we aimed to explore the effect of different doses of ultraviolet-B (UV-B) radiation (UV-1, UV-2, and UV-3) and low-temperature (LT) stress, both applied individually and in combination, on the photosynthetic properties, biochemical parameters, and the contents of salicylic acid in E. ulmoides plants. The results showed that UV-B radiation alone significantly reduced photosynthetic performance and soluble total sugar content, as well as causing increases in soluble protein, proline, and superoxide anion content and antioxidant activity including SOD, POD, CAT, total phenol, and total flavonoid content. The leaf thickness and photosynthetic parameters significantly increased, as well as a significant decrease in SOD activity and soluble sugar, proline, and superoxide anion content after 14 days of none-UV-B radiation exposure. UV-B combined with LT significantly improved photosynthetic properties, Chl content, and soluble sugar content but significantly decreased proline content. Principal component analysis showed that salicylic acid was the key factor in improving LT tolerance, and UV-2 radiation showed the best LT resistance. We aim to provide new ideas and a theoretical basis for the directional cultivation and LT stress tolerance research of E. ulmoides. Our findings demonstrate that the combined effect was more positively helpful in improving the ability to resist LT tolerance via the improvement of photosynthetic ability and the increase in soluble sugar and salicylic acid content in E. ulmoides. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 7088 KiB  
Article
Genome-Wide Identification and Expression Analysis of Growth-Regulating Factors in Eucommia ulmoides Oliver (Du-Zhong)
by Ruoruo Wang, Ying Zhu and Degang Zhao
Plants 2024, 13(9), 1185; https://doi.org/10.3390/plants13091185 - 24 Apr 2024
Cited by 1 | Viewed by 1364
Abstract
The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it [...] Read more.
The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it is of great significance to identify genes related to regulating the leaf size of E. ulmoides. Plant growth-regulating factors (GRFs) play important roles in regulating leaf size, and their functions are highly conserved across different plant species. However, there have been very limited reports on EuGRFs until now. In this study, eight canonical EuGRFs with both QLQ and WRC domains and two putative eul-miR396s were identified in the chromosome-level genome of E. ulmoides. It is found that, unlike AtGRFs, all EuGRFs contain the miR396s binding site in the terminal of WRC domains. These EuGRFs were distributed on six chromosomes in the genome of E. ulmoides. Collinearity analysis of the E. ulmoides genome revealed that EuGRF1 and EuGRF3 exhibit collinear relationships with EuGRF2, suggesting that those three genes may have emerged via gene replication events. The collinear relationship between EuGRFs, AtGRFs, and OsGRFs showed that EuGRF5 and EuGRF8 had no collinear members in Arabidopsis and rice. Almost all EuGRFs show a higher expression level in growing and developing tissues, and most EuGRF promoters process phytohormone-response and stress-induced cis-elements. Moreover, we found the expression of EuGRFs was significantly induced by gibberellins (GA3) in three hours, and the height of E. ulmoides seedlings was significantly increased one week after GA3 treatment. The findings in this study provide potential candidate genes for further research and lay the foundation for further exploring the molecular mechanism underlying E. ulmoides development in response to GA3. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 4411 KiB  
Article
Polysaccharides from Eucommia ulmoides Oliv. Leaves Alleviate Acute Alcoholic Liver Injury by Modulating the Microbiota–Gut–Liver Axis in Mice
by Yingzhi Li, Huimei Wang, Xueping Leng, Jiaming Gao, Chang Li and Danfei Huang
Foods 2024, 13(7), 1089; https://doi.org/10.3390/foods13071089 - 2 Apr 2024
Cited by 6 | Viewed by 2286
Abstract
The interplay among gut microbiota, intestines, and liver is crucial in preventing acute alcoholic liver injury. In this study, the hepatoprotective potential of polysaccharides from Eucommia ulmoides Oliv. leaves (EULP) on acute alcoholic liver injury in Kunming male mice was investigated. The structural [...] Read more.
The interplay among gut microbiota, intestines, and liver is crucial in preventing acute alcoholic liver injury. In this study, the hepatoprotective potential of polysaccharides from Eucommia ulmoides Oliv. leaves (EULP) on acute alcoholic liver injury in Kunming male mice was investigated. The structural features suggested that the EULP appeared as a heterogeneous mixture of polysaccharides with a molecular weight of 186132 Da. A 14-day pretreatment of EULP ameliorated acute alcoholic-induced hepatic inflam mation (TNF-α, IL-6, and IL-10), oxidative stress (GSH, SOD, and T-AOC), and liver damage (ALT and AST) via enhancing intestinal barrier (Occludin, Claudin 1, and ZO-1) and modulating microbiome, which subsequently inhibiting endotoxemia and balancing the homeostasis of the gut–liver axis. EULP restored the composition of intestinal flora with an increase in the relative abundance of Lactobacillaceae and a decrease in Lachnospiraceae and Verrucomicrobiaceae. Notably, prolonged EULP pretreatment (14 days) but no single gavage of EULP achieved excellent hepatoprotection. These findings endorsed the potential of EULP as a functional food for mitigating acute alcoholic-induce d liver damage, attributed to its anti-inflammatory, antioxidant, and prebiotic properties facilitated by the microbiota–gut–liver axis. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

21 pages, 9882 KiB  
Article
Integrated Transcriptomics and Metabolomics Analysis Promotes the Understanding of Adventitious Root Formation in Eucommia ulmoides Oliver
by Qingxin Du, Kangkang Song, Lu Wang, Lanying Du, Hongyan Du, Bin Li, Haozhen Li, Long Yang, Yan Wang and Panfeng Liu
Plants 2024, 13(1), 136; https://doi.org/10.3390/plants13010136 - 3 Jan 2024
Cited by 3 | Viewed by 2579
Abstract
As a primary approach to nutrient propagation for many woody plants, cutting roots is essential for the breeding and production of Eucommia ulmoides Oliver. In this study, hormone level, transcriptomics, and metabolomics analyses were performed on two E. ulmoides varieties with different adventitious [...] Read more.
As a primary approach to nutrient propagation for many woody plants, cutting roots is essential for the breeding and production of Eucommia ulmoides Oliver. In this study, hormone level, transcriptomics, and metabolomics analyses were performed on two E. ulmoides varieties with different adventitious root (AR) formation abilities. The higher JA level on the 0th day and the lower JA level on the 18th day promoted superior AR development. Several hub genes executed crucial roles in the crosstalk regulation of JA and other hormones, including F-box protein (EU012075), SAUR-like protein (EU0125382), LOB protein (EU0124232), AP2/ERF transcription factor (EU0128499), and CYP450 protein (EU0127354). Differentially expressed genes (DEGs) and metabolites of AR formation were enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, and isoflavonoid biosynthesis pathways. The up-regulated expression of PAL, CCR, CAD, DFR, and HIDH genes on the 18th day could contribute to AR formation. The 130 cis-acting lncRNAs had potential regulatory functions on hub genes in the module that significantly correlated with JA and DEGs in three metabolism pathways. These revealed key molecules, and vital pathways provided more comprehensive insight for the AR formation mechanism of E. ulmoides and other plants. Full article
(This article belongs to the Special Issue Molecular Dynamics in the Acquisition of Rooting Competence)
Show Figures

Figure 1

13 pages, 3215 KiB  
Article
Effect of Pruning Treatment on Growth Characteristics and Metabolites in Eucommia ulmoides Oliver (E. ulmoides)
by Jing Yang, Shengnan Xie, Dandan Du, Hongling Wei, Wenling Zhou, Ying Zhang, Zhonghua Tang, Dewen Li and Ying Liu
Forests 2023, 14(12), 2439; https://doi.org/10.3390/f14122439 - 14 Dec 2023
Cited by 2 | Viewed by 1760
Abstract
The effect of pruning treatments on growth, photosynthesis characteristics, and metabolites were was studied in Eucommia ulmoides Oliver (E. ulmoides). The experiment was carried out from March–August 2019. Three treatments were used: non-pruned trees (CK), a height of 20 cm above [...] Read more.
The effect of pruning treatments on growth, photosynthesis characteristics, and metabolites were was studied in Eucommia ulmoides Oliver (E. ulmoides). The experiment was carried out from March–August 2019. Three treatments were used: non-pruned trees (CK), a height of 20 cm above the top edge of the flowerpot (T1), and a height of 10 cm above the top edge of the flowerpot (T2). The results showed that the branches branch number, leaves leaf number, and stem diameter increased significantly (p < 0.05) in pruning treatments compared with CK. Similarly, the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum photosynthetic efficiency (Fv/Fm), and non-photochemical quenching coefficient (NPQ) increased significantly in pruning treatments (p < 0.05). Interestingly, the contents of Chl a, Chl b, Chl, Car, and the rate between the Chl a content and the Chl b content increased significantly (p < 0.05) in T2, respectively. These verified that it was a better way to enhance the plants growth of E. ulmoides for pruning treatments. The GC-MS analysis showed that 36 different primary metabolites were identified, including 11 sugars, 13 acids, 5 alcohols, and 7 other compounds, the relative content of their metabolites were was higher in the T2 treatment than that in the T1 treatment, which was mainly concentrated in four main enrichment pathways (Galactose metabolism; Citrate cycle; Glyoxylate and dicarboxylate metabolism; and starch and sucrose metabolism) via KEGG analysis. Meanwhile, correlation analysis showed there were was a positive correlation between the accumulation of D-Galactose, D-Mannose, Succinic acid, and photosynthetic pigment content, and the rate of photosynthesis in T2 treatment (p < 0.05). The pruning height above the top edge of the flowerpot changed the accumulation of primary metabolites and promoted plant regeneration ability in E. ulmoides. Finally, the yield of main secondary metabolites from leaves (Genipin, Geniposide, Geniposidic acid, and Pinoresinol diglucoside) were was increased in pruning treatments by UPLC analysis. It provided a reference for the directional ecological cultivation of E. ulmoides. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

15 pages, 4166 KiB  
Article
Effects of Temperature on Growth and Isoprene Metabolism Pathway in Eucommia ulmoides Oliv
by Wenqin Yao and Degang Zhao
Horticulturae 2023, 9(12), 1298; https://doi.org/10.3390/horticulturae9121298 - 1 Dec 2023
Viewed by 1631
Abstract
This study aimed to explore the influence of temperature on the growth and isoprene metabolism pathways of Eucommia ulmoides seedlings. Growth indices and levels of rubber and total triterpenoids in leaves were assessed under three temperature treatments: low (15 °C/10 °C), control (25 [...] Read more.
This study aimed to explore the influence of temperature on the growth and isoprene metabolism pathways of Eucommia ulmoides seedlings. Growth indices and levels of rubber and total triterpenoids in leaves were assessed under three temperature treatments: low (15 °C/10 °C), control (25 °C/20 °C), and high (35 °C/30 °C). High-throughput sequencing identified 2309 differentially expressed genes, of which 1608 were upregulated and 701 were downregulated. After 40 days, leaf length, leaf width, and plant height were significantly lower in low- and high-temperature treatments compared with the control. Specific leaf weight was higher in LT-treated leaves. Chlorophyll a and b contents were 1.372 mg.g−1 and 0.594 mg.g−1, respectively, in control leaves, followed by low- and high-temperature treatments. Carotenoid content was the highest in LT treatment. The rubber content of LT and HT groups significantly decreased by 16.5% and 38%, respectively, compared with that of the control group. Total triterpene content was the lowest in control leaves at 1.02%, which was 30% and 20% less than that in low- and high-temperature treatments, respectively. This study provides insights into the efficient cultivation of E. ulmoides and the regulatory network of secondary metabolic pathways. Full article
Show Figures

Figure 1

15 pages, 3663 KiB  
Article
Design and Experimental Study of Key Components of the Samara-Hulling Machine for Eucommia ulmoides Oliver
by Cai-Ning Lan, Xin-Yuan Bi, Hai-Fang Feng, Lin Zhu and Ming-Qiang Zhu
Processes 2023, 11(12), 3276; https://doi.org/10.3390/pr11123276 - 22 Nov 2023
Cited by 1 | Viewed by 1468
Abstract
In this article, a hammer-blade hulling machine for Eucommia ulmoides Oliver that solves the current industry problem of low hulling efficiency and high manual input in EUO samaras is described. Its main working components are a hulling device and a screening device. Discrete [...] Read more.
In this article, a hammer-blade hulling machine for Eucommia ulmoides Oliver that solves the current industry problem of low hulling efficiency and high manual input in EUO samaras is described. Its main working components are a hulling device and a screening device. Discrete element simulation was used to simulate the hulling process of a EUO samara hulling machine, and a EUO samara bond model was used to simulate the crushing process. The optimal parameters of the huller were determined as follows: the spindle speed was 2800 r/min, the hammer length was 70 mm and the other mechanism parameters were determined according to the working processes of components. Before the prototype test, EUO samaras were pretreated via soaking and insolation. The soaking and insolation times were used as the influence factors when carrying out the test. Their effect on hulling efficiency was evaluated by calculating the yield rates of the kernels and shell and the loss rate. The results show that under the optimal pretreatment conditions, the parameters of the huller meet the requirements, and the yield rate of kernels is more than 28%, the yield rate of shells is more than 38%, and the loss rate is less than 7%. The test indexes meet the use requirements and improve the efficiency of the hulling of the EUO samara, which has the advantages of high efficiency and high hulling rates. Full article
Show Figures

Figure 1

16 pages, 2640 KiB  
Article
Calibration and Experiments on the Parameters of the Bonding Particle Model of Eucommia ulmoides Oliver Samara Based on the Discrete Element Method
by Cai-Ning Lan, Zi-Jian Xu, Ming-Qiang Zhu and Lin Zhu
Processes 2023, 11(10), 2971; https://doi.org/10.3390/pr11102971 - 13 Oct 2023
Cited by 3 | Viewed by 1504
Abstract
The calibration of the discrete element model of EUO samara was conducted in response to the lack of discrete element simulation models and parameters in the development of mechanical hulling technology and equipment of EUO samara. The EUO samara was modeled based on [...] Read more.
The calibration of the discrete element model of EUO samara was conducted in response to the lack of discrete element simulation models and parameters in the development of mechanical hulling technology and equipment of EUO samara. The EUO samara was modeled based on the Hertz–Mindlin with bonding model, and its relevant parameters were measured by physical experiments. Among them, maximum shear force was used as the evaluation index, virtual calibration experiments were conducted for the bonding parameters by the single-factor experiments, and the two-level factorial experiment, the steepest climb experiment, and the Box–Behnken response surface experiment were also used. The results showed that the relative error between the simulated and measured maximum shear force is 0.93%; the model and parameter calibration results established by this research can be used for discrete element simulation research, which is of guiding significance for the research and development of hulling equipment of EUO samara. Full article
Show Figures

Graphical abstract

21 pages, 4505 KiB  
Article
Assessment of Carbon Sequestration Capacity of E. ulmoides in Ruyang County and Its Ecological Suitability Zoning Based on Satellite Images of GF-6
by Juan Wang, Xinxin Wei, Shuying Sun, Minhui Li, Tingting Shi and Xiaobo Zhang
Sensors 2023, 23(18), 7895; https://doi.org/10.3390/s23187895 - 15 Sep 2023
Cited by 4 | Viewed by 1846
Abstract
Eucommia ulmoides Oliver. (E. ulmoides) is a species of small tree native to China. It is a valuable medicinal herb that can be used to treat Alzheimer’s disease, diabetes, hypertension, and other diseases. In addition, E. ulmoides is a source of [...] Read more.
Eucommia ulmoides Oliver. (E. ulmoides) is a species of small tree native to China. It is a valuable medicinal herb that can be used to treat Alzheimer’s disease, diabetes, hypertension, and other diseases. In addition, E. ulmoides is a source of rubber. It has both medicinal and ecological value. As ecological problems become increasingly prominent, accurate information on the cultivated area of E. ulmoides is important for understanding the carbon sequestration capacity and ecological suitability zoning of E. ulmoides. In previous tree mapping studies, no studies on the spectral characteristics of E. ulmoides and its remote sensing mapping have been seen. We use Ruyang County, Henan Province, China, as the study area. Firstly, using the 2021 Gao Fen-6 (GF-6) Wide Field of View (WFV) time series images covering the different growth stages of E. ulmoides based on the participation of red-edge bands, several band combination schemes were constructed. The optimal time window to identify E. ulmoides was selected by calculating the separability of E. ulmoides from other land cover types for different schemes. Secondly, a random forest algorithm based on several band combination schemes was investigated to map the E. ulmoides planting areas in Ruyang County. Thirdly, the annual NPP values of E. ulmoides were estimated using an improved Carnegie Ames Stanford Approach (CASA) to a light energy utilization model, which, in turn, was used to assess the carbon sequestration capacity. Finally, the ecologically suitable distribution zone of E. ulmoides under near current and future (2041–2060) climatic conditions was predicted using the MaxEnt model. The results showed that the participation of the red-edge band of the GF-6 data in the classification could effectively improve the recognition accuracy of E. ulmoides, making its overall accuracy reach 96.62%; the high NPP value of E. ulmoides was mainly concentrated in the south of Ruyang County, with a total annual carbon sequestration of 540.104835 t CM−2·a−1. The ecological suitability zone of E. ulmoides can be divided into four classes: unsuitable area, low suitable area, medium suitable area, and high suitable area. The method proposed in this paper applies to the real-time monitoring of E. ulmoides, highlighting its potential ecological value and providing theoretical reference and data support for the reasonable layout of E. ulmoides. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop