Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (978)

Search Parameters:
Keywords = Escherichia coli K-12

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3027 KiB  
Article
Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy
by Maria Cristina Rapi, Joel Filipe, Laura Filippone Pavesi, Stefano Raimondi, Maria Filippa Addis, Maria Pia Franciosini and Guido Grilli
Animals 2025, 15(15), 2289; https://doi.org/10.3390/ani15152289 - 5 Aug 2025
Abstract
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died [...] Read more.
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died at the Wildlife Rescue Center in Vanzago, Lombardy, in 2024. Cloacal swabs were collected from 112 birds representing various ecological categories. A total of 157 Gram-negative bacteria were isolated and identified, including clinically relevant genera and species, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Salmonella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrobial susceptibility testing revealed resistance to first-line and critically important antimicrobials, including those exclusively authorized for human use. Notably, a phenotype compatible with Extended-Spectrum Beta-Lactamase (ESBL) production was detected in four out of ten (40%) K. pneumoniae isolates. In addition, 20 out of the 157 (12.7%) isolated bacteria phenotypically exhibited a resistance profile indicative of AmpC beta-lactamase (AmpC) production, including Enterobacter spp. and P. aeruginosa. Resistance patterns were particularly interesting in birds with carnivorous, scavenging, or migratory-associated behaviors. These findings highlight the role of wild birds in the ecology and dissemination of antimicrobial-resistant bacteria (ARB) and highlight the need for wildlife-based AMR monitoring programs as part of a One Health approach. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand
by Ratchadaporn Ungcharoen, Jindanoot Ponyon, Rapeepan Yongyod and Anusak Kerdsin
Antibiotics 2025, 14(8), 790; https://doi.org/10.3390/antibiotics14080790 - 4 Aug 2025
Viewed by 205
Abstract
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing [...] Read more.
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing to the MDR characteristics of E. coli and K. pneumoniae isolated in a community hospital in northeastern Thailand. Methods: This case–control study utilized retrospective data from bacterial culture, as well as demographic, clinical, and antibiotic susceptibility records collected during 5 years (January 2016–December 2020). E. coli and K. pneumoniae isolates were analyzed from various clinical samples, including blood, urine, pus, sputum, and other body fluids. Data were analyzed using descriptive statistics and univariate logistic regression. Results: In total, 660 clinical isolates were analyzed (421 E. coli and 239 K. pneumoniae). Blood was the most common source of the detection of E. coli (63.0%) and sputum was the most common source of K. pneumoniae (51.0%). The median ages of patients were 67 and 63 years for E. coli and K. pneumoniae, respectively. E. coli cases were significantly associated with prior antibiotic use (OR = 1.79, 95% CI: 1.17–2.74 p = 0.008). MDR was observed in 50.1% of E. coli and 29.7% of K. pneumoniae (p < 0.001). E. coli compared to K. pneumoniae had lower resistance to third-gen cephalosporins (64.9% versus 95.8%) and carbapenems (8.0% versus 6.9%). ICU admission was the only factor significantly associated with MDR E. coli (OR = 2.40, 95% CI: 1.11–5.20 p = 0.026). No significant differences were observed in gender, age, or comorbidities between MDR cases. Antibiotic usage patterns also differed, with E. coli more likely to receive third-gen cephalosporins compared to carbapenems (OR = 3.02, 95% CI:1.18–7.74 p = 0.021). Conclusions: The use of third-generation cephalosporin may drive MDR E. coli more than K. pneumoniae. Prior antibiotic exposure was linked to E. coli bloodstream infections, while MDR E. coli showed greater clinical severity. These findings highlighted the need for improved antibiotic stewardship in rural hospitals. Full article
16 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Viewed by 254
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

20 pages, 2552 KiB  
Article
Environmental Dispersion of Multiresistant Enterobacteriaceae in Aquatic Ecosystems in an Area of Spain with a High Density of Pig Farming
by Javier Díez de los Ríos, Noemí Párraga-Niño, María Navarro, Judit Serra-Pladevall, Anna Vilamala, Elisenda Arqué, María Baldà, Tamar Nerea Blanco, Luisa Pedro-Botet, Óscar Mascaró and Esteban Reynaga
Antibiotics 2025, 14(8), 753; https://doi.org/10.3390/antibiotics14080753 - 25 Jul 2025
Viewed by 301
Abstract
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing [...] Read more.
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from environmental and human sources. Methods: A total of 62 samples were collected from the influent and effluent of 31 WWTPs and 29 river water samples from 11 sites. Simultaneously, 382 hospitalized patients were screened for MDR Enterobacteriaceae using rectal swabs. All isolates underwent antibiotic susceptibility testing and whole-genome sequencing. Results: MDR Enterobacteriaceae were detected in 48.4% of WWTP samples, with 18.5% ESBL-producing E. coli and 1.5% (one sample) OXA-48-producing K. pneumoniae in influents, and 12.8% ESBL-producing E. coli in effluents. In river waters, 5.6% of samples contained ESBL-producing E. coli and 1.4% (1 sample) contained VIM-producing Enterobacter cloacae complex strains. Among patients, 10.2% (39/382) carried MDR Gram-negative bacilli, of which 66.7% were ESBL-producing E. coli. In aquatic ecosystems E. coli ST131 (13.3%) and ST162 (13.3%) were the most common strains, while in humans the common were E. coli ST131 (33.3%), ST69 (11.1%) and ST410 (7.4%) in humans. The most frequent environmental antibiotic resistance genes (ARG) were blaCTX-M-15 (24%) and blaTEM-1B (20%), while the most common ARGs were blaTEM-1B (20.4%), blaCTX-M15 (18.4%) and blaCTX-M-27 (14.3%). IncF plasmids were predominant in environmental and human strains. Conclusions: ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae are present in aquatic environments in the region. Phylogenetic similarities between environmental and clinical strains suggest a possible similar origin. Further studies are necessary to clarify transmission routes and environmental impact. Full article
(This article belongs to the Special Issue A One Health Approach to Antimicrobial Resistance, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 6271 KiB  
Article
Intestinal Alkaline Phosphatase Expression in Response to Escherichia coli Infection in Nursery Pigs
by Sireethon Maksin, Attapon Kamlangdee, Alongkot Boonsoongnern and Prapassorn Boonsoongnern
Animals 2025, 15(15), 2179; https://doi.org/10.3390/ani15152179 - 24 Jul 2025
Viewed by 247
Abstract
Intestinal alkaline phosphatase (IAP) is a brush border enzyme secreted by enterocytes, playing a crucial role in maintaining gut mucosal defense. This study investigated the expression dynamics of IAP in the small intestine of pigs challenged with Escherichia coli (E. coli) K88, compared [...] Read more.
Intestinal alkaline phosphatase (IAP) is a brush border enzyme secreted by enterocytes, playing a crucial role in maintaining gut mucosal defense. This study investigated the expression dynamics of IAP in the small intestine of pigs challenged with Escherichia coli (E. coli) K88, compared to healthy controls. Five-week-old pigs (n = 8) were orally administered E. coli K88 at a concentration of 2 × 108 CFU/mL, with a dose of 2 mL per pig at 0 and 24 h. Five days post-challenge, tissue samples from the duodenum, jejunum, and ileum were collected for mucosal morphometric analysis and evaluation of IAP expression via immunohistochemistry, Western blotting, and real-time PCR. The results revealed the presence of IAP on the apical surface of villi throughout the small intestine, along with significantly upregulated IAP expression in E. coli-challenged pigs compared to controls. These findings suggest that Gram-negative bacteria such as E. coli can induce IAP expression, likely through lipopolysaccharide (LPS) stimulation, thereby enhancing its enzymatic activity as part of the intestinal defense mechanism. This study provides insight into the protective role of IAP and highlights its potential as a biomarker for assessing gut health and diagnosing enteric infections in animals. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

9 pages, 234 KiB  
Article
Should Cefoxitin Non-Susceptibility in Ceftriaxone-Susceptible E. coli and K. pneumoniae Prompt Concerns Regarding Plasmid-Mediated AmpC Resistance? A Genomic Characterization and Summary of Treatment Challenges in Singapore
by Jonathan Jinpeng Foo, Ying Ying Ong, Clement Kin Ming Tsui, David C. Lye, De Partha Pratim, Nurhidayah Binte Mohamed Yazid, Swaine L. Chen, Shawn Vasoo and Tat Ming Ng
Antibiotics 2025, 14(7), 722; https://doi.org/10.3390/antibiotics14070722 - 18 Jul 2025
Viewed by 404
Abstract
Objectives: Plasmid-mediated AmpC beta-lactamases represent a growing clinical concern in Enterobacterales, with challenges in diagnostic approaches, limited data on clinical outcomes, and our incomplete understanding of their regulatory mechanisms warranting the need for further investigation. Methods: This retrospective study examined the genomic [...] Read more.
Objectives: Plasmid-mediated AmpC beta-lactamases represent a growing clinical concern in Enterobacterales, with challenges in diagnostic approaches, limited data on clinical outcomes, and our incomplete understanding of their regulatory mechanisms warranting the need for further investigation. Methods: This retrospective study examined the genomic and clinical characteristics of cefoxitin-non-susceptible, ceftriaxone-susceptible Escherichia coli and Klebsiella pneumoniae bloodstream isolates collected from a tertiary hospital in Singapore. Whole-genome sequencing was performed to detect ampC genes, subtypes, and associated regulatory elements. Results: Among 108 cefoxitin-non-susceptible isolates, only 15 (13.9%) harboured plasmid-mediated ampC, suggesting that cefoxitin non-susceptibility alone in ceftriaxone susceptible isolates was not predictive of ampC carriage. All plasmid-ampC isolates were from the blaDHA-1 subtype and carried ampR, a known transcriptional regulator of inducible beta-lactamase expression. Notably, five non-ampC carrying Klebsiella isolates displayed truncations in ompK35 and ompK36, which could potentially contribute to reduced cefoxitin susceptibility via porin loss. Conclusions: These findings underscore the limited diagnostic utility of cefoxitin susceptibility testing for detecting plasmid-mediated ampC producers and highlight the clinical relevance of regulatory genes such as ampR in mediating inducible resistance. The routine incorporation of molecular diagnostics or genome sequencing may be necessary to improve detection accuracy and inform antimicrobial stewardship strategies. Full article
20 pages, 489 KiB  
Article
Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective
by Jessica Ribeiro, Vanessa Silva, Catarina Freitas, Pedro Pinto, Madalena Vieira-Pinto, Rita Batista, Alexandra Nunes, João Paulo Gomes, José Eduardo Pereira, Gilberto Igrejas, Lillian Barros, Sandrina A. Heleno, Filipa S. Reis and Patrícia Poeta
Vet. Sci. 2025, 12(7), 675; https://doi.org/10.3390/vetsci12070675 - 17 Jul 2025
Viewed by 415
Abstract
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic [...] Read more.
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic analysis revealed a diverse population spanning 15 sequence types, including ST155, ST201, and ST58. Resistance to tetracycline and ciprofloxacin was common, and several isolates carried genes encoding β-lactamases, including blaTEM-1B. Chromosomal mutations associated with quinolone and fosfomycin resistance (e.g., gyrA p.S83L, glpT_E448K) were also identified. WGS revealed a high number of virulence-associated genes per isolate (58–96), notably those linked to adhesion (fim, ecp clusters), secretion systems (T6SS), and iron acquisition (ent, fep, fes), suggesting strong pathogenic potential. Many isolates harbored virulence markers typical of ExPEC/APEC, such as iss, ompT, and traT, even in the absence of multidrug resistance. Our findings suggest that E. coli from sternal bursitis may act as reservoirs of resistance and virulence traits relevant to animal and public health. This highlights the need for including such lesions in genomic surveillance programs and reinforces the importance of integrated One Health approaches. Full article
Show Figures

Graphical abstract

19 pages, 6391 KiB  
Article
Assessing Antibacterial Properties of Copper Oxide Nanomaterials on Gut-Relevant Bacteria In Vitro: A Multifaceted Approach
by Tia A. Wardlaw, Abdulkader Masri, David M. Brown and Helinor J. Johnston
Nanomaterials 2025, 15(14), 1103; https://doi.org/10.3390/nano15141103 - 16 Jul 2025
Viewed by 428
Abstract
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs [...] Read more.
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs on gut-relevant, commensal bacteria has been neglected, with studies predominantly assessing NM toxicity against pathogenic bacteria. The current study investigates the antibacterial activity of copper oxide (CuO) NMs to Escherichia coli K12, Enterococcus faecalis, and Lactobacillus casei using a combination of approaches and evaluates the importance of reactive oxygen species (ROS) production as a mechanism of toxicity. The impact of CuO NMs (100, 200, and 300 μg/mL) on the growth and viability of bacterial strains was assessed via plate counts, optical density (OD) measurements, well and disc diffusion assays, and live/dead fluorescent imaging. CuO NMs reduced the viability of all bacteria in a concentration-dependent manner in all assays except the diffusion assays. The most sensitive methods were OD measurements and plate counts. The sensitivity of bacterial strains varied depending on the method, but overall, the results suggest that E. coli K12 is the most sensitive to CuO NM toxicity. The production of ROS by all bacterial strains was observed via DCFH-DA fluorescent imaging following exposure to CuO NMs (300 μg/mL). Overall, the data suggests that CuO NMs have antibacterial activity against gut-relevant bacteria, with evidence that NM-mediated ROS production may contribute to reductions in bacterial viability. Our findings suggest that the use of a combination of assays provides a robust assessment of the antibacterial properties of ingested NMs, and in particular, it is recommended that plate counts and OD measurements be prioritised in the future when screening the antibacterial properties of NMs. Full article
Show Figures

Graphical abstract

30 pages, 7551 KiB  
Article
Receptor-Mediated Internalization of L-Asparaginase into Tumor Cells Is Suppressed by Polyamines
by Igor D. Zlotnikov, Alexander A. Ezhov and Elena V. Kudryashova
Int. J. Mol. Sci. 2025, 26(14), 6749; https://doi.org/10.3390/ijms26146749 - 14 Jul 2025
Viewed by 357
Abstract
L-asparaginase (L-ASNase) remains a vital chemotherapeutic agent for acute lymphoblastic leukemia (ALL), primarily due to its mechanism of depleting circulating asparagine essential for leukemic cell proliferation. However, existing ASNases (including pegylated ones) face limitations including immunogenicity, rapid clearance, and off-target toxicities. Earlier, we [...] Read more.
L-asparaginase (L-ASNase) remains a vital chemotherapeutic agent for acute lymphoblastic leukemia (ALL), primarily due to its mechanism of depleting circulating asparagine essential for leukemic cell proliferation. However, existing ASNases (including pegylated ones) face limitations including immunogenicity, rapid clearance, and off-target toxicities. Earlier, we have shown that the conjugation of L-ASNase with the polyamines and their copolymers results in significant enhancement of the antiproliferative activity due to accumulation in tumor cells. We suggested that this effect is probably mediated by polyamine transport system (PTS) receptors that are overexpressed in ALL cells. Here, we investigated the effect of competitive inhibitors of PTS receptors to the L-ASNase interaction with cancer cells (L5178Y, K562 and A549). L-ASNase from Rhodospirillum rubrum (RrA), Erwinia carotovora (EwA), and Escherichia coli (EcA) were conjugated with natural polyamines (spermine—spm, spermidine—spd, putrescine—put) and a synthetic branched polymer, polyethyleneimine 2 kDa (PEI2 ), using carbodiimide chemistry. Polyamine conjugation with L-ASNase significantly increased enzyme binding and cellular uptake, as quantified by fluorimetry and confocal microscopy. This increased cellular uptake translated into increased cytotoxicity of L-ASNase conjugates. The presence of competitive ligands to PTS receptors decreased the uptake of polyamine-conjugated enzymes-fatty acid derivatives of polyamines produced the strongest suppression. Simultaneously with this suppression, in some cases, competitive ligands to PTS significantly promoted the uptake of the native unconjugated enzymes, “equalizing” the cellular access for native vs conjugated ASNase. The screening for competing inhibitors of PTS receptor-mediated endocytosis revealed spermine and caproate/lipoate derivatives as the most potent inhibitors or antagonists, significantly reducing the cytostatic efficacy of polyamine-conjugated ASNases. The results obtained emphasize the complex, cell-type-dependent and inhibitor-specific nature of these interactions, which highlights the profound involvement of PTS in L-ASNase internalization and cytotoxic activity. These findings support the viability of polyamine conjugation as a strategy to enhance L-ASNase delivery and therapeutic efficacy by targeting the PTS. Full article
Show Figures

Graphical abstract

21 pages, 1308 KiB  
Article
Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics
by Alexander Tristancho-Baró, Ana Isabel López-Calleja, Ana Milagro, Mónica Ariza, Víctor Viñeta, Blanca Fortuño, Concepción López, Miriam Latorre-Millán, Laura Clusa, David Badenas-Alzugaray, Rosa Martínez, Carmen Torres and Antonio Rezusta
Antibiotics 2025, 14(7), 703; https://doi.org/10.3390/antibiotics14070703 - 12 Jul 2025
Viewed by 398
Abstract
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims [...] Read more.
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims to investigate the genomic determinants associated with cefiderocol resistance in CPE isolates of human origin. Methods: Comparative genomic analyses were conducted between cefiderocol-susceptible and -resistant CPE isolates recovered from human clinical and epidemiological samples at a tertiary care hospital. Whole-genome sequencing, variant annotation, structural modelling, and pangenome analysis were performed to characterize resistance mechanisms. Results: A total of 59 isolates (29 resistant and 30 susceptible) were analyzed, predominantly comprising Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae. The most frequent carbapenemase gene among the resistant isolates was blaNDM, which was also present in a subset of susceptible strains. The resistant isolates exhibited a significantly higher burden of non-synonymous mutations in their siderophore receptor genes, notably within fecR, fecA, fiu, and cirA. Structural modelling predicted deleterious effects for mutations such as fecR:G104S and fecA:A190T. Additionally, porin loss and loop 3 insertions (e.g., GD/TD) in OmpK36, as well as OmpK35 truncations, were more frequent in the resistant isolates, particularly in high-risk clones such as ST395 and ST512. Genes associated with toxin–antitoxin systems (chpB2, pemI) and a hypothetical metalloprotease (group_2577) were uniquely found in the resistant group. Conclusions: Cefiderocol resistance in CPE appears to be multifactorial. NDM-type metallo-β-lactamases and missense mutations in siderophore uptake systems—especially in those encoded by fec, fhu, and cir operons—play a central role. These may be further potentiated by alterations in membrane permeability, such as porin disruption and efflux deregulation. The integration of genomic and structural approaches provides valuable insights into emerging resistance mechanisms and may support the development of diagnostic tools and therapeutic strategies. Full article
Show Figures

Graphical abstract

13 pages, 1764 KiB  
Article
Surface Display of Avian H5 and H9 Hemagglutinin Antigens on Non-Genetically Modified Lactobacillus Cells for Bivalent Oral AIV Vaccine Development
by Fuyi Liu, Jingbo Chang, Jingqi Huang, Yuping Liao, Xiaonan Deng, Tingting Guo, Jian Kong and Wentao Kong
Microorganisms 2025, 13(7), 1649; https://doi.org/10.3390/microorganisms13071649 - 11 Jul 2025
Viewed by 360
Abstract
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus [...] Read more.
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus K313, expressed in Escherichia coli, and purified. Wild-type Lactobacillus johnsonii H31, isolated from chicken intestine, served as a delivery vehicle by adsorbing and stably displaying the HA1 proteins on its surface. This approach eliminates the need for bacterial engineering while utilizing lactobacilli’s natural capacity to protect surface-displayed antigens, as evidenced by HA1’s protease resistance. Mouse immunization studies demonstrated induction of strong systemic IgG and mucosal IgA responses against both H5N1 and H9N2 HA1. The system offers several advantages, including safety through non-GMO probiotics, potential for multivalent vaccine expansion, and intrinsic antigen protection by lactobacilli. These findings suggest this platform could enable development of cost-effective, multivalent AIV vaccines. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

22 pages, 2242 KiB  
Article
Quercetin Can Alleviate ETECK88-Induced Oxidative Stress in Weaned Piglets by Inhibiting Quorum-Sensing Signal Molecule Autoinducer-2 Production in the Cecum
by Hailiang Wang, Min Yao, Dan Wang, Mingyang Geng, Shanshan Nan, Xiangjian Peng, Yuyang Xue, Wenju Zhang and Cunxi Nie
Antioxidants 2025, 14(7), 852; https://doi.org/10.3390/antiox14070852 - 11 Jul 2025
Viewed by 452
Abstract
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The [...] Read more.
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The piglets were fed one of three diets: the basal diet (Con), ETEC challenge (K88) after the basal diet, or ETEC challenge (quercetin + K88) after the basal diet supplemented with 0.2% quercetin. In vitro experiments revealed that 5 mg/mL quercetin exhibited the strongest QS inhibitory activity and reduced pigment production by Chromobacterium violaceum ATCC12472 by 67.70%. In vivo experiments revealed that quercetin + K88 significantly increased immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) levels in the serum, ileum mucosa, and colon mucosa; increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) levels in the serum, liver, and colon mucosa; and decreased cluster of differentiation 3 (CD3) and cluster of differentiation 8 (CD8)activity in the serum compared with K88 alone. Quercetin + K88 significantly alleviated pathological damage to the liver and spleen and upregulated antioxidant genes (nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1(HO-1), CAT, SOD, and glutathione s-transferase (GST)). Inducible nitric oxide synthase (iNOS) and kelch-like ech-associated protein 1 (Keap1), which cause oxidative damage to the liver and spleen, were significantly downregulated. The acetic acid content in the cecum was significantly increased, and the E. coli count and QS signal molecule autoinducer-2 (AI-2) yield were significantly reduced. In conclusion, 0.2% dietary quercetin can alleviate ETEC-induced inflammation and oxidative stress in weaned piglets. Full article
Show Figures

Figure 1

17 pages, 3020 KiB  
Article
Improving Cofactor Promiscuity of HMG-CoA Reductase from Ruegeria pomeroyi Through Rational Design
by Haizhao Xue, Yanzhe Huang, Aabid Manzoor Shah, Xueying Wang, Yinghan Hu, Lingyun Zhang and Zongbao K. Zhao
Biomolecules 2025, 15(7), 976; https://doi.org/10.3390/biom15070976 - 7 Jul 2025
Viewed by 394
Abstract
The mevalonate pathway is crucial for synthesizing isopentenyl pyrophosphate (IPP), the universal precursor of terpenoids, with 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) serving as the rate-determining enzyme that catalyzes the reduction of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonate, requiring NAD(P)H as an electron donor. Improving the cofactor promiscuity [...] Read more.
The mevalonate pathway is crucial for synthesizing isopentenyl pyrophosphate (IPP), the universal precursor of terpenoids, with 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) serving as the rate-determining enzyme that catalyzes the reduction of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonate, requiring NAD(P)H as an electron donor. Improving the cofactor promiscuity of HMGR can facilitate substrate utilization and terpenoid production by overcoming cofactor specificity limitations. In this study, we heterologously expressed rpHMGR from Ruegeria pomeroyi in Escherichia coli BL21(DE3) for the first time and established that it predominantly utilizes NADH. To broaden its cofactor usage, we employed Molecular Operating Environment (MOE)-assisted design to engineer the cofactor binding site, creating a dual-cofactor-utilizing mutant, D154K (the substitution of aspartic acid with lysine at residue 154). This mutant exhibited a significant 53.7-fold increase in activity toward NADPH, without compromising protein stability at physiological temperatures. The D154K mutant displayed an optimal pH of 6, maintaining over 80% of its catalytic activity across the pH range of 6–8, regardless of whether NADH or NADPH was the cofactor. These findings highlight the value of rational design, enhance our understanding of HMGR-cofactor recognition mechanisms, and provide a foundation for future efforts to optimize and engineer HMGR for broader cofactor flexibility. Full article
Show Figures

Figure 1

25 pages, 9347 KiB  
Article
Phylogroup Homeostasis of Escherichia coli in the Human Gut Reflects the Physiological State of the Host
by Maria S. Frolova, Sergey S. Kiselev, Valery V. Panyukov and Olga N. Ozoline
Microorganisms 2025, 13(7), 1584; https://doi.org/10.3390/microorganisms13071584 - 4 Jul 2025
Viewed by 318
Abstract
The advent of alignment-free k-mer barcoding has revolutionized taxonomic analysis, enabling bacterial identification at phylogroup resolution within natural communities. We applied this approach to characterize Escherichia coli intraspecific diversity in human gut microbiomes using publicly available datasets representing diverse human physiological states. [...] Read more.
The advent of alignment-free k-mer barcoding has revolutionized taxonomic analysis, enabling bacterial identification at phylogroup resolution within natural communities. We applied this approach to characterize Escherichia coli intraspecific diversity in human gut microbiomes using publicly available datasets representing diverse human physiological states. By estimating the relative abundance of eight E. coli phylogroups defined by their 18-mer markers in 558 fecal samples, we compared their distribution between gut microbiomes of healthy individuals, patients with chronic bowel diseases and volunteers subjected to various external interventions. Across all datasets, phylogroups exhibited bidirectional abundance shifts in response to host physiological changes, indicating an inherent bimodality in their adaptive strategies. Correlation analysis of phylogroup persistence revealed positive intraspecific connectivity networks and dependence of their patterns on both acute interventions like antibiotic or probiotic treatment and chronic bowel disorders. Along with predominantly negative correlations with Bacteroides, we observed a transition from positive to negative associations with Prevotella in Prevotella-rich microbiomes. Several interspecific correlations individually established by E. coli phylogroups with dominant taxa suggest their potential role in shaping intraspecific networks. Machine learning techniques statistically confirmed an ability of phylogroup patterns to discriminate the physiological state of the host and virtual diagnostic assays opened a way to optimize intraspecific phylotyping for medical applications. Full article
Show Figures

Figure 1

15 pages, 495 KiB  
Article
Comprehensive Analysis of Etiological Agents and Drug Resistance Patterns in Ventilator-Associated Pneumonia
by Harendra K. Thakur, Bansidhar Tarai, Aradhana Bhargava, Pankaj Soni, Anup Kumar Ojha, Sudhakar Kancharla, Prachetha Kolli, Gowtham Mandadapu and Manoj Kumar Jena
Microbiol. Res. 2025, 16(7), 152; https://doi.org/10.3390/microbiolres16070152 - 4 Jul 2025
Viewed by 364
Abstract
Ventilator-associated pneumonia (VAP) develops in patients who stay on mechanical ventilation for more than 48 h. In the presence of causative pathogens, the patient develops clinical signs such as purulent tracheal discharge, fever, and respiratory distress. A prospective observational study was carried out [...] Read more.
Ventilator-associated pneumonia (VAP) develops in patients who stay on mechanical ventilation for more than 48 h. In the presence of causative pathogens, the patient develops clinical signs such as purulent tracheal discharge, fever, and respiratory distress. A prospective observational study was carried out in the Intensive Care Unit (ICU) of Max Healthcare Centre, New Delhi, from 2020 to 2023. The study comprised 70 samples from patients diagnosed with VAP. This study thoroughly examined VAP-associated microorganisms and resistance in the hospital ICU. Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa were the most commonly reported pathogens. Significant drug resistance was seen in P. aeruginosa, K. pneumoniae, A. baumannii and Staphylococcus aureus. The heatmap also supported the antibiotic resistance data patterns obtained from conventional and automated systems of determination. Notably, Serratia marcescens, Escherichia coli, Klebsiella pneumoniae, Ralstonia insidiosa, and Ralstonia mannitolilytica, showed 60 to 100% of resistance to a number of antibiotics. Among all VAP patients, 31.42% early-onset and 68.57% late-onset VAP cases were detected. Out of 70 patients, 43 patients died (mortality rate 61.4%); majority of them suffered from late-onset VAP. The study goal was to describe the antibiotic resistance patterns and microbial ecology of the pathogens that were isolated from VAP patients. According to the heatmap analysis, a varied VAP microbiome with high prevalences of MDR in A. baumannii, P. aeruginosa, K. pneumoniae, and S. aureus was identified. To address the increasing prevalence of MDR VAP, the study highlights the critical need for improved VAP monitoring, strong infection control, and appropriate antibiotic usage. Full article
Show Figures

Figure 1

Back to TopTop