Should Cefoxitin Non-Susceptibility in Ceftriaxone-Susceptible E. coli and K. pneumoniae Prompt Concerns Regarding Plasmid-Mediated AmpC Resistance? A Genomic Characterization and Summary of Treatment Challenges in Singapore
Abstract
1. Introduction
2. Results
2.1. Antimicrobial Susceptibility Testing and Bioinformatics Analysis
2.2. Clinical Characteristics of Patients with Cefoxitin-Non-Susceptible K. pneumoniae and E. coli Isolates
3. Discussion
4. Materials and Methods
4.1. Antimicrobial Susceptibility Testing
4.2. DNA Extraction and Library Preparation
4.3. Bioinformatics Analysis
4.4. Data Collection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamma, P.D.; Doi, Y.; Bonomo, R.A.; Johnson, J.K.; Simner, P.J. Antibacterial Resistance Leadership Group. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 69, 1446–1455. [Google Scholar] [CrossRef]
- Mora-Ochomogo, M.; Lohans, C.T. β-Lactam antibiotic targets and resistance mechanisms: From covalent inhibitors to substrates. RSC Med. Chem. 2021, 12, 1623–1639. [Google Scholar] [CrossRef]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Joo, Y.M.; Chae, M.K.; Hwang, S.Y.; Jin, S.-C.; Lee, T.R.; Cha, W.C.; Jo, I.J.; Sim, M.S.; Song, K.J.; Jeong, Y.K.; et al. Impact of timely antibiotic administration on outcomes in patients with severe sepsis and septic shock in the emergency department. Clin. Exp. Emerg. Med. 2014, 1, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Meini, S.; Tascini, C.; Cei, M.; Sozio, E.; Rossolini, G.M. AmpC β-lactamase-producing Enterobacterales: What a clinician should know. Infection 2019, 47, 363–375. [Google Scholar] [CrossRef]
- Philippon, A.; Arlet, G.; Jacoby, G.A. Plasmid-Determined AmpC-Type β-Lactamases. Antimicrob. Agents Chemother. 2002, 46, 1–11. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Hanson, N.D. AmpC β-lactamases: What do we need to know for the future? J. Antimicrob. Chemother. 2003, 52, 2–4. [Google Scholar] [CrossRef]
- Roberts, T.; Ling, C.L.; Watthanaworawit, W.; Cheav, C.; Sengduangphachanh, A.; Silisouk, J.; Hopkins, J.; Phommasone, K.; Batty, E.M.; Turner, P.; et al. AmpC β-lactamases detected in Southeast Asian Escherichia coli and Klebsiella pneumoniae. JAC-Antimicrob Resist. 2024, 6, dlae195. [Google Scholar] [CrossRef]
- Polsfuss, S.; Bloemberg, G.V.; Giger, J.; Meyer, V.; Böttger, E.C.; Hombach, M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J. Clin. Microbiol. 2011, 49, 2798–2803. [Google Scholar] [CrossRef]
- Tsai, Y.-K.; Fung, C.-P.; Lin, J.-C.; Chen, J.-H.; Chang, F.-Y.; Chen, T.-L.; Siu, L.-K. Klebsiella pneumoniae Outer Membrane Porins OmpK35 and OmpK36 Play Roles in both Antimicrobial Resistance and Virulence. Antimicrob. Agents Chemother. 2011, 55, 1485–1493. [Google Scholar] [CrossRef]
- Vadlamani, G.; Thomas, M.D.; Patel, T.R.; Donald, L.J.; Reeve, T.M.; Stetefeld, J.; Standing, K.G.; Vocadlo, D.J.; Mark, B.L. The β-Lactamase Gene Regulator AmpR Is a Tetramer That Recognizes and Binds the d-Ala-d-Ala Motif of Its Repressor UDP-N-acetylmuramic Acid (MurNAc)-pentapeptide. J. Biol. Chem. 2015, 290, 2630–2643. [Google Scholar] [CrossRef]
- Barnaud, G.; Arlet, G.; Verdet, C.; Gaillot, O.; Lagrange, P.H.; Philippon, A. Salmonella enteritidis: AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob. Agents Chemother. 1998, 42, 2352–2358. [Google Scholar] [CrossRef]
- Fortineau, N.; Poirel, L.; Nordmann, P. Plasmid-mediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. J. Antimicrob. Chemother. 2001, 47, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Giakkoupi, P.; Tambic-Andrasevic, A.; Vourli, S.; Skrlin, J.; Sestan-Crnek, S.; Tzouvelekis, L.S.; Vatopoulos, A.C. Transferable DHA-1 cephalosporinase in Escherichia coli. Int. J. Antimicrob. Agents. 2006, 27, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Akata, K.; Muratani, T.; Yatera, K.; Naito, K.; Noguchi, S.; Yamasaki, K.; Kawanami, T.; Kido, T.; Mukae, H. Induction of plasmid-mediated AmpC β-lactamase DHA-1 by piperacillin/tazobactam and other β-lactams in Enterobacteriaceae. PLoS ONE 2019, 14, e0218589. [Google Scholar] [CrossRef]
- Honoré, N.; Nicolas, M.H.; Cole, S.T. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 1986, 5, 3709–3714. [Google Scholar] [CrossRef]
- Barceló, I.M.; Escobar-Salom, M.; Cabot, G.; Perelló-Bauzà, P.; Jordana-Lluch, E.; Taltavull, B.; Torrens, G.; Rojo-Molinero, E.; Zamorano, L.; Pérez, A.; et al. Transferable AmpCs in Klebsiella pneumoniae: Interplay with peptidoglycan recycling, mechanisms of hyperproduction, and virulence implications. Antimicrob. Agents Chemother. 2024, 68, e0131523. [Google Scholar] [CrossRef]
- M100 Ed35; Performance Standards for Antimicrobial Susceptibility Testing. 35th Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 28 February 2025).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinforma Oxf. Engl. 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483. [Google Scholar] [CrossRef]
- Wyres, K.L.; Nguyen, T.N.T.; Lam, M.M.C.; Judd, L.M.; Chau Nvan, V.; Dance, D.A.B.; Ip, M.; Karkey, A.; Ling, C.L.; Miliya, T.; et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 2020, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
Isolate | Species | ST | ampC Gene Subtype | ampD | ampG | ampR | Other Resistance Genes |
---|---|---|---|---|---|---|---|
GASREC26 | E. coli | 95 | DHA-1 | yes | yes | yes | EC-5, TEM-1 |
GASREC31 | E. coli | 345 | DHA-1 | yes | yes | yes | EC-18, TEM-1, mcr-3 |
GASREC40 | E. coli | 38 | DHA-1 | yes | yes | yes | EC-8, TEM-1 |
GASREC81 | E. coli | 155 | DHA-1 | yes | yes | yes | EC-18 |
GASREC124 | E. coli | 69 | DHA-1 | yes | yes | yes | EC-8 |
GASREC08 | K. pneumoniae | 4218 | DHA-1 | yes | yes | yes | OKP-B-2 |
GASREC14 | K. pneumoniae | 15 | DHA-1 | no | no | yes | OXA-1, SHV-28 |
GASREC18 | K. pneumoniae | 11 | DHA-1 | no | no | yes | OXA-1 |
GASREC21 | K. pneumoniae | 15 | DHA-1 | no | no | yes | OXA-1, SHV-28 |
GASREC28 | K. pneumoniae | 611 | DHA-1 | no | no | yes | SHV-27 |
GASREC34 | K. pneumoniae | 37 | DHA-1 | no | no | yes | OXA-1, SHV-11 |
GASREC75 | K. pneumoniae | 20 | DHA-1 | no | no | yes | SHV-187 |
GASREC86 | K. pneumoniae | 3415 | DHA-1 | no | no | yes | SHV-61, TEM-1 |
GASREC100 | K. pneumoniae | 218 | DHA-1 | no | no | yes | SHV-1 |
GASREC115 | K. pneumoniae | 15 | DHA-1 | no | no | yes | OXA-1, SHV-28 |
Characteristic, (%) Unless Otherwise Stated | Total (n = 108) | DHA-1 (n = 15) | Non-DHA-1 (n = 93) |
---|---|---|---|
Age, median (IQR) | 75 (64–84) | 75 (59.5–84.5) | 75 (65–84) |
Male | 59 (54.6) | 6 (40) | 53 (57) |
Female | 49 (45.4) | 9 (60) | 40 (43) |
Chinese | 87 (80.6) | 12 (80) | 75 (80.6) |
ICU admission | 18 (16.7) | 2 (13.3) | 16 (17.2) |
Charlson’s co-morbidity score, median (IQR) | 5 (4–7) | 5 (2–7) | 5 (4–7) |
Microorganism | |||
Escherichia coli | 57 (52.8) | 5 (33.3) | 52 (55.9) |
Klebsiella pneumoniae | 51 (47.2) | 10 (66.7) | 41 (44.1) |
Source of infection | |||
Urinary | 41 (38) | 4 (26.7) | 37 (39.8) |
Hepatobiliary | 39 (36.1) | 7 (46.7) | 32 (34.4) |
Respiratory | 14 (13) | 1 (6.7) | 13 (14) |
Intra-abdominal | 7 (6.5) | 1 (6.7) | 6 (6.5) |
Intravascular catheter | 1 (0.9) | 0 (0) | 1 (1.1) |
Others | 6 (5.6) | 2 (13.3) | 4 (4.3) |
Place of acquisition | |||
Nosocomial onset | 18 (16.7) | 5 (33.3) | 13 (14) |
Healthcare-associated onset | 41 (38) | 6 (40) | 35 (37.6) |
Community-acquired | 49 (45.4) | 4 (26.7) | 45 (48.4) |
Clinical Outcomes | |||
30-day all-cause mortality | 16 (14.8) | 3 (20) | 13 (14) |
Received active empiric carbapenem | 12 (11.1) | 2 (13.3) | 10 (10.8) |
Received active definitive carbapenem | 24 (22.2) | 3 (20) | 21 (22.6) |
Received active empiric non-carbapenem beta-lactams | 11 (10.2) | 3 (20) | 8 (8.6) |
Received active definitive non-carbapenem beta-lactams | 6 (5.6) | 2 (13.3) | 4 (4.3) |
Active empiric antibiotics used a | |||
Amoxicillin/clavulanic acid | 22 (20.4) | 0 (0) | 22 (23.7) |
Ceftazidime | 1 (0.9) | 0 (0) | 1 (1.1) |
Ceftriaxone | 23 (21.3) | 1 (6.7) | 22 (23.7) |
Cefepime | 4 (3.7) | 0 (0) | 4 (4.3) |
Levofloxacin | 3 (2.8) | 0 (0) | 3 (3.2) |
Ertapenem | 1 (0.9) | 0 (0) | 1 (1.1) |
Meropenem | 11 (10.2) | 2 (13.3) | 9 (9.7) |
Piperacillin-tazobactam | 16 (14.8) | 6 (40) | 10 (10.8) |
Active definitive antibiotics used b | |||
Amikacin | 2 (1.9) | 0 (0) | 2 (2.2) |
Ampicillin | 1 (0.9) | 0 (0) | 1 (1.1) |
Amoxicillin/clavulanic acid | 21 (19.4) | 0 (0) | 21 (22.6) |
Aztreonam | 1 (0.9) | 0 (0) | 1 (1.1) |
Sulfamethoxazole-trimethoprim | 2 (1.9) | 0 (0) | 2 (2.2) |
Cefazolin | 5 (4.6) | 0 (0) | 5 (5.4) |
Ceftriaxone | 36 (33.3) | 9 (60) | 27 (29) |
Ceftazidime | 1 (0.9) | 0 (0) | 1 (1.1) |
Cefepime | 2 (1.9) | 0 (0) | 2 (2.2) |
Ciprofloxacin | 2 (1.9) | 0 (0) | 2 (2.2) |
Levofloxacin | 2 (1.9) | 1 (6.7) | 1 (1.1) |
Ertapenem | 7 (6.5) | 2 (13.3) | 5 (5.4) |
Meropenem | 17 (15.7) | 1 (6.7) | 16 (17.2) |
Piperacillin-tazobactam | 2 (1.9) | 1 (6.7) | 1 (1.1) |
Not applicable * | 6 (5.6) | 1 (6.7) | 5 (5.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foo, J.J.; Ong, Y.Y.; Tsui, C.K.M.; Lye, D.C.; Pratim, D.P.; Binte Mohamed Yazid, N.; Chen, S.L.; Vasoo, S.; Ng, T.M. Should Cefoxitin Non-Susceptibility in Ceftriaxone-Susceptible E. coli and K. pneumoniae Prompt Concerns Regarding Plasmid-Mediated AmpC Resistance? A Genomic Characterization and Summary of Treatment Challenges in Singapore. Antibiotics 2025, 14, 722. https://doi.org/10.3390/antibiotics14070722
Foo JJ, Ong YY, Tsui CKM, Lye DC, Pratim DP, Binte Mohamed Yazid N, Chen SL, Vasoo S, Ng TM. Should Cefoxitin Non-Susceptibility in Ceftriaxone-Susceptible E. coli and K. pneumoniae Prompt Concerns Regarding Plasmid-Mediated AmpC Resistance? A Genomic Characterization and Summary of Treatment Challenges in Singapore. Antibiotics. 2025; 14(7):722. https://doi.org/10.3390/antibiotics14070722
Chicago/Turabian StyleFoo, Jonathan Jinpeng, Ying Ying Ong, Clement Kin Ming Tsui, David C. Lye, De Partha Pratim, Nurhidayah Binte Mohamed Yazid, Swaine L. Chen, Shawn Vasoo, and Tat Ming Ng. 2025. "Should Cefoxitin Non-Susceptibility in Ceftriaxone-Susceptible E. coli and K. pneumoniae Prompt Concerns Regarding Plasmid-Mediated AmpC Resistance? A Genomic Characterization and Summary of Treatment Challenges in Singapore" Antibiotics 14, no. 7: 722. https://doi.org/10.3390/antibiotics14070722
APA StyleFoo, J. J., Ong, Y. Y., Tsui, C. K. M., Lye, D. C., Pratim, D. P., Binte Mohamed Yazid, N., Chen, S. L., Vasoo, S., & Ng, T. M. (2025). Should Cefoxitin Non-Susceptibility in Ceftriaxone-Susceptible E. coli and K. pneumoniae Prompt Concerns Regarding Plasmid-Mediated AmpC Resistance? A Genomic Characterization and Summary of Treatment Challenges in Singapore. Antibiotics, 14(7), 722. https://doi.org/10.3390/antibiotics14070722