Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,420)

Search Parameters:
Keywords = Ecosystem service value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7776 KB  
Article
Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province
by Yilin Lin, Fengru Liu, Zhiyuan Ma, Junsan Zhao and Han Xue
Sustainability 2025, 17(20), 9193; https://doi.org/10.3390/su17209193 (registering DOI) - 16 Oct 2025
Abstract
Ecosystem services provide the scientific foundation and optimization objectives for constructing ecological security patterns, and their spatial characteristics directly affect planning decisions such as ecological source identification and corridor layout. However, current methods for constructing ecological security patterns rely excessively on static spatial [...] Read more.
Ecosystem services provide the scientific foundation and optimization objectives for constructing ecological security patterns, and their spatial characteristics directly affect planning decisions such as ecological source identification and corridor layout. However, current methods for constructing ecological security patterns rely excessively on static spatial optimization of landscape structure and ecological processes, while overlooking the dynamic variations in ecosystem service values under climate change. Taking Yunnan Province as a case study, this paper calculates ecosystem service values, analyzes their spatiotemporal variations, and based on ecosystem service value hotspots, applies the MSPA model and circuit theory to identify ecological sources, corridors, pinch points, barrier areas, and improvement areas. On this basis, we construct and optimize the ecological security pattern of Yunnan Province and propose ecological protection strategies. The results show that: (1) From 2000 to 2030, ecosystem service values in Yunnan exhibit significant spatiotemporal heterogeneity. From 2000 to 2020, they first declined and then increased, with aquatic ecosystems contributing the most. Under future climate scenarios, ecosystem service values continue to increase, with the greatest growth under the SSP2-4.5 scenario. The spatial pattern is characterized by higher values in the central region and lower values in the eastern and western areas. (2) In 2020, 56 ecological sources were identified; under the SSP1-1.9 scenario, 61 were identified, while 57 were identified under both SSP2-4.5 and SSP5-8.5 scenarios. These sources are mainly distributed in northwestern Yunnan and the Nujiang and Lancang River basins, presenting a “more in the west, fewer in the east” pattern. (3) In 2020, 132 ecological corridors and 74 pinch points were identified. By 2030, under SSP1-1.9, there are 149 corridors and 84 pinch points; under SSP2-4.5, 135 corridors and 55 pinch points; and under SSP5-8.5, 134 corridors and 60 pinch points. (4) By integrating results across multiple scenarios, an ecological security pattern characterized as “three screens, two zones, six corridors, and multiple points” is constructed. Based on regional ecological background characteristics, differentiated strategies for ecological security protection of territorial space are proposed. This study provides a scientific reference for the synergistic optimization of ecosystem services and ecological security patterns under climate change. Full article
31 pages, 12766 KB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Ecosystem Service Value–Urbanization Coupling Coordination in the Yangtze River Delta
by Xiaoyao Gao and Chunshan Zhou
Land 2025, 14(10), 2061; https://doi.org/10.3390/land14102061 - 15 Oct 2025
Abstract
The interactive coupling mechanism between ecosystem service value (ESV) and urbanization has emerged as a critical research focus in ecological security and sustainable development. This study quantifies the ESV of prefecture-level cities by leveraging remote sensing data and socioeconomic statistics from the Yangtze [...] Read more.
The interactive coupling mechanism between ecosystem service value (ESV) and urbanization has emerged as a critical research focus in ecological security and sustainable development. This study quantifies the ESV of prefecture-level cities by leveraging remote sensing data and socioeconomic statistics from the Yangtze River Delta (YRD) region spanning 2006—2020. It constructs a multidimensional evaluation index system for urbanization. We systematically assess both systems’ spatiotemporal evolution and interactions by employing entropy weighting, comprehensive indexing, and coupling coordination models. Furthermore, Geo-detectors and Geographical and Temporal Weighted Regression (GTWR) models are applied to identify driving factors influencing their coordinated development. Key findings include (1) the total amount of ESV in the YRD exhibits a fluctuating decline, primarily due to a steady increase in urbanization levels; (2) the coordination degree between ESV and urbanization demonstrates phased growth, transitioning to a “basic coordination” stage post-2009; (3) spatially, coordination patterns follow a “core–periphery” hierarchy, marked by radial diffusion and gradient disparities, with most cities being of the ESV-guidance type; (4) GTWR analysis reveals spatiotemporal heterogeneity in driving factors, ranked by intensity as Normalized Difference Vegetation Index (NDVI) > Economic density (ECON) > Degree of openness (OPEN) > Scientific and technological level (TECH) > Industrial structure upgrading index (ISUI) > Government investment efforts (GOV). This study advances methodological frameworks for analyzing ecosystem–urbanization interactions in metropolitan regions, while offering empirical support for ecological planning, dynamic redline adjustments, and territorial spatial optimization in the YRD, particularly within the Ecological Green Integrated Development Demonstration Zone. Full article
Show Figures

Figure 1

18 pages, 1656 KB  
Article
Stakeholder Perception and Priority Gaps in Ecosystem Services of Different Land-Uses in Rural Laos
by Bohwi Lee and Hakjun Rhee
Forests 2025, 16(10), 1581; https://doi.org/10.3390/f16101581 - 14 Oct 2025
Abstract
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined [...] Read more.
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined ES perceptions and priorities among community members (n = 500) and experts (n = 30) within a bamboo forest, rice paddy, and teak plantation in Sangthong District, Lao PDR. A two-step survey methodology was employed: initially assessing ES perceptions to filter locally relevant services using a ≥50% recognition threshold, followed by quantifying priorities for this subset through a 100-point allocation task. The results revealed a systematic divergence in priorities rooted in differing knowledge systems. Communities, grounded in traditional ecological knowledge (TEK), prioritized tangible provisioning and cultural services (e.g., food and raw materials). In contrast, experts emphasized regulating services (e.g., carbon sequestration and hazard regulation) and habitat services (e.g., biodiversity and habitat provision). Distinct “ES bundles” also emerged by land use: bamboo (raw materials and freshwater), rice (food and medicine), and teak (timber/bioenergy and regulating services). Our findings suggest a policy transition from single-objective management toward optimizing landscape-level ES portfolios, alongside institutionalizing participatory co-management that formally integrates local knowledge and enhances ES literacy. Full article
(This article belongs to the Special Issue Forest Ecosystem Services and Sustainable Management)
Show Figures

Figure 1

25 pages, 17251 KB  
Article
Spatial Prioritization for the Zonation of a Reef System in a New Remote Marine Protected Area in the Southern Gulf of Mexico
by Juan Emanuel Frías-Vega, Rodolfo Rioja-Nieto, Erick Barrera-Falcón, Carlos Cruz-Vázquez and Lorenzo Alvarez-Filip
Diversity 2025, 17(10), 708; https://doi.org/10.3390/d17100708 - 13 Oct 2025
Viewed by 69
Abstract
Coral reef ecosystems are biodiversity hotspots that provide essential ecological and environmental services but are increasingly threatened by anthropogenic pressure and climate change. Effective conservation of reef systems within Marine Protected Areas (MPAs) can be enhanced using spatially explicit approaches that integrate habitat [...] Read more.
Coral reef ecosystems are biodiversity hotspots that provide essential ecological and environmental services but are increasingly threatened by anthropogenic pressure and climate change. Effective conservation of reef systems within Marine Protected Areas (MPAs) can be enhanced using spatially explicit approaches that integrate habitat mapping and ecological metrics at seascape scales. In this study, we characterized the benthic seascape of Cayo Arenas and identified optimal priority conservation zones in one of the core zones of the recently established Southern Gulf of Mexico Reefs National Park (SGMRNP). In July 2023, ground-truthing was performed to quantify the cover of sand, calcareous matrix, macroalgae, hard corals and octocorals. Cluster analysis of quantitative data and ecological similarity between classes was used to identify the main benthic habitat classes. Object-based and supervised classification algorithms on a PlanetScope image were used to construct a thematic map of the benthic reef system. Based on the thematic map, habitat connectivity, β-diversity, patch compactness, and availability for commercial species were estimated. In addition, a benthic change analysis (2017–2013), based on the spectral characteristics of PlanetScope images, was performed. The layers obtained were then used to perform an iterative weighted overlay analysis (WOA) using 126 combinations. Six main habitat classes, with different coverages of hard corals, calcareous matrix, macroalgae, and sand, were identified. Habitats with calcareous matrix and sandy substrates dominated the seascape. High habitat compactness, connectivity, and β-diversity values were observed, suggesting habitat stability and ecologically dynamic areas. Based on the WOA, eight optimal priority areas for conservation were recognized. These areas are characterized by heterogeneous habitats, moderate coral cover, and high connectivity. We provide a spatially explicit approach that can strengthen conservation planning within the SGMRNP and other MPAs, particularly by assisting zonation and sub-zonation processes. Full article
Show Figures

Figure 1

17 pages, 2054 KB  
Article
Productivity and Carbon Sequestration in Pure and Mixed Tropical Forest Plantations in Western Mexico
by Bayron Alexander Ruiz-Blandon, Efrén Hernández-Alvarez, Vincenzo Bertolini and Tomás Martínez-Trinidad
Forests 2025, 16(10), 1558; https://doi.org/10.3390/f16101558 - 9 Oct 2025
Viewed by 208
Abstract
Commercial forest plantations (CFPs) provide timber and ecosystem services, particularly carbon (C) sequestration, but the performance of native tropical hardwoods in pure versus mixed systems is still poorly understood. We evaluated growth, productivity, biomass, and C storage in 17-year-old plantations of Tabebuia rosea [...] Read more.
Commercial forest plantations (CFPs) provide timber and ecosystem services, particularly carbon (C) sequestration, but the performance of native tropical hardwoods in pure versus mixed systems is still poorly understood. We evaluated growth, productivity, biomass, and C storage in 17-year-old plantations of Tabebuia rosea, T. donnell-smithii, and Swietenia humilis in western Mexico. Four plantation systems were assessed: pure T. rosea (PPT1), pure T. donnell-smithii (PPT2), mixed T. rosea + T. donnell-smithii (MPT1T2), and mixed T. donnell-smithii + S. humilis (MPT2S). Tree structure (DBH, height, basal area, volume), litter layer, and soils (0–15 cm) were measured. Thirty trees per species were destructively sampled to develop species-specific biometric models. Model performance was evaluated with adjusted R2, RMSE, and residual analysis. PPT1 was the most productive system (39.8 m3 ha−1; 55 Mg C ha−1), while PPT2 had the lowest values (20.5 m3 ha−1; 45.1 Mg C ha−1). MPT1T2 increased basal area (+29.8% vs. PPT1) and litter layer C (3.3 Mg C ha−1; +190% vs. PPT2) but did not surpass PPT1 in standing volume. Soil C was highest in PPT1 (36.5 Mg C ha−1). Biometric models achieved high accuracy (R2 = 0.91–0.99), confirming DBH as a reliable predictor of biomass and C. We conclude that pure T. rosea maximizes short-term productivity and soil C, whereas mixed systems diversify C allocation by enhancing litter layer pools. These findings highlight the complementary roles of pure and mixed CFPs and provide reliable models for C accounting in tropical hardwood plantations. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 4408 KB  
Article
Post-Fire Carbon Dynamics in a UK Woodland: A Case Study from the Roaches Nature Reserve
by Francesco Niccoli, Luigi Marfella, Helen C. Glanville, Flora A. Rutigliano and Giovanna Battipaglia
Forests 2025, 16(10), 1547; https://doi.org/10.3390/f16101547 - 7 Oct 2025
Viewed by 337
Abstract
Forests play a crucial role in climate regulation through atmospheric CO2 sequestration. However, disturbances like wildfires can severely compromise this function. This study assesses the ecological and economic consequences of a 2018 wildfire in The Roaches Nature Reserve, UK, focusing on post-fire [...] Read more.
Forests play a crucial role in climate regulation through atmospheric CO2 sequestration. However, disturbances like wildfires can severely compromise this function. This study assesses the ecological and economic consequences of a 2018 wildfire in The Roaches Nature Reserve, UK, focusing on post-fire carbon dynamics. A mixed woodland dominated by Pinus sylvestris L. and Larix decidua Mill. was evaluated via satellite imagery (remote sensing indices), dendrochronological analysis (wood cores sampling), and soil properties analyses. Remote sensing revealed areas of high fire severity and progressive vegetation decline. Tree-ring data indicated near-total mortality of L. decidua, while P. sylvestris showed greater post-fire resilience. Soil properties (e.g., soil organic carbon, biomass and microbial indices, etc.) assessed at a depth of 0–5 cm showed no significant changes. The analysis of CO2 sequestration trends revealed a marked decline in burned areas, with post-fire sequestration reduced by approximately 70% in P. sylvestris and nearly 100% in L. decidua, in contrast to the stable patterns observed in the control stands during the same period. To estimate this important ecosystem service, we developed a novel CO2 Sequestration Loss (CSL) index, which quantified the reduction in forest carbon uptake and underscored the impaired sequestration capacity of burned area. The decrease in CO2 sequestration also resulted in a loss of regulating ecosystem service value, with burned areas showing a marked reduction compared to pre-fire conditions. Finally, a carbon loss of ~208 Mg ha−1 was estimated in the burnt area compared to the control, mainly due to tree mortality rather than shallow soil carbon stock. Overall, our findings demonstrate that wildfire can substantially compromise the climate mitigation potential of temperate forests, highlighting the urgency of proactive management and restoration strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 4114 KB  
Article
Maintaning the Durability of the Effects of Urban Lake Restoration—New Challenges
by Jolanta Katarzyna Grochowska and Renata Augustyniak-Tunowska
Water 2025, 17(19), 2893; https://doi.org/10.3390/w17192893 - 5 Oct 2025
Viewed by 471
Abstract
The main aim of this study was to analyze the excessive biomass of invasive alien aquatic plants reducing the water quality of a lake which was restored in the past. This study was conducted on Długie Lake (26.8 ha, 17.3 m, Masurian Lake [...] Read more.
The main aim of this study was to analyze the excessive biomass of invasive alien aquatic plants reducing the water quality of a lake which was restored in the past. This study was conducted on Długie Lake (26.8 ha, 17.3 m, Masurian Lake District, northeastern Poland), which was completely degraded by raw wastewater inflow. After the long-term restoration (1987–2003) and recovery of submerged macrophyte meadows, the invasion of Elodea nuttallii—an invasive alien aquatic plant (IAAP)—was observed due to the increasing water temperature in recent years, impairing the functioning, biodiversity, and ecosystem services of this urban lake, as well as causing the deterioration of lake water quality. Therefore, an excessive biomass of E. nuttallii has been removed from the lake since 2022. The analysis of physico-chemical water quality parameters showed that consecutive excessive biomass macrophyte gradual removal (three times during the growing season) helps to limit the excessive growth of E. nuttallii and also removes nutrient loads from the ecosystem. Removing excess aquatic vegetation also helps maintain the lake’s aesthetic and recreational value. Currently, the total phosphorus concentration in lake water did not exceed 0.3 mg P/L and total nitrogen did not exceed 2.0 mg N/L. Chlorophyll a contents oscillated in the range of 5 to 9 µg/L, and Secchi disk visibility exceeded 3 m. Full article
Show Figures

Graphical abstract

20 pages, 513 KB  
Article
Nonlinear Impact of Digital Service Innovation on Value Creation in Manufacturing Firms: Based on TOE Framework
by Yongtao Peng and Zheng Li
J. Theor. Appl. Electron. Commer. Res. 2025, 20(4), 263; https://doi.org/10.3390/jtaer20040263 - 2 Oct 2025
Viewed by 402
Abstract
This study employs data from Chinese A-share manufacturing firms listed between 2018 and 2024 to examine the nonlinear effects of digital service innovation on corporate value creation and its threshold mechanisms, using a two-way fixed-effects model and a panel threshold model. The results [...] Read more.
This study employs data from Chinese A-share manufacturing firms listed between 2018 and 2024 to examine the nonlinear effects of digital service innovation on corporate value creation and its threshold mechanisms, using a two-way fixed-effects model and a panel threshold model. The results indicate that (1) digital service innovation exhibits a nonlinear relationship with value creation—its impact is initially suppressed at low innovation levels but rises markedly once a certain inflection point is exceeded; (2) ecosystem embedding presents a double-threshold effect: when embedding is high, it substantially strengthens the efficacy of digital service innovation; (3) organizational dynamic capability shows a single-threshold effect: moderate dynamic capability enhances value creation, whereas overly strong capability may inhibit innovation benefits; and (4) digital technology adoption does not display significant threshold characteristics. This research enriches the theory of digital service innovation and offers empirical evidence and practical insights for manufacturing firms in crafting differentiated innovation strategies. Full article
Show Figures

Figure 1

25 pages, 579 KB  
Article
Exploring Customer Perceptions of Business Model Innovation in Family Economic Groups: Evidence from Ecuador
by Ana Belén Tulcanaza-Prieto, Alexandra Cortez-Ordoñez, Jairo Rivera and Chang Won Lee
Sustainability 2025, 17(19), 8793; https://doi.org/10.3390/su17198793 - 30 Sep 2025
Viewed by 252
Abstract
This study investigates the determinants of customers’ perception of business model innovation (BMI) and its impact on customer satisfaction (CS), customer loyalty (CL), and firm sustainability (FS) within Ecuadorian family economic groups (EFEGs). It also examines the moderating role of perceived BMI in [...] Read more.
This study investigates the determinants of customers’ perception of business model innovation (BMI) and its impact on customer satisfaction (CS), customer loyalty (CL), and firm sustainability (FS) within Ecuadorian family economic groups (EFEGs). It also examines the moderating role of perceived BMI in the relationships between CS, CL, and FS. Data were collected through an online survey yielding 342 valid responses, using a structured instrument that included socio-demographic variables, perceived EFEG characteristics, and nine validated constructs. Reliability and validity were corroborated through exploratory and confirmatory factor analyses, while structural equation modeling (SEM) and multiple regression analyses were employed to test the proposed relationships. The results reveal that socially responsible consumption (SRC), technological/digital customer skills (TCS), value creation innovativeness (VCrI), value proposition innovativeness (VPI), and value capture innovativeness (VCI) significantly influence customers’ perception of BMI. In turn, BMI positively influences CS, CL, and FS, and moderates the relationships between CS and FS, and CL and FS, though it does not significantly moderate the CS–CL relationship. These findings are consistent with previous research on European family firms, emphasizing the relevance of innovation capabilities, entrepreneurial orientation, and socioemotional wealth in enhancing adaptability and performance in family-owned businesses. This study contributes novel empirical evidence on BMI in the context of an emerging economy dominated by family firms. It underscores BMI as a dynamic capability crucial for fostering customer engagement, improving competitiveness, and ensuring long-term sustainability. Managerial implications suggest that EFEG managers should prioritize digital integration, service innovation, and transparency to strengthen customer trust and loyalty. Future research should broaden the scope to include other Latin American contexts, integrate internal organizational perspectives, and explore intergenerational dynamics and digital transformation processes to deepen understanding of BMI in family business ecosystems. Full article
Show Figures

Figure 1

18 pages, 4493 KB  
Article
Study on the Ecological Effect of Acoustic Rain Enhancement: A Case Study of the Experimental Area of the Yellow River Source Where Agriculture and Animal Husbandry Are Intertwined
by Guoxin Chen, Jinzhao Wang, Zunfang Liu, Suonam Kealdrup Tysa, Qiong Li and Tiejian Li
Land 2025, 14(10), 1971; https://doi.org/10.3390/land14101971 - 30 Sep 2025
Viewed by 277
Abstract
The quantitative assessment of acoustic rain enhancement technology is highly significant for improving the ecological environment. A scientific and accurate evaluation of its operational effects provides an important basis for continued government and public support and investment in artificial weather modification activities. To [...] Read more.
The quantitative assessment of acoustic rain enhancement technology is highly significant for improving the ecological environment. A scientific and accurate evaluation of its operational effects provides an important basis for continued government and public support and investment in artificial weather modification activities. To effectively analyze the effects of acoustic rain enhancement on the vegetation of grassland ecosystems in arid and semi-arid areas and to clarify its mechanism, this study constructed eight vegetation indices based on Sentinel-2 satellite data. A comprehensive assessment of the changes in vegetation within the grassland ecosystem of the experimental zone was conducted by analyzing spatiotemporal distribution patterns, double-ratio analysis, and difference value comparisons. The results showed that (1) following the acoustic rain enhancement experiment, vegetation growth improved significantly. The mean values of all eight vegetation indices increased more substantially than before the experiment, with kNDVI showing the most notable gain. The proportion of the zone with kNDVI values greater than 0.417 increased from 52.62% to 71.59%, representing a relative increase of 36.05%. (2) The rain enhancement experiment significantly raised the values of eight vegetation indices: kNDVI increased by 0.042 (18.68%), ARVI by 0.043 (18.67%), and the remaining indices also increased to varying degrees (9.51–12.34%). (3) Vegetation improvement was more pronounced in areas closer to the acoustic rain enhancement site. Under consistent climate conditions, vegetation growth in the experimental zone showed significant enhancement. This study demonstrates that acoustic rain enhancement technology can mitigate drought and low rainfall, improve grassland ecosystem services, and provide a valuable foundation for ecological restoration and aerial water resource utilization in arid and semi-arid regions. Full article
Show Figures

Figure 1

28 pages, 4334 KB  
Article
Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China
by Yiqi Zhao, Songrui Ning, An Yan, Pingan Jiang, Huipeng Ren, Ning Li, Tingting Huo and Jiandong Sheng
Agronomy 2025, 15(10), 2307; https://doi.org/10.3390/agronomy15102307 - 29 Sep 2025
Viewed by 264
Abstract
Oases in arid regions are crucial for sustaining agricultural production and ecological stability, yet few studies have simultaneously examined the coupled dynamics of land use/cover change (LUCC), carbon emissions, and ecosystem service value (ESV) at the oasis–agricultural scale. This gap limits our understanding [...] Read more.
Oases in arid regions are crucial for sustaining agricultural production and ecological stability, yet few studies have simultaneously examined the coupled dynamics of land use/cover change (LUCC), carbon emissions, and ecosystem service value (ESV) at the oasis–agricultural scale. This gap limits our understanding of how different land use trajectories shape trade-offs between carbon processes and ecosystem services in fragile arid ecosystems. This study examines the spatiotemporal interactions between land use carbon emissions and ESV from 1990 to 2020 in the Wensu Oasis, Northwest China, and predicts their future trajectories under four development scenarios. Multi-period remote sensing data, combined with the carbon emission coefficient method, modified equivalent factor method, spatial autocorrelation analysis, the coupling coordination degree model, and the PLUS model, were employed to quantify LUCC patterns, carbon emission intensity, ESV, and its coupling relationships. The results indicated that (1) cultivated land, construction land, and unused land expanded continuously (by 974.56, 66.77, and 1899.36 km2), while grassland, forests, and water bodies declined (by 1363.93, 77.92, and 1498.83 km2), with the most pronounced changes occurring between 2000 and 2010; (2) carbon emission intensity increased steadily—from 23.90 × 104 t in 1990 to 169.17 × 104 t in 2020—primarily driven by construction land expansion—whereas total ESV declined by 46.37%, with water and grassland losses contributing substantially; (3) carbon emission intensity and ESV exhibited a significant negative spatial correlation, and the coupling coordination degree remained low, following a “high in the north, low in the south” distribution; and (4) scenario simulations for 2030–2050 suggested that this negative correlation and low coordination will persist, with only the ecological protection scenario (EPS) showing potential to enhance both carbon sequestration and ESV. Based on spatial clustering patterns and scenario outcomes, we recommend spatially differentiated land use regulation and prioritizing EPS measures, including glacier and wetland conservation, adoption of water-saving irrigation technologies, development of agroforestry systems, and renewable energy utilization on unused land. By explicitly linking LUCC-driven carbon–ESV interactions with scenario-based prediction and evaluation, this study provides new insights into oasis sustainability, offers a scientific basis for balancing agricultural production with ecological protection in the oasis of the arid region, and informs China’s dual-carbon strategy, as well as the Sustainable Development Goals. Full article
Show Figures

Figure 1

24 pages, 8871 KB  
Article
Satellite-Derived Multi-Temporal Palm Trees and Urban Cover Changes to Understand Drivers of Changes in Agroecosystem in Al-Ahsa Oasis Using a Spectral Mixture Analysis (SMA) Model
by Abdelrahim Salih, Abdalhaleem Hassaballa and Abbas E. Rahma
Agriculture 2025, 15(19), 2043; https://doi.org/10.3390/agriculture15192043 - 29 Sep 2025
Viewed by 298
Abstract
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, [...] Read more.
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, has placed enormous pressure on the palm-growing area and led to the loss of productive land. These challenges highlight the need for robust, integrative methods to assess their impact on the agroecosystem. Here, we analyze spatiotemporal fluctuations in vegetation cover and its effect on the agroecosystem to determine the potential influencing factors. Data from Landsat satellites, including TM (Thematic mapper of Landsat 5), ETM+ (Enhanced Thematic mapper plus of Landsat 7), and OIL (Landsat 8) and Sentinel-2A imageries were used for analysis, while GeoEye-1 satellite images as well as socioeconomic data were applied for result validation. Principal Component Analysis (PCA) was applied to extract pure endmembers, facilitating Spectral Mixture Analysis (SMA) for mapping vegetation and urban fractions. The spatiotemporal change patterns were analyzed using time- and space-oriented detection algorithms. Results indicated that vegetation fraction patterns differed significantly; pixels with high fraction values declined significantly from 1990 to 2020. The mean vegetation fraction value varied from 0.79 to 0.37. This indicates that a reduction in palm trees was quickly occurring at a decreasing rate of −14.24%. Results also suggest that vegetation fractions decreased significantly between 1990 and 2020, and this decrease had the greatest effect on the agroecosystem situation of the Oasis. We assessed urban sprawl, and our results indicated substantial variability in average urban fractions: 0.208%, 0.247%, 0.699%, and 0.807% in 1990, 2000, 2010, and 2020, respectively. Overall, the data revealed an association between changes in palm tree fractions and urban ones, supporting strategic vegetation and/or agricultural management to enhance the agroecosystem in an arid Oasis. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 7292 KB  
Article
Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model
by Lei Zhang, Xinmu Zhang, Shengwei Gao and Xinchen Gu
Sustainability 2025, 17(19), 8728; https://doi.org/10.3390/su17198728 - 28 Sep 2025
Viewed by 349
Abstract
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial [...] Read more.
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial patterns and temporal dynamics of six key ecosystem services from 2000 to 2020—namely, biodiversity maintenance (BM), carbon fixation (CF), crop production (CP), net primary productivity (NPP), soil retention (SR), and water yield (WY). The InVEST and CASA models were employed to quantify service values, and the XGBoost–SHAP framework was used to reveal the nonlinear response paths and threshold effects of dominant drivers. Results show a distinct “high in the south, low in the north” spatial gradient of ES across Anhui. Regulatory services such as BM, NPP, and WY are concentrated in the southern mountainous areas (high-value zones > 0.7), while CP is prominent in the northern and central agricultural zones (>0.8), indicating a clear spatial complementarity of service types. Over the two-decade period, areas with significant increases in NPP and CP accounted for 50% and 64%, respectively, suggesting notable achievements in ecological restoration and agricultural modernization. CF remained stable across 98.3% of the region, while SR and WY exhibited strong sensitivity to topography and precipitation. Temporal trend analysis indicated that NPP rose from 395.83 in 2000 to 537.59 in 2020; SR increased from 150.02 to 243.28; and CP rose from 203.18 to 283.78, reflecting an overall enhancement in ecosystem productivity and regulatory functions. Driver analysis identified precipitation (PRE) as the most influential factor for most services, while elevation (DEM) was particularly important for CF and NPP. Temperature (TEM) and potential evapotranspiration (PET) affected biomass formation and hydrothermal balance. SHAP analysis revealed key threshold effects, such as the peak positive contribution of PRE to NPP occurring near 1247 mm, and the optimal temperature for BM at approximately 15.5 °C. The human footprint index (HFI) exerted negative impacts on both BM and NPP, highlighting the suppressive effect of intensive anthropogenic disturbances on ecosystem functioning. Anhui’s ES exhibit a trend of multifunctional synergy, governed by the nonlinear coupling of climatic, hydrological, topographic, and anthropogenic drivers. This study provides both a modeling toolkit and quantitative evidence to support ecosystem restoration and service optimization in similar transitional regions. Full article
Show Figures

Figure 1

15 pages, 6185 KB  
Article
Evaluating How Land-Use Changes Affect the Ecosystem Services Provided by Urban Parks and Green Spaces
by Ojonugwa Emmanuel and Ahmed Eraky
J. Parks 2025, 1(1), 4; https://doi.org/10.3390/jop1010004 - 27 Sep 2025
Viewed by 362
Abstract
This research assesses how land-cover transitions from 2012 to 2022 have impacted the value of ecosystem services in Denton County, Texas. Using remote sensing and spatial analysis, this study quantitatively links land-use change to its ecological and economic consequences. Full-county Landsat data were [...] Read more.
This research assesses how land-cover transitions from 2012 to 2022 have impacted the value of ecosystem services in Denton County, Texas. Using remote sensing and spatial analysis, this study quantitatively links land-use change to its ecological and economic consequences. Full-county Landsat data were analyzed in ArcGIS Pro through supervised classification and categorical change detection. To quantify the impact of these changes, an accuracy assessment was performed, and a benefit-transfer method using both global and Texas-specific coefficients was applied to estimate the change in Ecosystem Service Value (ESV). Results revealed a complex dynamic: while the county experienced significant urban expansion, it also saw substantial greening as large areas of bare land transitioned to vegetation. However, this greening was not enough to offset the economic impact of losing high-value ecosystems. The analysis shows a net loss in total ESV over the decade, estimated between USD 24 million and USD 95 million per year, primarily driven by the significant reduction of water bodies. This study provides a replicable framework for policymakers to assess the environmental trade-offs of development and highlights the critical importance of preserving existing high-value ecosystems alongside urban greening initiatives. Full article
Show Figures

Figure 1

17 pages, 1327 KB  
Article
African Conservation Success: Niokolo-Koba National Park (Senegal) Removed from the List of World Heritage in Danger
by Dodé Heim Myline Houéhounha, Simon Lhoest, Junior Ohouko, Djafarou Tiomoko, Mallé Gueye, Elise Vanderbeck and Cédric Vermeulen
Heritage 2025, 8(10), 403; https://doi.org/10.3390/heritage8100403 - 26 Sep 2025
Viewed by 567
Abstract
The Niokolo-Koba National Park (NKNP) was inscribed on the World Heritage List in 1981 for its exceptional biodiversity and unique ecosystem. However, due to poaching, livestock grazing, and dam construction projects in the Sambangalou area, the site was added to the List of [...] Read more.
The Niokolo-Koba National Park (NKNP) was inscribed on the World Heritage List in 1981 for its exceptional biodiversity and unique ecosystem. However, due to poaching, livestock grazing, and dam construction projects in the Sambangalou area, the site was added to the List of World Heritage in Danger in 2007. Through regional and international cooperation, enhanced monitoring, and community engagement in conservation efforts, the site was removed from the List of World Heritage in Danger in 2024. As a typical case of the entire process from inscription on to removal from the World Heritage List in Danger, the NKNP’s threats and successful removal experience profoundly reveal complex internal and external challenges and governance needs in heritage conservation. Its successful experience can provide valuable lessons for World Heritage sites around the world facing similar threats. As part of our qualitative research, we reviewed the literature from UNESCO and IUCN, which annually assessed the state of conservation of the NKNP between 2007 and 2024. In 2024, a field mission assessed on-site conservation progress and discussed challenges and responses to the NKNP management with 30 stakeholders. Our results highlight the lengthy and potentially costly process of removal, such as Senegal’s EUR 4.57 million Emergency Plan, the threats to the park’s integrity by the State itself, and the value placed on World Heritage status, further emphasizing the need for long-term investment from both the national government and international partners. Therefore, ensuring returns on such investment, whether through increased ecotourism, international recognition, or strengthened ecosystem services, is essential for sustainable conservation financing. The case of the NKNP also illustrates the positive impact of improved national governance and partnerships involving international and local NGOs, as well as the private sector, on conservation efforts. It also highlights the importance of a new collaborative governance paradigm for heritage sites facing severe human interference (poaching, illegal development) and governance challenges, particularly in ecologically fragile or socio-economically pressured regions, by strengthening national responsibility, leveraging international mechanisms, and activating local participation. Full article
Show Figures

Figure 1

Back to TopTop