Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Spatiotemporal Dynamics of Land Use Change
2.3.2. Estimation of Land Use Carbon Emissions
- (1)
- Direct Carbon Emission Coefficient Method
- (2)
- Indirect Carbon Emission Coefficient Method
2.3.3. Estimation of Ecosystem Service Value
2.3.4. Bivariate Spatial Autocorrelation Analysis
2.3.5. Coupling Coordination Degree Model
2.3.6. Land Use Change Simulation
2.3.7. Sensitivity Analysis
3. Results
3.1. Spatiotemporal Characteristics of Land Use in Wensu Oasis
3.2. Spatiotemporal Characteristics of Land Use Carbon Emissions in Wensu Oasis
3.2.1. Temporal Characteristics of Land Use Carbon Emissions
3.2.2. Spatial Characteristics of Land Use Carbon Emissions
3.3. Spatiotemporal Characteristics of Ecosystem Service Value in Wensu Oasis
3.3.1. Temporal Variation in Ecosystem Service Value
3.3.2. Spatial Distribution Characteristics of Ecosystem Service Value
3.4. Coupling Characteristics Between Land Use Carbon Emission Intensity and Ecosystem Service Value Intensity from 1990 to 2020
3.4.1. Spatial Correlation
3.4.2. Coupling Coordination Degree
3.5. Coupling Characteristics Between Land Use Carbon Emission Intensity and Ecosystem Service Value Intensity from 2030 to 2050
3.5.1. Land Use Change Trends Under Multiple Scenarios
3.5.2. Spatial Correlation and Coupling Coordination Degree Under Multiple Scenarios
3.6. Sensitivity Analysis of Carbon Emissions and Ecosystem Service Value
4. Discussion
4.1. Impact of Land Use Change on Carbon Emissions and Ecosystem Service Value in Wensu Oasis
4.2. Coupling Characteristics Between Land Use Carbon Emission and Ecosystem Service Value in Wensu Oasis
4.3. Reasonable Strategies for Enhancing Ecosystem Service Value and Reducing Carbon Emissions in Wensu Oasis
- (1)
- Spatially differentiated land use regulation
- a.
- Northern glacier-fed water conservation zone (high-ESV–low-emission clusters): Strictly protect glacier and aquatic ecosystems by delineating ecological redlines to prevent encroachment from cultivated and construction land. Priority should be given to maintaining their core carbon sequestration function (contributing 63.8% of total carbon uptake) and hydrological regulation capacity (accounting for 71% of the water regulation value). Measures should include establishing a seasonal ecological water replenishment mechanism, targeted restoration of degraded wetlands, and enhancement of soil carbon sequestration potential [56].
- b.
- Southern intensive agricultural production zone (low-ESV–high-emission clusters): promote water-saving and emission-reduction technologies [57], such as adopting mulched drip irrigation in cotton fields to reduce agricultural water consumption; optimize cropping patterns by converting marginal farmland into agroforestry systems (e.g., walnut–alfalfa intercropping) to improve both economic returns and carbon sequestration; restrict the uncontrolled expansion of construction land; and reduce irrigation-related energy emissions [58].
- c.
- Central ecological transition zone: Implement degraded grassland restoration projects, plant drought-tolerant shrubs and grasses (e.g., Tamarix spp.) to improve soil and water conservation, and establish riparian shelterbelt buffer zones to mitigate the negative impacts of agricultural non-point source pollution on the carbon sequestration capacity of water bodies.
- (2)
- Scenario-oriented land use optimization
- a.
- Ecological protection scenario (EPS) as a priority: converting cropland to wetlands can substantially restore aquatic ecosystem functions and promote synergistic gains in water and carbon regulation. Model simulations indicate that this strategy could enhance regional carbon sequestration by 27.6% and achieve a balance between ecological benefits and agricultural production.
- b.
- Refinement of the cultivated land protection scenario (CPS): concentrate newly allocated cropland quotas in high-efficiency, water-saving farmland and equip these areas with advanced irrigation infrastructure. This approach can avoid the unsustainable “water-for-grain” development pathway. Furthermore, strictly limit cropland expansion into water bodies to safeguard the ecological water-use baseline.
4.4. Limitations
5. Conclusions
- (1)
- The Wensu Oasis underwent significant land use/cover change from 1990 to 2020, characterized by the continuous expansion of cultivated land, construction land, and unused land, accompanied by reductions in grassland, forest, and water bodies. The most pronounced changes occurred between 2000 and 2010.
- (2)
- Carbon emission intensity has increased steadily, with high-value zones expanding in close association with the growth of construction land over the past three decades; conversely, the total ESV has declined by 46.37%, with water and grassland making substantial contributions to the loss. Spatially, carbon emission intensity and ESV exhibit a significant negative correlation, and the coupling coordination degree remains low, following a “high in the north, low in the south” pattern.
- (3)
- Under scenarios of natural development, production and construction, cultivated land protection, and ecological protection for 2030, 2040, and 2050, the negative correlation between carbon emissions and ESV is likely to persist. Although the coupling coordination degree remains between 0.52 and 0.54, a slight downward trend is observed, indicating that without targeted interventions, coordinated improvement of carbon mitigation and ESV enhancement will be difficult to achieve.
- (4)
- Based on the spatial clustering of carbon emissions and ESV, and in light of predicted scenario outcomes, we recommend implementing spatially differentiated land use regulation and prioritizing the ecological protection scenario to restore aquatic ecosystems, improve carbon sequestration capacity, and promote synergistic water–carbon benefits.
- (5)
- Ecological protection measures, including wetland conservation, grassland restoration, and water-saving agricultural technologies, should be prioritized in the future to mitigate carbon emissions and enhance ecosystem services. At the same time, scenario-oriented land use optimization should be incorporated into regional planning to reconcile agricultural productivity with ecological sustainability, thereby ensuring the long-term resilience of oasis socio-ecological systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Y.; Xia, N.; Xiao, Y.; Xu, Z.; Ma, Y. Assessment of crop water resource utilization in arid and semi-arid regions based on the water footprint theory. Agronomy 2025, 15, 1529. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Xin, L. China’s oases have expanded by nearly 40% over the past 20 years. Land Degrad. Dev. 2022, 33, 3817–3828. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Zhao, W.; Zhao, X.; Wang, C.; Kang, W.; Halmy, M.W.A. Rapid global artificial oasis expansion and consequences in arid regions over the last 20 years. Sci. Bull. 2025, 70, 1949–1952. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Pilla, F.; Zhang, Q.; Chakraborti, S.; Wang, Y.; Basu, B.; Basu, A.S.; Joshi, P.K.; Keesstra, S.; Roy, P.S.; et al. Examining the effects of green revolution led agricultural expansion on net ecosystem service values in India using multiple valuation approaches. J. Environ. Manag. 2021, 277, 111381. [Google Scholar] [CrossRef]
- Zhao, N.; Du, L.; Tian, S.; Zhang, B.; Zheng, X.; Li, Y. Cropland expansion masks ecological degradation: The unsustainable greening of China’s drylands. Agronomy 2025, 15, 1162. [Google Scholar] [CrossRef]
- Tang, J.; Gong, L.; Ma, X.; Zhu, H.; Ding, Z.; Luo, Y.; Zhang, H. The oasisization process promotes the transformation of soil organic carbon into soil inorganic carbon. Land 2024, 13, 336. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H.; Xu, Y. Effect of large-scale cultivated land expansion on the balance of soil carbon and nitrogen in the Tarim Basin. Agronomy 2019, 9, 86. [Google Scholar] [CrossRef]
- Li, W.; Xiang, M.; Duan, L.; Liu, Y.; Yang, X.; Mei, H.; Wei, Y.; Zhang, J.; Deng, L. Simulation of land utilization change and ecosystem service value evolution in Tibetan area of Sichuan Province. Alex. Eng. J. 2023, 70, 13–23. [Google Scholar] [CrossRef]
- Guan, Y.; Jin, S.; Zhang, Z.; Chen, S.; Chen, Y.; Liu, S.; Fan, M.; Ding, Y.; Yuan, X. A comprehensive review of climate warming and carbon dynamics in wetland ecosystems. Discov. Sustain. 2025, 6, 672. [Google Scholar] [CrossRef]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Multi-scenario simulation of carbon budget balance in arid and semi-arid regions. J. Environ. Manag. 2023, 346, 119016. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Yu, E.; Yang, J.; Wang, S.; Ma, J. Spatiotemporal pattern and coordinating development characteristics of carbon emission performance and land use intensity in the Yangtze River Delta Urban Agglomeration. Trans. Chin. Soc. Agric. Eng. 2023, 39, 208–218. [Google Scholar] [CrossRef]
- Ke, N.; Lu, X.; Zhang, X.; Kuang, B.; Zhang, Y. Urban land use carbon emission intensity in China under the “double carbon” targets: Spatiotemporal patterns and evolution trend. Environ. Sci. Pollut. Res. 2022, 30, 18213–18226. [Google Scholar] [CrossRef]
- Liu, X.J.; Jin, X.B.; Luo, X.L.; Zhou, Y.K. Multi-scale variations and impact factors of carbon emission intensity in China. Sci. Total Environ. 2023, 857, 159403. [Google Scholar] [CrossRef]
- Han, Y.; Ge, X. Spatial–temporal characteristics and influencing factors on carbon emissions from land use in Suzhou, the world’s largest industrial city in China. Sustainability 2023, 15, 13306. [Google Scholar] [CrossRef]
- Liu, C.; Hu, S.; Wu, S.; Song, J.; Li, H. County-level land use carbon emissions in China: Spatiotemporal patterns and impact factors. Sustain. Cities Soc. 2024, 105, 105304. [Google Scholar] [CrossRef]
- Rong, T.; Zhang, P.; Zhu, H.; Jiang, L.; Li, Y.; Liu, Z. Spatial correlation evolution and prediction scenario of land use carbon emissions in China. Ecol. Inform. 2022, 71, 101802. [Google Scholar] [CrossRef]
- Gui, D.; He, H.; Liu, C.; Han, S. Spatio-temporal dynamic evolution of carbon emissions from land use change in Guangdong Province, China, 2000–2020. Ecol. Indic. 2023, 156, 111131. [Google Scholar] [CrossRef]
- Ge, K.; Wang, Y.; Liu, X.; Hu, L.; Ke, S.; Jiang, X.; Zhang, W. Spatial effects and influence mechanisms of urban land use green transition on urban carbon emissions. Ecol. Indic. 2025, 172, 113261. [Google Scholar] [CrossRef]
- Pu, L.; Lu, C.; Yang, X.; Chen, X. Spatio-temporal variation of the ecosystem service value in Qilian mountain national park (Gansu area) based on land use. Land 2023, 12, 201. [Google Scholar] [CrossRef]
- Chi, Y.; He, C. Impact of land use change on the spatial and temporal evolution of ecosystem service values in south China Karst Areas. Forests 2023, 14, 893. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, T.; Yan, D.; Liu, S.; Feng, J.; Wang, Q.; Liu, H.; Gao, H. Analysis of the evolution of ecosystem service value and its driving factors in the Yellow River Source Area, China. Ecol. Indic. 2024, 158, 111344. [Google Scholar] [CrossRef]
- Zhou, X.; Ji, G.; Wang, F.; Ji, X. Identification and simulation of ecological zoning in the Yangtze River Delta (YRD) urban agglomeration based on ecological service value (ESV)–landscape ecological risk (LER). J. Clean. Prod. 2025, 516, 145778. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, E.; Zhang, C.; Liu, C.; Li, J. Multi-Scenario simulation of land use change and ecosystem service value based on the Markov–FLUS Model in Ezhou City, China. Sustainability 2024, 16, 6237. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, K.; Luo, P. Spatio-temporal relationship between land use carbon emissions and ecosystem service value in Guanzhong, China. Land 2024, 13, 118. [Google Scholar] [CrossRef]
- Lang, Y.; Chao, H.; Xiao, J. The relationship between carbon emissions and ecosystem services in Guangdong Province, China: The perspective of ecological function zones. Land 2024, 13, 2227. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, L.; Wang, Z. Spatial temporal coupling and influencing factors of land-use carbon emissions and ecosystem service value in the Yellow River Basin. Environ. Sci. 2025, 46, 3536–3545. [Google Scholar] [CrossRef]
- Dhawi, F.; Aleidan, M.M. Oasis agriculture revitalization and carbon sequestration for climate-resilient communities. Front. Agron. 2024, 6, 1386671. [Google Scholar] [CrossRef]
- Kalfas, D.; Kalogiannidis, S.; Papaevangelou, O.; Chatzitheodoridis, F. Assessing the connection between land use planning, water resources, and global climate change. Water 2024, 16, 333. [Google Scholar] [CrossRef]
- Fu, S.; Xu, B.; Peng, Y.; Wang, H.; Li, X. Analysis of spatiotemporal coupling relationship between carbon emission and ecosystem service value in Poyang Lake Basin based on land use. Res. Soil Water Conserv. 2025, 32, 321–331+342. [Google Scholar] [CrossRef]
- Tan, Z.; Guan, Q.; Lin, J.; Yang, L.; Luo, H.; Ma, Y.; Tian, J.; Wang, Q.; Wang, N. The response and simulation of ecosystem services value to land use/land cover in an oasis, Northwest China. Ecol. Indic. 2020, 118, 106711. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, P.; Yang, Z.; Guo, J. Status identification and restoration zoning of ecological space in Maowusu Sandy Land based on temporal and spatial characteristics of land use. Agronomy 2025, 15, 1445. [Google Scholar] [CrossRef]
- He, J.; Zhang, P. Evaluation of carbon emissions associated with land use and cover change in Zhengzhou City of China. Reg. Sustain. 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Dong, H.; Zhang, L.; He, S. Spatial–temporal change analysis and Multi-Scenario simulation prediction of land-use carbon emissions in the Wuhan Urban Agglomeration, China. Sustainability 2023, 15, 11021. [Google Scholar] [CrossRef]
- Han, F.; Gao, F.; He, B.; Cao, Y.; Yao, X. Exploring the spatial and temporal trajectories of land use carbon emissions and influencing factors in the Aksu River Basin from 1990 to 2020. Environ. Sci. 2024, 45, 3297–3307. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Estimation of terrestrial vegetation carbon sequestration in China from 1981 to 2000. Sci. China Ser. D Earth Sci. 2007, 37, 804–812. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Cheng, W.; Shen, B.; Xin, X.; Gu, Q.; Guo, T. Spatiotemporal Variations of Grassland Ecosystem Service Value and Its Influencing Factors in Inner Mongolia, China. Agronomy 2022, 12, 2090. [Google Scholar] [CrossRef]
- Li, X.; Wu, C. Sensitivity assessment and simulation of ecosystem services in response to land use change in arid regions: Empirical evidence from Xinjiang, China. Ecol. Indic. 2025, 171, 113150. [Google Scholar] [CrossRef]
- Mamat, A.; Wang, J.; Aimaiti, M.; Saydi, M. Evolution and driving forces of ecological service value in response to land ese change in Tarim Basin, Northwest China. Remote Sens. 2024, 16, 2311. [Google Scholar] [CrossRef]
- Ma, J.; Wen, J.; Du, S.; Yan, C.; Pan, C. Spatiotemporal evolution of carbon storage and driving factors in major sugarcane-producing regions of Guangxi, China. Agronomy 2025, 15, 1817. [Google Scholar] [CrossRef]
- Wei, S.; Hou, J.; Zhang, Y.; Tai, Y.; Huang, X.; Guo, X. Analysis of the trade-off/synergy effect and driving factors of ecosystem services in Hulunbuir City, China. Agronomy 2025, 15, 1883. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Z.; Liu, W. Revealing the spatio-temporal coupling coordination characteristics and influencing factors of carbon emissions from urban use and ecosystem service values in China at the municipal scale. Front. Ecol. Evol. 2025, 13, 1539909. [Google Scholar] [CrossRef]
- Rong, T.; Zhang, P.; Li, G.; Wang, Q.; Zheng, H.; Chang, Y.; Zhang, Y. Spatial correlation evolution and prediction scenario of land use carbon emissions in the Yellow River Basin. Ecol. Indic. 2023, 154, 110701. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wang, T.; Ruan, Z.; Du, P. Spatial–temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: A case study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Wu, X.; Shen, C.; Shi, L.; Wan, Y.; Ding, J.; Wen, Q. Spatio-temporal evolution characteristics and simulation prediction of carbon storage: A case study in Sanjiangyuan Area, China. Ecol. Inform. 2024, 80, 102485. [Google Scholar] [CrossRef]
- Peng, W.F.; Zhou, J.M.; Fan, S.Y.; Yang, C.J. Effects of the land use change on ecosystem service value in Chengdu, Western China from 1978 to 2010. J. Indian Soc. Remote Sens. 2015, 44, 197–206. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, X. Spatio-temporal relationship between carbon emission and ecosystem service value under land use change: A case study of the Guanzhong Plain Urban Agglomeration, China. Front. Environ. Sci. 2023, 11, 1241781. [Google Scholar] [CrossRef]
- Yi, F.; Yang, Q.; Wang, Z.; Li, Y.; Cheng, L.; Yao, B.; Lu, Q. Changes in land use and ecosystem service values of Dunhuang Oasis from 1990 to 2030. Remote Sens. 2023, 15, 564. [Google Scholar] [CrossRef]
- Yang, J.; Gao, F.; Xu, H.; Liu, K.; Han, F. Spatial and temporal evolution of ecosystem service value and its driving factors in the Aksu River Basin. Environ. Sci. 2025, 46, 2385–2397. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Wu, S.; Tong, Z. Developing ecological protection redline policy for land use pattern optimization in the typical black soil region of Northeastern China. Front. Environ. Sci. 2024, 12, 1422077. [Google Scholar] [CrossRef]
- Tölgyesi, C.; Csikós, N.; Temperton, V.M.; Buisson, E.; Silveira, F.A.O.; Lehmann, C.E.R.; Török, P.; Bátori, Z.; Bede-Fazekas, Á. Limited carbon sequestration potential from global ecosystem restoration. Nat. Geosci. 2025, 18, 761–768. [Google Scholar] [CrossRef]
- Song, X.; Xu, M.; Kang, S.; Wang, R.; Wu, H. Evaluation and projection of changes in temperature and precipitation over Northwest China based on CMIP6 models. Int. J. Climatol. 2024, 44, 5039–5056. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Meadows, M.E. Ecological restoration for sustainable development in China. Natl. Sci. Rev. 2023, 10, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wu, B.; Wang, Y.; Li, Y. Ecological achievement of Xinjiang production and construction corps and its problems and countermeasures. Bull. Chin. Acad. Sci. 2017, 32, 55–63. [Google Scholar] [CrossRef]
- Fan, Z.; Wu, S.; Wu, Y.; Zhang, P.; Zhao, X.; Zhang, J. The land reclamation in Xinjiang since the founding of new China. J. Nat. Resour. 2013, 28, 713–720. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Fang, G.; Li, Z.; Wang, F.; Qin, J.; Sun, F. Potential risks and challenges of climate change in the arid region of northwestern China. Reg. Sustain. 2020, 1, 20–30. [Google Scholar] [CrossRef]
- Abuduaini, A.; Ren, Q.; Wang, Y.; Yu, J.; Long, A.; Zhang, J. Analysis on the matching characteristics and stability of oasis water and land resources in the Tarim River Basin. J. China Inst. Water Resour. Hydropower Res. 2022, 20, 71–78. [Google Scholar] [CrossRef]
- Sequeira, E.; Leão de Sousa, P.; Correia, A.M.; Rolim, J. The current status of irrigated agriculture in cape verde and its link to water scarcity. Agronomy 2025, 15, 1625. [Google Scholar] [CrossRef]
Category | Name | Spatial Resolution | Source |
---|---|---|---|
Land Use Data | Land use types (1990, 2000, 2010, 2020) | 30 m | Geospatial Data Cloud (https://www.gscloud.cn/, accessed on 4 April 2024) |
Socioeconomic Data | Population | 1 km | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 10 July 2024) |
GDP | |||
Distance Data | Distance to primary roads | / | National Geomatics Information Center (https://www.webmap.cn/, accessed on 15 July 2024) |
Distance to secondary roads | |||
Distance to tertiary roads | |||
Distance to county government | |||
Distance to water | |||
Climate and Environmental Data | Soil type | 1 km | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 10 July 2024) |
Annual average precipitation | |||
Annual average temperature | |||
Elevation (DEM) | 30 m | Geospatial Data Cloud (https://www.gscloud.cn/, accessed on 4 April 2024) | |
Slope |
Category | Ecosystem Service | Cultivated Land | Forest | Grassland | Water | Unused Land |
---|---|---|---|---|---|---|
Provisioning services | Food production | 1124.22 | 256.89 | 237.39 | 444.26 | 5.09 |
Raw material production | 249.26 | 590.09 | 349.31 | 247.57 | 15.26 | |
Water supply | −1327.70 | 305.22 | 193.30 | 4422.27 | 10.17 | |
Regulating services | Gas regulation | 905.48 | 1940.68 | 1227.66 | 966.52 | 66.13 |
Climate regulation | 473.09 | 5806.78 | 3245.49 | 2180.61 | 50.87 | |
Environmental purification | 137.35 | 1701.59 | 1071.66 | 3157.31 | 208.57 | |
Hydrological regulation | 1521.00 | 3799.97 | 2377.31 | 45,307.96 | 122.09 | |
Supporting services | Soil retention | 529.04 | 2362.90 | 1495.57 | 1098.79 | 76.30 |
Nutrient cycling | 157.70 | 180.59 | 115.30 | 84.78 | 5.09 | |
Biodiversity maintenance | 172.96 | 2151.79 | 1359.92 | 3537.14 | 71.22 | |
Cultural services | Esthetic landscape | 76.30 | 943.63 | 600.26 | 2275.57 | 30.52 |
Total | / | 4018.71 | 20,040.12 | 12,273.17 | 63,722.79 | 661.31 |
Type | Natural Development Scenario (NDS) | Production and Construction Scenario (PCS) | Cultivated Land Protection Scenario (CPS) | Ecological Protection Scenario (EPS) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
d | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
e | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Year | Carbon Source/×104 t | Carbon Sink/×104 t | Net Carbon Emissions /×104 t | ||||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Construction Land | Total | Forest | Grassland | Water | Unused Land | Total | ||
1990 | 4.62 | 19.28 | 23.90 | −1.79 | −1.29 | −5.81 | −0.23 | −9.11 | 14.78 |
2000 | 5.59 | 31.33 | 36.93 | −2.46 | −1.25 | −5.86 | −0.22 | −9.78 | 27.15 |
2010 | 7.69 | 86.55 | 94.24 | −1.32 | −1.16 | −1.54 | −0.31 | −4.33 | 89.91 |
2020 | 8.93 | 160.24 | 169.17 | −1.29 | −1.00 | −2.01 | −0.32 | −4.63 | 164.55 |
Year | Moran’s I | p | z |
---|---|---|---|
1990 | −0.188 | <0.001 | −29.779 |
2000 | −0.165 | <0.001 | −27.713 |
2010 | −0.058 | <0.001 | −9.845 |
2020 | −0.065 | <0.001 | −11.035 |
Year | Scenarios | Moran’s I | p | z |
---|---|---|---|---|
2030 | NDS | −0.0521 | <0.001 | −8.7067 |
PCS | −0.0657 | <0.001 | −10.9012 | |
CPS | −0.0509 | <0.001 | −8.1292 | |
EPS | −0.0522 | <0.001 | −8.516 | |
2040 | NDS | −0.0609 | <0.001 | −10.0042 |
PCS | −0.0821 | <0.001 | −12.8477 | |
CPS | −0.055 | <0.001 | −9.128 | |
EPS | −0.0611 | <0.001 | −10.0111 | |
2050 | NDS | −0.0565 | <0.001 | −9.0101 |
PCS | −0.0827 | <0.001 | −13.9905 | |
CPS | −0.0538 | <0.001 | −9.2033 | |
EPS | −0.0569 | <0.001 | −9.3634 |
Type | NDS | PCS | CPS | EPS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2030 | 2040 | 2050 | 2030 | 2040 | 2050 | 2030 | 2040 | 2050 | 2030 | 2040 | 2050 | |
High–High | 108.3 | 82.3 | 72.6 | 97.9 | 124.6 | 110.6 | 104.8 | 86.2 | 80.5 | 111.1 | 79.7 | 75.4 |
High–Low | 684.1 | 707.4 | 619.0 | 619.8 | 692.7 | 633.1 | 682.8 | 701.0 | 601.5 | 636.8 | 599.4 | 652.5 |
Low–High | 392.1 | 404.2 | 393.5 | 728.5 | 956.6 | 1018.2 | 426.8 | 374.9 | 390.8 | 392.4 | 443.8 | 403.5 |
Low–Low | 2188.1 | 2017.4 | 1952.4 | 1942.6 | 2004.8 | 1956.4 | 2102.8 | 2076.8 | 1957.6 | 1999.1 | 1957.4 | 1878.2 |
Severe disorder | 33.9 | 33.9 | 37.6 | 30.1 | 33.9 | 30.1 | 18.8 | 26.3 | 33.9 | 33.9 | 33.9 | 37.6 |
Moderate disorder | 4413.4 | 4168.8 | 4195.1 | 4451.0 | 4217.7 | 4236.5 | 4435.9 | 4112.4 | 4146.2 | 4424.6 | 4217.7 | 4108.6 |
Borderline disorder | 1854.9 | 1869.9 | 2114.5 | 2005.4 | 1971.5 | 2434.3 | 1843.6 | 1903.8 | 2174.7 | 1828.6 | 1971.5 | 2182.2 |
Elementary coordination | 2329.0 | 2400.4 | 2366.6 | 2178.5 | 2332.7 | 2046.8 | 2351.5 | 2430.5 | 2355.3 | 2329.0 | 2332.7 | 2344.0 |
Intermediate coordination | 4541.3 | 4703.1 | 4646.6 | 4514.9 | 4736.9 | 4616.5 | 4533.8 | 4718.1 | 4650.4 | 4556.3 | 4736.9 | 4684.3 |
Excellent coordination | 1136.3 | 1132.5 | 948.1 | 1128.7 | 1015.9 | 944.4 | 1125.0 | 1117.5 | 948.1 | 1136.3 | 1015.9 | 951.9 |
Year | Cultivated Land (CL) | Forest (F) | Grassland (G) | Water (W) | Unused Land (UL) |
---|---|---|---|---|---|
1990 | 0.018 | 0.024 | 0.322 | 0.624 | 0.013 |
2000 | 0.022 | 0.032 | 0.309 | 0.625 | 0.012 |
2010 | 0.058 | 0.034 | 0.557 | 0.318 | 0.034 |
2020 | 0.065 | 0.032 | 0.466 | 0.403 | 0.034 |
2030NDS | 0.070 | 0.030 | 0.394 | 0.473 | 0.033 |
2030PCS | 0.070 | 0.030 | 0.392 | 0.475 | 0.034 |
2030CPS | 0.070 | 0.030 | 0.394 | 0.473 | 0.033 |
2030EPS | 0.070 | 0.030 | 0.394 | 0.473 | 0.033 |
2040NDS | 0.076 | 0.029 | 0.396 | 0.467 | 0.031 |
2040PCS | 0.074 | 0.029 | 0.398 | 0.469 | 0.031 |
2040CPS | 0.078 | 0.029 | 0.396 | 0.466 | 0.031 |
2040EPS | 0.079 | 0.036 | 0.412 | 0.440 | 0.033 |
2050NDS | 0.085 | 0.036 | 0.427 | 0.418 | 0.034 |
2050PCS | 0.081 | 0.037 | 0.429 | 0.419 | 0.035 |
2050CPS | 0.086 | 0.036 | 0.426 | 0.417 | 0.034 |
2050EPS | 0.084 | 0.043 | 0.425 | 0.414 | 0.034 |
Year | CL + 50% | CL − 50% | F + 50% | F − 50% | GL + 50% | GL − 50% | W + 50% | W − 50% | UL + 50% | UL − 50% |
---|---|---|---|---|---|---|---|---|---|---|
1990 | −0.117 | −0.127 | −0.125 | −0.118 | −0.136 | −0.104 | −0.074 | −0.290 | −0.123 | −0.121 |
2000 | −0.099 | −0.110 | −0.106 | −0.103 | −0.117 | −0.090 | −0.065 | −0.240 | −0.106 | −0.104 |
2010 | −0.230 | −0.335 | −0.261 | −0.305 | −0.317 | −0.191 | −0.181 | −0.480 | −0.300 | −0.268 |
2020 | −0.013 | −0.186 | −0.065 | −0.137 | −0.172 | −0.019 | −0.067 | −0.157 | −0.122 | −0.081 |
2030NDS | −0.167 | −0.111 | −0.136 | −0.143 | −0.104 | −0.168 | −0.097 | −0.204 | −0.136 | −0.142 |
2030PCS | −0.258 | −0.241 | −0.253 | −0.246 | −0.246 | −0.231 | −0.155 | −0.491 | −0.249 | −0.251 |
2030CPS | −0.169 | −0.145 | −0.158 | −0.156 | −0.137 | −0.166 | −0.103 | −0.274 | −0.161 | −0.154 |
2030EPS | −0.007 | −0.028 | −0.013 | −0.022 | −0.033 | −0.003 | −0.009 | −0.046 | −0.019 | −0.016 |
2040NDS | −0.022 | −0.038 | −0.020 | −0.041 | −0.050 | −0.003 | −0.018 | −0.062 | −0.028 | −0.033 |
2040PCS | −0.145 | −0.151 | −0.162 | −0.133 | −0.188 | −0.084 | −0.068 | −0.438 | −0.146 | −0.151 |
2040CPS | −0.022 | 0.009 | −0.024 | −0.012 | −0.048 | −0.074 | −0.017 | −0.066 | −0.009 | −0.003 |
2040EPS | −0.107 | −0.106 | −0.105 | −0.108 | −0.129 | −0.637 | −0.550 | −0.266 | −0.105 | −0.109 |
2050NDS | −0.231 | −0.224 | −0.385 | −0.635 | −0.171 | −0.272 | −0.095 | −0.684 | −0.228 | −0.228 |
2050PCS | −0.410 | −0.487 | −0.400 | −0.500 | −0.105 | −0.364 | −0.001 | −0.252 | −0.436 | −0.466 |
2050CPS | −0.143 | −0.111 | −0.131 | −0.122 | −0.129 | −0.109 | −0.665 | −0.312 | −0.131 | −0.123 |
2050EPS | −0.283 | −0.243 | −0.271 | −0.253 | −0.310 | −0.166 | −0.125 | −0.697 | −0.259 | −0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ning, S.; Yan, A.; Jiang, P.; Ren, H.; Li, N.; Huo, T.; Sheng, J. Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China. Agronomy 2025, 15, 2307. https://doi.org/10.3390/agronomy15102307
Zhao Y, Ning S, Yan A, Jiang P, Ren H, Li N, Huo T, Sheng J. Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China. Agronomy. 2025; 15(10):2307. https://doi.org/10.3390/agronomy15102307
Chicago/Turabian StyleZhao, Yiqi, Songrui Ning, An Yan, Pingan Jiang, Huipeng Ren, Ning Li, Tingting Huo, and Jiandong Sheng. 2025. "Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China" Agronomy 15, no. 10: 2307. https://doi.org/10.3390/agronomy15102307
APA StyleZhao, Y., Ning, S., Yan, A., Jiang, P., Ren, H., Li, N., Huo, T., & Sheng, J. (2025). Analysis of Carbon Emissions and Ecosystem Service Value Caused by Land Use Change, and Its Coupling Characteristics in the Wensu Oasis, Northwest China. Agronomy, 15(10), 2307. https://doi.org/10.3390/agronomy15102307