Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,188)

Search Parameters:
Keywords = Echo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 519 KiB  
Article
Bridging the Capacity Building Gap for Antimicrobial Stewardship Implementation: Evidence from Virtual Communities of Practice in Kenya, Ghana, and Malawi
by Ana C. Barbosa de Lima, Kwame Ohene Buabeng, Mavis Sakyi, Hope Michael Chadwala, Nicole Devereaux, Collins Mitambo, Christine Mugo-Sitati, Jennifer Njuhigu, Gunturu Revathi, Emmanuel Tanui, Jutta Lehmer, Jorge Mera and Amy V. Groom
Antibiotics 2025, 14(8), 794; https://doi.org/10.3390/antibiotics14080794 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through [...] Read more.
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through Antimicrobial Stewardship (TEACH AMS), which uses the virtual Extension for Community Healthcare Outcomes (ECHO) learning model to enhance AMS capacity in Kenya, Ghana, and Malawi. Methods: A mixed-methods approach was used, which included attendance data collection, facility-level assessments, post-session and follow-up surveys, as well as focus group discussions. Results: Between September 2023 and February 2025, 77 virtual learning sessions were conducted, engaging 2445 unique participants from hospital-based AMS committees and health professionals across the three countries. Participants reported significant knowledge gain, and data showed facility improvements in two core AMS areas, including the implementation of multidisciplinary ward-based interventions/communications and enhanced monitoring of antibiotic resistance patterns. Along those lines, participants reported that the program assisted them in improving prescribing and culture-based treatments, and also evidence-informed antibiotic selection. The evidence of implementing ward-based interventions was further stressed in focus group discussions, as well as other strengthened practices like point-prevalence surveys, and development or revision of stewardship policies. Substantial improvements in microbiology services were also shared by participants, particularly in Malawi. Other practices mentioned were strengthened multidisciplinary communication, infection prevention efforts, and education of patients and the community. Conclusion: Our findings suggest that a virtual case-based learning educational intervention, providing structured and tailored AMS capacity building, can drive behavior change and strengthen healthcare systems in low resource settings. Future efforts should aim to scale up the engagements and sustain improvements to further strengthen AMS capacity. Full article
30 pages, 15717 KiB  
Article
Channel Amplitude and Phase Error Estimation of Fully Polarimetric Airborne SAR with 0.1 m Resolution
by Jianmin Hu, Yanfei Wang, Jinting Xie, Guangyou Fang, Huanjun Chen, Yan Shen, Zhenyu Yang and Xinwen Zhang
Remote Sens. 2025, 17(15), 2699; https://doi.org/10.3390/rs17152699 - 4 Aug 2025
Abstract
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution [...] Read more.
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution degradation and paired echoes caused by multichannel amplitude–phase mismatch in fully polarimetric airborne SAR with 0.1 m resolution, an amplitude–phase error estimation algorithm based on echo data is proposed in this paper. Firstly, the subband amplitude spectrum correction curve is obtained by the statistical average of the subband amplitude spectrum. Secondly, the paired-echo broadening function is obtained by selecting high-quality sample points after single-band imaging and the nonlinear phase error within the subbands is estimated via Sinusoidal Frequency Modulation Fourier Transform (SMFT). Thirdly, based on the minimum entropy criterion of the synthesized compressed pulse image, residual linear phase errors between subbands are quickly acquired. Finally, two-dimensional cross-correlation of the image slice is utilized to estimate the positional deviation between polarization channels. This method only requires high-quality data samples from the echo data, then rapidly estimates both intra-band and inter-band amplitude/phase errors by using SMFT and the minimum entropy criterion, respectively, with the characteristics of low computational complexity and fast convergence speed. The effectiveness of this method is verified by the imaging results of the experimental data. Full article
Show Figures

Figure 1

18 pages, 18529 KiB  
Article
An Adaptive SVD-Based Approach to Clutter Suppression for Slow-Moving Targets
by Yuhao Hou and Baixiao Chen
Remote Sens. 2025, 17(15), 2697; https://doi.org/10.3390/rs17152697 - 4 Aug 2025
Abstract
The presence of strong clutter remains a critical challenge for radar system target detection. Traditional clutter suppression techniques such as Doppler-based filters often fail to extract low-velocity targets from clutter. To address this limitation, this paper proposes an adaptive singular value decomposition (A-SVD) [...] Read more.
The presence of strong clutter remains a critical challenge for radar system target detection. Traditional clutter suppression techniques such as Doppler-based filters often fail to extract low-velocity targets from clutter. To address this limitation, this paper proposes an adaptive singular value decomposition (A-SVD) method utilizing support vector machines (SVM). The proposed approach leverages the augmented implicitly restarted Lanczos bidiagonalization (AIRLB) algorithm to decompose echo matrices into different subspaces, which are then characterized in relation to Doppler frequency, energy, and correlation. These features are employed to classify the clutter subspaces using an SVM classifier, which solves the problem of selecting the SVD threshold. The clutter subspaces are suppressed by zeroing out corresponding singular values, and the matrix is then recomposed by the rest of the subspaces to recover the echo. Experiments on simulated and real datasets show that the proposed method achieves an average improvement factor (IF) above 40 dB and reduces runtime by over 85% in most scenarios. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Myocardial Strain Measurements Obtained with Fast-Strain-Encoded Cardiac Magnetic Resonance for the Risk Prediction and Early Detection of Chemotherapy-Related Cardiotoxicity Compared to Left Ventricular Ejection Fraction
by Daniel Lenihan, James Whayne, Farouk Osman, Rafael Rivero, Moritz Montenbruck, Arne Kristian Schwarz, Sebastian Kelle, Pia Wülfing, Susan Dent, Florian Andre, Norbert Frey, Grigorios Korosoglou and Henning Steen
Diagnostics 2025, 15(15), 1948; https://doi.org/10.3390/diagnostics15151948 - 3 Aug 2025
Viewed by 65
Abstract
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and [...] Read more.
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and tailored to reverse cardiac dysfunction and prevent the discontinuation of essential cancer treatments. Objectives: The PRoactive Evaluation of Function to Evade Cardio Toxicity (PREFECT) study sought to evaluate the ability of fast-strain-encoded (F-SENC) cardiac magnetic resonance imaging (CMR) and 2D echocardiography (2D Echo) to stratify patients at risk of CTX prior to initiating cancer treatment, detect early signs of cardiac dysfunction, including subclinical CTX (sub-CTX) and CTX, and monitor for recovery (REC) during cardioprotective therapy. Methods: Fifty-nine patients with breast cancer or lymphoma were prospectively monitored for CTX with F-SENC CMR and 2D Echo over at least 1 year for evidence of cardiac dysfunction during anthracycline based chemotherapy. F-SENC CMR also monitored myocardial deformation in 37 left ventricular (LV) segments to obtain a MyoHealth risk score based on both longitudinal and circumferential strain. Sub-CTX and CTX were classified based on pre-specified cardiotoxicity definitions. Results: CTX was observed in 9/59 (15%) and sub-CTX in 24/59 (41%) patients undergoing chemotherapy. F-SENC CMR parameters at baseline predicted CTX with a lower LVEF (57 ± 5% vs. 61 ± 5% for all, p = 0.05), as well as a lower MyoHealth (70 ± 9 vs. 79 ± 11 for all, p = 0.004) and a worse global circumferential strain (GCS) (−18 ± 1 vs. −20 ± 1 for all, p < 0.001). Pre-chemotherapy MyoHealth had a higher accuracy in predicting the development of CTX compared to CMR LVEF and 2D Echo LVEF (AUC = 0.85, 0.69, and 0.57, respectively). The 2D Echo parameters on baseline imaging did not stratify CTX risk. F-SENC CMR obtained good or excellent images in 320/322 (99.4%) scans. During cancer treatment, MyoHealth had a high accuracy of detecting sub-CTX or CTX (AUC = 0.950), and the highest log likelihood ratio (indicating a higher probability of detecting CTX) followed by F-SENC GLS and F-SENC GCS. CMR LVEF and CMR LV stroke volume index (LVSVI) also significantly worsened in patients developing CTX during cancer treatment. Conclusions: F-SENC CMR provided a reliable and accurate assessment of myocardial function during anthracycline-based chemotherapy, and demonstrated accurate early detection of CTX. In addition, MyoHealth allows for the robust identification of patients at risk for CTX prior to treatment with higher accuracy than LVEF. Full article
(This article belongs to the Special Issue New Perspectives in Cardiac Imaging)
Show Figures

Figure 1

42 pages, 5770 KiB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 - 2 Aug 2025
Viewed by 206
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

43 pages, 2466 KiB  
Article
Adaptive Ensemble Learning for Financial Time-Series Forecasting: A Hypernetwork-Enhanced Reservoir Computing Framework with Multi-Scale Temporal Modeling
by Yinuo Sun, Zhaoen Qu, Tingwei Zhang and Xiangyu Li
Axioms 2025, 14(8), 597; https://doi.org/10.3390/axioms14080597 - 1 Aug 2025
Viewed by 128
Abstract
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional [...] Read more.
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional networks, mixture density networks, adaptive Hypernetworks, and deep state-space models for enhanced financial time-series prediction. Through comprehensive feature engineering incorporating technical indicators, spectral decomposition, reservoir-based representations, and flow dynamics characteristics, the framework achieves superior forecasting performance across diverse market conditions. Experimental validation on 26,817 balanced samples demonstrates exceptional results with an F1-score of 0.8947, representing a 12.3% improvement over State-of-the-Art baseline methods, while maintaining robust performance across asset classes from equities to cryptocurrencies. The adaptive Hypernetwork mechanism enables real-time regime-change detection with 2.3 days average lag and 95% accuracy, while systematic SHAP analysis provides comprehensive interpretability essential for regulatory compliance. Ablation studies reveal Echo State Networks contribute 9.47% performance improvement, validating the architectural design. The AFRN–HyperFlow framework addresses critical limitations in uncertainty quantification, regime adaptability, and interpretability, offering promising directions for next-generation financial forecasting systems incorporating quantum computing and federated learning approaches. Full article
(This article belongs to the Special Issue Financial Mathematics and Econophysics)
Show Figures

Figure 1

17 pages, 5323 KiB  
Review
Contrast-Enhanced Harmonic Endoscopic Ultrasonography for Prediction of Aggressiveness and Treatment Response in Patients with Pancreatic Lesions
by Marco Spadaccini, Gianluca Franchellucci, Marta Andreozzi, Maria Terrin, Matteo Tacelli, Piera Zaccari, Maria Chiara Petrone, Gaetano Lauri, Matteo Colombo, Valeria Poletti, Giacomo Marcozzi, Antonella Durante, Roberto Leone, Maria Margherita Massaro, Antonio Facciorusso, Alessandro Fugazza, Alessandro Repici, Paolo Giorgio Arcidiacono and Silvia Carrara
Cancers 2025, 17(15), 2545; https://doi.org/10.3390/cancers17152545 - 1 Aug 2025
Viewed by 319
Abstract
Endoscopic ultrasonography represents a crucial aspect of the diagnosis of pancreatic lesions. The echo-endoscopic features of pancreatic lesions, particularly their contrast behavior with the advent of Contrast-Enhanced EUS (CE-EUS) and Contrast Enhanced Harmonic-EUS (CH-EUS), can predict a lesion’s aggressiveness, depending on its nature. [...] Read more.
Endoscopic ultrasonography represents a crucial aspect of the diagnosis of pancreatic lesions. The echo-endoscopic features of pancreatic lesions, particularly their contrast behavior with the advent of Contrast-Enhanced EUS (CE-EUS) and Contrast Enhanced Harmonic-EUS (CH-EUS), can predict a lesion’s aggressiveness, depending on its nature. According to this, CH-EUS could be applied to structure an even more dedicated approach to patient care, for example, to ascertain eligibility for surgical intervention of a pancreatic ductal adenocarcinoma (PDAC) or the response to neoadjuvant chemotherapy in cases deemed borderline resectable. In addition to PDAC, other significant issues pertain to the management of small neuroendocrine tumors (NETs) and intraductal papillary mucinous neoplasms (IPMNs). In this context, CH-EUS can be crucial. The aim of this review is to underline the most recent evidence for EUS and CH-EUS applications in pancreatic lesion aggressiveness assessment and to focus on possible future research directions to further extend the application of CH-EUS in this field. Full article
(This article belongs to the Special Issue Clinical Applications of Ultrasound in Cancer Imaging and Treatment)
Show Figures

Figure 1

30 pages, 427 KiB  
Article
From The Demon to the Secret Voice: Archetypal Echoes and Oral Culture in 19th Century Romantic Poetry
by Gül Mükerrem Öztürk
Humanities 2025, 14(8), 160; https://doi.org/10.3390/h14080160 - 31 Jul 2025
Viewed by 128
Abstract
The first half of the 19th century witnessed the rise of Romantic poetry, which focused in depth on individual consciousness, inner worlds, and metaphysical inquiries. This poetic orientation became particularly evident in works centred on themes such as solitude, alienation, and existential quests. [...] Read more.
The first half of the 19th century witnessed the rise of Romantic poetry, which focused in depth on individual consciousness, inner worlds, and metaphysical inquiries. This poetic orientation became particularly evident in works centred on themes such as solitude, alienation, and existential quests. Within this context, the present study aims to examine the archetypal and poetic resonances of the poetic voice in Mihail Lermontov’s poem The Demon, based on its sixth and final version dated 1841, in relation to Nikoloz Baratashvili’s poem Secret Voice. Lermontov’s poem is analyzed through the English translation by Charles Johnston, published in 1983, while Baratashvili’s poem is discussed based on the 24-line version included in the fifth edition (1895) of the anthology Poems and Letters (Leksebi da Tserilebi). This study explores the thematic and structural similarities between the two poems within the framework of comparative literature and psychoanalytic criticism, focusing on Romantic archetypes, the uncanny, the shadow figure, and ontological solitude. Furthermore, the dialogue established between Lermontov’s demonic narrator and Baratashvili’s introspective poetic voice reopens discussions on the boundaries of cultural memory, oral narrative patterns, and poetic identity. Ultimately, this comparative analysis reveals the implicit influences of The Demon on Georgian poetry and discusses the intercultural resonances of themes such as voice, self, and archetype in Romantic poetry. Full article
(This article belongs to the Section Literature in the Humanities)
24 pages, 3953 KiB  
Article
A New Signal Separation and Sampling Duration Estimation Method for ISRJ Based on FRFT and Hybrid Modality Fusion Network
by Siyu Wang, Chang Zhu, Zhiyong Song, Zhanling Wang and Fulai Wang
Remote Sens. 2025, 17(15), 2648; https://doi.org/10.3390/rs17152648 - 30 Jul 2025
Viewed by 203
Abstract
Accurate estimation of Interrupted Sampling Repeater Jamming (ISRJ) sampling duration is essential for effective radar anti-jamming. However, in complex electromagnetic environments, the simultaneous presence of suppressive and deceptive jamming, coupled with significant signal overlap in the time–frequency domain, renders ISRJ separation and parameter [...] Read more.
Accurate estimation of Interrupted Sampling Repeater Jamming (ISRJ) sampling duration is essential for effective radar anti-jamming. However, in complex electromagnetic environments, the simultaneous presence of suppressive and deceptive jamming, coupled with significant signal overlap in the time–frequency domain, renders ISRJ separation and parameter estimation considerably challenging. To address this challenge, this paper proposes a method utilizing the Fractional Fourier Transform (FRFT) and a Hybrid Modality Fusion Network (HMFN) for ISRJ signal separation and sampling-duration estimation. The proposed method first employs FRFT and a time–frequency mask to separate the ISRJ and target echo from the mixed signal. This process effectively suppresses interference and extracts the ISRJ signal. Subsequently, an HMFN is employed for high-precision estimation of the ISRJ sampling duration, offering crucial parameter support for active electromagnetic countermeasures. Simulation results validate the performance of the proposed method. Specifically, even under strong interference conditions with a Signal-to-Jamming Ratio (SJR) of −5 dB for deceptive jamming and as low as −10 dB for suppressive jamming, the regression model’s coefficient of determination still reaches 0.91. This result clearly demonstrates the method’s robustness and effectiveness in complex electromagnetic environments. Full article
Show Figures

Figure 1

18 pages, 4411 KiB  
Article
Research on Enhancing Target Recognition Rate Based on Orbital Angular Momentum Spectrum with Assistance of Neural Network
by Guanxu Chen, Hongyang Wang, Hao Yun, Zhanpeng Shi, Zijing Zhang, Chengshuai Cui, Di Wu, Xinran Lyu and Yuan Zhao
Photonics 2025, 12(8), 771; https://doi.org/10.3390/photonics12080771 - 30 Jul 2025
Viewed by 212
Abstract
In this paper, the single-mode vortex beam is used to illuminate targets of different shapes, and the targets are recognized using machine learning algorithms based on the orbital angular momentum (OAM) spectral information of the echo signal. We innovatively utilize three neural networks—multilayer [...] Read more.
In this paper, the single-mode vortex beam is used to illuminate targets of different shapes, and the targets are recognized using machine learning algorithms based on the orbital angular momentum (OAM) spectral information of the echo signal. We innovatively utilize three neural networks—multilayer perceptron (MLP), convolutional neural network (CNN) and residual neural network (ResNet)—to train extensive echo OAM spectrum data. The trained models can rapidly and accurately classify the OAM spectrum data of different targets’ echo signals. The results show that the residual network (ResNet) performs best under all turbulence intensities and can achieve a high recognition rate when Cn2=1×1013 m2/3. In addition, even when the target size is η=0.3, the recognition rate of ResNet can reach 97%, while the robustness of MLP and CNN to the target size is lower; the recognition rates are 91.75% and 91%, respectively. However, although the recognition performance of CNN and MLP is slightly lower than that of ResNet, their training time is much lower than that of ResNet, which can achieve a good balance between recognition performance and training time cost. This research has a promising future in the fields of target recognition and intelligent navigation based on multi-dimensional information. Full article
(This article belongs to the Special Issue Advancements in Optics and Laser Measurement)
Show Figures

Figure 1

17 pages, 384 KiB  
Article
Reading Between the Lines: Toward a Methodology for Tracing Manichaean Echoes in the Epistulae of Augustine of Hippo
by Marc-Thilo Glowacki and Anthony Dupont
Religions 2025, 16(8), 981; https://doi.org/10.3390/rel16080981 - 29 Jul 2025
Viewed by 249
Abstract
Augustine of Hippo (354–430), one of the most influential theologians of Late Antiquity, spent nearly a decade in the Manichaean sect before becoming a central figure in the shaping of Western “orthodox” Christianity. While his major works such as the Confessiones and De [...] Read more.
Augustine of Hippo (354–430), one of the most influential theologians of Late Antiquity, spent nearly a decade in the Manichaean sect before becoming a central figure in the shaping of Western “orthodox” Christianity. While his major works such as the Confessiones and De civitate Dei have been extensively studied for their treatment of Manichaeism, the vast collection of his ca. 300 preserved letters (Epistulae) remains an understudied source for understanding this aspect of his intellectual and theological development. This article addresses that gap by proposing a methodology to identify both anti- and crypto-Manichaean themes in his letters. Drawing on phenomenological openness, hermeneutical perspective, and close reading, the study also incorporates genuine Manichaean sources and anti-Manichaean polemics to contextualise Augustine’s rhetorical strategies. The Epistulae, unpolished and situated in specific communicative contexts, offer a unique view of Augustine’s doctrinal positioning after his conversion. Traces of his Manichaean past re-emerge in vocabulary, argumentation, and theological emphasis. This is exemplified in Epistula 137 to Volusianus (411–412), which, without naming the sect, covertly critiques key Manichaean doctrines such as Docetism and materialism. These critiques align with extant Manichaean sources and may reflect Augustine’s awareness of latent Manichaean influence in Christian communities. By bringing the Epistulae into the broader discussion of Augustine’s anti-Manichaean engagement, this study highlights their value as a window into his theological evolution and pastoral strategy in a religiously contested environment. Full article
27 pages, 14921 KiB  
Article
Analysis of the Dynamic Process of Tornado Formation on 28 July 2024
by Xin Zhou, Ling Yang, Shuqing Ma, Ruifeng Wang, Zhaoming Li, Yuchen Song, Yongsheng Gao and Jinyan Xu
Remote Sens. 2025, 17(15), 2615; https://doi.org/10.3390/rs17152615 - 28 Jul 2025
Viewed by 284
Abstract
An EF1 tornado struck Nansha District, Guangzhou, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct [...] Read more.
An EF1 tornado struck Nansha District, Guangzhou, Guangdong, on 28 July 2024. To explore the dynamic and thermodynamic changes during the tornado’s life cycle, high-resolution spatiotemporal data from Foshan’s X-band phased-array radar and the direct wind field synthesis algorithm were used to reconstruct the 3D wind field. The dynamics and 3D structure of the tornado were analysed, with a new parameter, vorticity volume (VV), introduced to study its variation. The observation results indicate that the tornado moved roughly from south to north. During the tornado’s early stage (00:10–00:20 UTC), arc-shaped and annular echoes emerged and positive vorticity increased (peaking at 0.042 s−1). Based on the tornado’s movement direction, the right side of the vortex centre was divergent, while the left side was convergent, whereas the vorticity area and volume continued to grow centrally. During the mature stage (00:23–00:25 UTC), the echo intensity weakened and, at 00:24, the vorticity reached its peak and touched the ground, with the vorticity area and volume also reaching their peaks at the same time. During the dissipation stage (00:25–00:30 UTC), the vorticity and echo features faded and the vorticity area and volume also declined rapidly. The analysis showed that the vorticity volume effectively reflects the tornado’s life cycle, enhancing the understanding of the dynamic and thermodynamic processes during the tornado’s development. Full article
Show Figures

Figure 1

27 pages, 6456 KiB  
Article
An Open Multifunctional FPGA-Based Pulser/Receiver System for Intravascular Ultrasound (IVUS) Imaging and Therapy
by Amauri A. Assef, Paula L. S. de Moura, Joaquim M. Maia, Phuong Vu, Adeoye O. Olomodosi, Stephan Strassle Rojas and Brooks D. Lindsey
Sensors 2025, 25(15), 4599; https://doi.org/10.3390/s25154599 - 25 Jul 2025
Viewed by 343
Abstract
Coronary artery disease (CAD) is the third leading cause of disability and death globally. Intravascular ultrasound (IVUS) is the most commonly used imaging modality for the characterization of vulnerable plaques. The development of novel intravascular imaging and therapy devices requires dedicated open systems [...] Read more.
Coronary artery disease (CAD) is the third leading cause of disability and death globally. Intravascular ultrasound (IVUS) is the most commonly used imaging modality for the characterization of vulnerable plaques. The development of novel intravascular imaging and therapy devices requires dedicated open systems (e.g., for pulse sequences for imaging or thrombolysis), which are not currently available. This paper presents the development of a novel multifunctional FPGA-based pulser/receiver system for intravascular ultrasound imaging and therapy research. The open platform consists of a host PC with a Matlab-based software interface, an FPGA board, and a proprietary analog front-end board with state-of-the-art electronics for highly flexible transmission and reception schemes. The main features of the system include the capability to convert arbitrary waveforms into tristate bipolar pulses by using the PWM technique and by the direct acquisition of raw radiofrequency (RF) echo data. The results of a multicycle excitation pulse applied to a custom 550 kHz therapy transducer for acoustic characterization and a pulse-echo experiment conducted with a high-voltage, short-pulse excitation for a 19.48 MHz transducer are reported. Testing results show that the proposed system can be easily controlled to match the frequency and bandwidth required for different IVUS transducers across a broad class of applications. Full article
(This article belongs to the Special Issue Ultrasonic Imaging and Sensors II)
Show Figures

Figure 1

15 pages, 3892 KiB  
Article
Zero and Ultra-Short Echo Time Sequences at 3-Tesla Can Accurately Depicts the Normal Anatomy of the Human Achilles Tendon Enthesis Organ In Vivo
by Amandine Crombé, Benjamin Dallaudière, Marie-Camille Bohand, Claire Fournier, Paolo Spinnato, Nicolas Poursac, Michael Carl, Julie Poujol and Olivier Hauger
J. Clin. Med. 2025, 14(15), 5251; https://doi.org/10.3390/jcm14155251 - 24 Jul 2025
Viewed by 234
Abstract
Background/Objectives: Accurate visualization of the Achilles tendon enthesis is critical for distinguishing mechanical, degenerative, and inflammatory pathologies. Although ultrasonography is the first-line modality for suspected enthesis disease, recent technical advances may expand the role of magnetic resonance imaging (MRI). This study evaluated [...] Read more.
Background/Objectives: Accurate visualization of the Achilles tendon enthesis is critical for distinguishing mechanical, degenerative, and inflammatory pathologies. Although ultrasonography is the first-line modality for suspected enthesis disease, recent technical advances may expand the role of magnetic resonance imaging (MRI). This study evaluated the utility of ultra-short echo time (UTE) and zero echo time (ZTE) sequences versus proton density-weighted imaging (PD-WI) for depicting the enthesis organ in healthy volunteers. Methods: In this institutional review board (IRB)-approved prospective single-center study, 50 asymptomatic adult volunteers underwent 3-Tesla hindfoot MRI with fat-suppressed PD-WI, UTE, and ZTE between 2018 and 2023. Four radiologists assessed image quality, signal-to-noise ratio, visibility, and abnormal high signal intensities (SIs) of the periost, sesamoid, and enthesis fibrocartilages (PCa, SCa, and ECa, respectively). Statistical tests included Chi-square, McNemar, paired Wilcoxon, and Benjamini–Hochberg adjustments for multiple comparisons. Results: The median age was 36 years (range: 20–51); 58% women were included. PD-WI and ZTE sequences were always available while UTE was unavailable in 24% of patients. PD-WI consistently failed to concomitantly visualize all fibrocartilages. ZTE and UTE visualized all fibrocartilages in 72% and 92.1% of volunteers, respectively, with significant differences favoring ZTE and UTE over PD-WI (p < 0.0001) and UTE over ZTE (p = 0.027). Inter-rater agreement exceeded 80% except for SCa on ZTE (68%, 95%CI: 53.2–80.1). Abnormal SCa findings in asymptomatic patients were more frequent with UTE (23.7%) and ZTE (34%) than with PD-WI (2%) (p = 0.0045). Conclusions: At 3-Tesla, UTE and ZTE sequences reliably depict the enthesis organ of the Achilles tendon, outperforming PD-WI. However, the high sensitivity of these sequences also presents challenges in interpretation. Full article
Show Figures

Figure 1

13 pages, 246 KiB  
Article
A Multicentric Analysis of a Pre-Ecographic Score in Pregnancy: Time for a Dedicated Classification System
by Gianluca Campobasso, Fabio Castellana, Annalisa Tempesta, Alice Bottai, Annachiara Scatigno, Elisa Rizzo, Francesca Petrillo, Grazia Cappello, Prisco Piscitelli and Roberta Zupo
Epidemiologia 2025, 6(3), 39; https://doi.org/10.3390/epidemiologia6030039 - 24 Jul 2025
Viewed by 230
Abstract
Objectives: The objectives are to evaluate the influence of different maternal characteristics on ultrasound image quality and operator satisfaction, and to assess, preliminarily, a rating scale to stratify the difficulty level of ultrasound examination in early gestation. Methods: A multicentric observational [...] Read more.
Objectives: The objectives are to evaluate the influence of different maternal characteristics on ultrasound image quality and operator satisfaction, and to assess, preliminarily, a rating scale to stratify the difficulty level of ultrasound examination in early gestation. Methods: A multicentric observational study of ultrasound scans was carried out on singleton pregnant women undergoing routine gestational ultrasound at 11–14 weeks and 19–21 weeks of gestation at two Prenatal Care Centers in the Apulia region (Southern Italy). Inclusion criteria included the presence of one or more limiting features, i.e., obesity, retroverted uterus, myomas, previous abdominal surgery, and limited echo-absorption. Each woman was given an overall pre-echographic limiting score from 0 to 9. The outcome measure was the operator’s satisfaction with the examination, scored on a Likert scale. Nested linear regression models (raw, semi- and fully adjusted) were built for each of the two trimesters on the pre-ecographic limiting score (0–9 points) as dependent variables, with the operator’s satisfaction as the regressor. Results: The whole sample included 445 pregnant women. The two-center samples did not show statistically different baseline features. The operator’s satisfaction with the sonographic examination was significantly (and inversely) related to the pre-echographic limiting score, regardless of the mother’s age, the operator performing the ultrasound, the Hospital Center where the ultrasound examination was performed, and the duration of the sonographic examination. Conclusions: A number of maternal conditions need to be monitored for good ultrasound performance; using a specific rating scale to stratify the level of difficulty of the ultrasound examination at early gestation could represent a potentially useful tool, although it requires further validation. Full article
Show Figures

Graphical abstract

Back to TopTop