An Adaptive SVD-Based Approach to Clutter Suppression for Slow-Moving Targets
Abstract
1. Introduction
- The AIRLB algorithm is employed to accelerate the computation of the SVD algorithm. By focusing on the leading singular values and vectors, this method significantly reduces the computational complexity, making it suitable for large-scale radar datasets.
- This research dissects the subspace features related to the energy distribution, Doppler frequency, and temporal-spatial correlation in order to enhance subspace classification accuracy. These features collectively form a multidimensional space, which improves the classifier’s robustness in complex scenarios.
- An SVM classifier is introduced to divide clutter and non-clutter subspaces. By leveraging an SVM to discriminate between classes, the proposed method achieves precise subspace partitioning, thereby mitigating the dependency on unclear energy-related thresholds in conventional SVD-based methods.
- Experimental results verify the total performance of the proposed method on both simulated and real-world radar datasets. The method in this paper demonstrates significant improvements in clutter suppression and slow-moving target detection under challenging conditions.
2. Materials and Methods
2.1. Clutter Suppression with SVD
2.2. Rationale of A-SVD
2.2.1. Subspace Extraction via AIRLB
2.2.2. Energy
2.2.3. Doppler Frequency
2.2.4. Correlation
2.2.5. Classifier
3. Results
3.1. Experiments on Simulated Radar Echoes
3.2. Clutter and Target Generation
3.3. Training and Evaluation
3.4. Performance of A-SVD
3.5. Computational Complexity
3.6. Realistic Radar Dataset
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ritchie, M.; Fioranelli, F.; Griffiths, H.; Torvik, B. Micro-drone RCS analysis. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 452–456. [Google Scholar] [CrossRef]
- Mizushima, T.; Nakamura, R.; Hadama, H. Reflection Characteristics of Ultra-wideband Radar Echoes from Various Drones in Flight. In Proceedings of the 2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT), San Antonio, TX, USA, 26–29 January 2020; pp. 30–33. [Google Scholar] [CrossRef]
- Yuan, Z.; Yu, L.; Wang, Z.; Li, C.; Dallmann, T.; Fan, W. Experimental Analysis and Modeling of Mono-static UAV RCS for ISAC Channels. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 222–226. [Google Scholar] [CrossRef]
- Alhaji Musa, S.; Raja Abdullah, R.S.A.; Sali, A.; Ismail, A.; Abdul Rashid, N.E. Low-Slow-Small (LSS) Target Detection Based on Micro Doppler Analysis in Forward Scattering Radar Geometry. Sensors 2019, 19, 3332. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.N.; Liang, X.; Shui, P.L.; Zhang, J.K.; Zhang, S. Low-Velocity Small Target Detection With Doppler-Guided Retrospective Filter in High-Resolution Radar at Fast Scan Mode. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8937–8953. [Google Scholar] [CrossRef]
- Du, H.; Song, Y.; Jiang, N.; Wang, J.; Fan, C.; Huang, X. Method for Estimating SAR Ground-Moving Target Parameters with Azimuth Missing Data Based on Contrast Maximization. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5208617. [Google Scholar] [CrossRef]
- Jiang, N.; Chen, J.; Zhu, J.; Liang, B.; Yang, D.; Huang, X.; Xing, M. High Frame Rate Along-Track Swarm SAR Subaperture Collaboration Imaging for Moving Target. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5211721. [Google Scholar] [CrossRef]
- Skolnik, M.I. Radar Handbook; McGraw-Hill: New York, NY, USA, 1990. [Google Scholar]
- Xu, D.; Zhang, H. Study of Low-altitude Slow and Small Target Detection on Radar. In Proceedings of the 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017), Beijing, China, 25–26 March 2017; Atlantis Press: Dordrecht, The Netherlands, 2017; pp. 529–532. [Google Scholar] [CrossRef]
- Yang, Z.; Shu, Y.; Liao, G. Robust Ambiguous Clutter Suppression for the Near-Shore Water Areas With Spaceborne Multichannel SAR Systems. IEEE Geosci. Remote Sens. Lett. 2015, 12, 319–323. [Google Scholar] [CrossRef]
- Poon, M.W.; Khan, R.H.; Le-Ngoc, S. A singular value decomposition (SVD) based method for suppressing ocean clutter in high frequency radar. IEEE Trans. Signal Process. 1993, 41, 1421–1425. [Google Scholar] [CrossRef]
- Li, B.; Sun, G.C.; Xing, M.; Hu, Y.; Guo, L.; Bao, Z. Clutter Suppression via Subspace Projection for Spaceborne HRWS Multichannel SAR System. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1538–1542. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, S.P.; Wang, X.S. Radar Detection of Small Target in Sea Clutter Using Orthogonal Projection. IEEE Geosci. Remote Sens. Lett. 2019, 16, 382–386. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Yu, Q.; Zhu, D.; Meng, F. A weather signal detection algorithm based on EVD in elevation for airborne weather radar. Digit. Signal Process. 2021, 116, 103118. [Google Scholar] [CrossRef]
- Rohman, B.P.; Nishimoto, M. GPR Target Signal Enhancement Using Least Square Fitting Background and Multiple Clustering of Singular Values. Prog. Electromagn. Res. Lett. 2019, 83, 123–132. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; Tan, Z.; Pei, R. Echo signal extraction method of laser radar based on improved singular value decomposition and wavelet threshold denoising. Infrared Phys. Technol. 2018, 92, 327–335. [Google Scholar] [CrossRef]
- Zheng, C.; Xi, X.; Song, Z. Through-the-wall radar clutter mitigation using stepped-frequency signal. Electron. Lett. 2019, 55, 53–55. [Google Scholar] [CrossRef]
- Tivive, F.H.C.; Bouzerdoum, A.; Amin, M.G. A Subspace Projection Approach for Wall Clutter Mitigation in Through-the-Wall Radar Imaging. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2108–2122. [Google Scholar] [CrossRef]
- Abujarad, F.; Nadim, G.; Omar, A. Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD). In Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, Delft, Netherlands, 2–3 May 2005; IWAGPR 2005. pp. 37–42. [Google Scholar] [CrossRef]
- Meier, D.; Gashi, B.; Zech, C.; Baumann, B.; Link, T.; Schlechtweg, M.; Kühn, J.; Rösch, M.; Reindl, L.M. An Overview of Clutter Mitigation Methods for Tomographic Material Inspection. IEEE Trans. Microw. Theory Tech. 2021, 69, 846–860. [Google Scholar] [CrossRef]
- Zhao, X.; Ye, B. Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock. Mech. Syst. Signal Process. 2011, 25, 1617–1631. [Google Scholar] [CrossRef]
- Xue, Y.; Mu, K.; Wang, Y.; Chen, Y.; Zhong, P.; Wen, J. Robust Speech Steganography Using Differential SVD. IEEE Access 2019, 7, 153724–153733. [Google Scholar] [CrossRef]
- Demené, C.; Deffieux, T.; Pernot, M.; Osmanski, B.F.; Biran, V.; Gennisson, J.L.; Sieu, L.A.; Bergel, A.; Franqui, S.; Correas, J.M.; et al. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity. IEEE Trans. Med. Imaging 2015, 34, 2271–2285. [Google Scholar] [CrossRef]
- Baranger, J.; Arnal, B.; Perren, F.; Baud, O.; Tanter, M.; Demené, C. Adaptive Spatiotemporal SVD Clutter Filtering for Ultrafast Doppler Imaging Using Similarity of Spatial Singular Vectors. IEEE Trans. Med. Imaging 2018, 37, 1574–1586. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lanczos, C. An Iteration Method for the solution of the Eigenvalue Problem of Linear Differential and Integral Operators. J. Res. Natl. Bur. Stand. 1950, 45, 255–282. [Google Scholar] [CrossRef]
- Baglama, J.; Reichel, L. Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. SIAM J. Sci. Comput. 2005, 27, 19–42. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Gao, Y.; Ma, B. Sea Clutter Suppression Using Smoothed Pseudo-Wigner–Ville Distribution–Singular Value Decomposition during Sea Spikes. Remote Sens. 2023, 15, 5360. [Google Scholar] [CrossRef]
- Dong, Y.; Merrett, D. Analysis of L-band multi-channel sea clutter. IET Radar Sonar Navig. 2010, 4, 223–238. [Google Scholar] [CrossRef]
- Martens, D.; Baesens, B.; Van Gestel, T. Decompositional Rule Extraction from Support Vector Machines by Active Learning. IEEE Trans. Knowl. Data Eng. 2009, 21, 178–191. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, J.; Jiang, D.; Mao, B.; Liu, Y. Displacement Selfsensing Control of Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Motor Based on Least Square Support Vector Machine Optimized by IMFO. IEEE Trans. Power Electron. 2025, 40, 716–726. [Google Scholar] [CrossRef]
- Jakeman, E.; Pusey, P. A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propag. 1976, 24, 806–814. [Google Scholar] [CrossRef]
- Ward, K.; Tough, R.; Watts, S. Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd ed.; IET: Stevenage, UK, 2013. [Google Scholar]
Parameters | Value |
---|---|
Carrier Frequency | 3 |
Bandwidth | 30 |
Range Resolution | 5 |
Pulse Repetition Interval | 625 |
Pulse Duration | 40 |
Velocity Detection Range | [−40, 40] |
Num of Range Cells | 2000 |
Number of Pulses in a CPI | 64 |
Order of Training | Precision |
---|---|
1st Training | 98.44% |
2nd Training | 98.96% |
3rd Training | 100.00% |
4th Training | 95.83% |
5th Training | 97.66% |
Average Precision | 98.18% |
Methods | 1 m/s | 3 m/s | 5 m/s | 7 m/s | 13 m/s | 19 m/s | 25 m/s |
---|---|---|---|---|---|---|---|
Kalmus Filter | / | / | / | ||||
SVD | |||||||
A-SVD |
Input Scale | SVD | A-SVD | Time Reduction |
---|---|---|---|
218 | 20 | % | |
1456 | 38 | % | |
5411 | 68 | % | |
246 | 48 | % | |
1632 | 108 | % | |
6067 | 218 | % | |
301 | 182 | % | |
1964 | 475 | % | |
7350 | 998 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Chen, B. An Adaptive SVD-Based Approach to Clutter Suppression for Slow-Moving Targets. Remote Sens. 2025, 17, 2697. https://doi.org/10.3390/rs17152697
Hou Y, Chen B. An Adaptive SVD-Based Approach to Clutter Suppression for Slow-Moving Targets. Remote Sensing. 2025; 17(15):2697. https://doi.org/10.3390/rs17152697
Chicago/Turabian StyleHou, Yuhao, and Baixiao Chen. 2025. "An Adaptive SVD-Based Approach to Clutter Suppression for Slow-Moving Targets" Remote Sensing 17, no. 15: 2697. https://doi.org/10.3390/rs17152697
APA StyleHou, Y., & Chen, B. (2025). An Adaptive SVD-Based Approach to Clutter Suppression for Slow-Moving Targets. Remote Sensing, 17(15), 2697. https://doi.org/10.3390/rs17152697