Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = East Antarctic coast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 7903 KiB  
Article
Variation Characteristics of Nitrous Oxide Along the East Antarctic Coast
by Yongnian Xu, Biao Tian, Jie Tang, Lingen Bian, Minghu Ding, Wanqi Sun, Xiuli Xu and Dongqi Zhang
J. Mar. Sci. Eng. 2025, 13(6), 1040; https://doi.org/10.3390/jmse13061040 - 26 May 2025
Viewed by 326
Abstract
Based on a laboratorial analysis of nitrous oxide (N2O) concentrations collected in gas bottles (glass flask) at the Zhongshan Station on the East Antarctic coast from 2008 to 2021, the variation characteristics and trends in the background concentration of N2 [...] Read more.
Based on a laboratorial analysis of nitrous oxide (N2O) concentrations collected in gas bottles (glass flask) at the Zhongshan Station on the East Antarctic coast from 2008 to 2021, the variation characteristics and trends in the background concentration of N2O at the station were analyzed and compared with the N2O data from other Antarctic stations. The results showed that the annual average concentration of atmospheric N2O along the East Antarctic coast increased from 320.40 ppb in 2008 to 333.31 ppb in 2021, with an overall increasing trend of 0.99 ppb per year. Pronounced seasonal variability was observed, with elevated concentrations occurring during austral spring–summer and reduced levels in autumn–winter, consistent with the seasonal patterns documented at other Antarctic sites. The overall variation trend of the N2O concentration at Zhongshan Station is basically consistent with the observation results at other stations in Antarctica, suggesting that the station’s background N2O measurements are representative of continental-scale atmospheric composition dynamics. Combined with the analysis of air mass tracks, this seasonal variation in N2O is mainly related to the mass movement of air mass and, to a certain extent, is influenced by the seasonal melting of sea ice and the exchange between the troposphere and stratosphere. The results supplement important basic data on N2O concentrations along the East Antarctic coast and have potential reference significance for further understanding the causes of atmospheric N2O variations in the Antarctic region. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

76 pages, 32162 KiB  
Article
Heterobranch Sea Slugs s.l. (Mollusca, Gastropoda) from the Southern Ocean: Biodiversity and Taxonomy
by Manuel Ballesteros, Alex Hopkins, Miquel Salicrú and Matt J. Nimbs
Diversity 2025, 17(5), 330; https://doi.org/10.3390/d17050330 - 3 May 2025
Viewed by 868
Abstract
The Southern Ocean, located between Antarctica and the southern tips of South America, Africa and Australia, encompasses an immense area across the southern Atlantic, Pacific and Indian oceans with no clearly defined limits. For the purposes of studying marine heterobranch sea slugs, we [...] Read more.
The Southern Ocean, located between Antarctica and the southern tips of South America, Africa and Australia, encompasses an immense area across the southern Atlantic, Pacific and Indian oceans with no clearly defined limits. For the purposes of studying marine heterobranch sea slugs, we consider the Southern Ocean to include all ocean areas located south of latitude 41° S. South of this latitude, we consider different areas and zones: the area of South America (the Patagonia/Magellanic area), the island of Tasmania, the southern island of New Zealand, the Subantarctic area (the Falkland Islands, South Georgia Island, the South Orkney Islands, South Sandwich Island, Bouvet Island, the islands of Crozet and Prince Edward, the Kerguelen Islands, and Macquarie Island) and the area of Antarctica, in which we consider four zones (Weddell Sea, West Antarctica, Ross Sea and East Antarctica). Reviewing all available references and unpublished data from the authors, in total, 394 species of heterobranch sea slugs have been recorded to date in the Southern Ocean > 41° S, with Nudibranchia standing out with 209 species and Cephalaspidea with 90 species. The marine heterobranchs of Tasmania (154 species) and southern New Zealand (120 species) have been well studied. Sea slug fauna of the Antarctic and Subantarctic regions have been the subject of several partial studies; however, there are still many gaps in knowledge across both areas. Eighty-nine different species of sea slug have been recorded so far in strictly Antarctic waters (West Antarctica, 45 species; Weddell Sea, 48 species; Ross Sea, 51 species; East Antarctica, 42 species), while in the various Subantarctic regions, there are 93 species (36 species from South Georgia, 17 species from the South Orkneys, 12 species from south Sandwich, 6 species from Bouvet, 10 species from Prince Edward and Crozet Islands, 15 species from Kerguelen, 3 species from Macquarie Island, 29 species from the Falkland Islands and 71 species from the coast of South America). In the taxonomic section, for each of the species, the location and the authors of the records are indicated, and for many of the species, interesting biological, taxonomic or biogeographic observations are also provided. The importance of sampling in underexplored areas is discussed, as well as greater-depth sampling for a better understanding of the sea slugs of the Southern Ocean. Full article
Show Figures

Figure 1

44 pages, 7018 KiB  
Review
Rethinking the Lake History of Taylor Valley, Antarctica During the Ross Sea I Glaciation
by Michael S. Stone, Peter T. Doran and Krista F. Myers
Geosciences 2025, 15(1), 9; https://doi.org/10.3390/geosciences15010009 - 4 Jan 2025
Cited by 2 | Viewed by 1399
Abstract
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the [...] Read more.
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the RIS was grounded along the southern Victoria Land coast, completely blocking the mouths of several of the McMurdo Dry Valleys (MDVs). Several authors have proposed that very large paleolakes, proglacial to the RIS, existed in many of the MDVs. Studies of these large paleolakes have been key in the interpretation of the regional landscape, climate, hydrology, and glacier and ice sheet movements. By far the most studied of these large paleolakes is Glacial Lake Washburn (GLW) in Taylor Valley. Here, we present a comprehensive review of literature related to GLW, focusing on the waters supplying the paleolake, signatures of the paleolake itself, and signatures of past glacial movements that controlled the spatial extent of GLW. We find that while a valley-wide proglacial lake likely did exist in Taylor Valley during the early stages of the Ross Sea I glaciation, during later stages two isolated lakes occupied the eastern and western sections of the valley, confined by an expansion of local alpine glaciers. Lake levels above ~140 m asl were confined to western Taylor Valley, and major lake level changes were likely driven by RIS movements, with climate variables playing a more minor role. These results may have major implications for our understanding of the MDVs and the RIS during the Ross Sea I glaciation. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

17 pages, 3598 KiB  
Article
Polar Amplification in the Earth’s Three Poles Based on MODIS Land Surface Temperatures
by Aihong Xie, Jiangping Zhu, Shimeng Wang and Xiang Qin
Remote Sens. 2023, 15(23), 5566; https://doi.org/10.3390/rs15235566 - 30 Nov 2023
Cited by 2 | Viewed by 1568
Abstract
Polar amplification appears in response to greenhouse gas forcing, which has become a focus of climate change research. However, polar amplification has not been systematically investigated over the Earth’s three poles (the Arctic, Antarctica, and the Third Pole). An index of polar amplification [...] Read more.
Polar amplification appears in response to greenhouse gas forcing, which has become a focus of climate change research. However, polar amplification has not been systematically investigated over the Earth’s three poles (the Arctic, Antarctica, and the Third Pole). An index of polar amplification is employed, and the annual and seasonal variations of land surface temperature over the Earth’s three poles are examined using MODIS (Moderate Resolution Imaging Spectroradiometer) observations for the period 2001–2018. As expected, the warming of the Arctic is most conspicuous, followed by the Third Pole, and is weakest in Antarctica. Compared to the temperature changes for the global land region, positive polar amplification appears in the Arctic and the Third Pole on an annual scale, whereas Antarctic amplification disappears, with a negative amplification index of −0.72. The polar amplification for the Earth’s three poles shows seasonal differences. Strong Arctic amplification appears in boreal spring and winter, with a surface warming rate of more than 3.40 times the global mean for land regions. In contrast, the amplification of the Third Pole is most conspicuous in boreal summer. The two poles located in the Northern Hemisphere have the weakest amplification in boreal autumn. Differently from the positive amplification for the Arctic and the Third Pole in all seasons, the faster variations in Antarctic temperature compared to the globe only appear in austral autumn and winter, and the amplification signal is negative in these seasons, with an amplification index of −1.68 and −2.73, respectively. In the austral winter, the strong negative amplification concentrates on West Antarctica and the coast of East Antarctica, with an absolute value of amplification index higher than 5 in general. Generally, the polar amplification is strongest in the Arctic except from June to August, and Antarctic amplification is the weakest among the Earth’s three poles. The Earth’s three poles are experiencing drastic changes, and the potential influence of climate change should receive attention. Full article
Show Figures

Figure 1

6 pages, 2011 KiB  
Proceeding Paper
Characteristics of the Snow Cover in East and West Antarctica and Their 20-Year Trends Retrieved from Satellite Remote Sensing Data
by Aleksey Malinka, Yauheni Ilkevich, Alexander Prikhach, Eleonora Zege, Iosif Katsev, Burcu Özsoy, Mahmut Oğuz Selbesoğlu, Özgün Oktar, Mustafa Fahri Karabulut, Esra Günaydın and Bahadır Çelik
Environ. Sci. Proc. 2024, 29(1), 43; https://doi.org/10.3390/ECRS2023-15862 - 6 Nov 2023
Viewed by 802
Abstract
The aim of this study was to make a comparative analysis of the state of the snow surface in East and West Antarctica, including changes in snow cover characteristics during the past two decades. To do so, we used the ASAR (Antarctic Snow [...] Read more.
The aim of this study was to make a comparative analysis of the state of the snow surface in East and West Antarctica, including changes in snow cover characteristics during the past two decades. To do so, we used the ASAR (Antarctic Snow Albedo Retriever) algorithm, which processes satellite data and retrieves an effective snow grain size and a fraction of rocks not covered by snow, to process the MODIS data throughout the entire period of its operation (up to now). We have chosen several test areas (approximately 30 × 30 km2) to study the state of the snow cover on Enderby Land (East Antarctica), on the coast of the Ross Sea (the Transantarctic Mountains), and the Antarctic Peninsula (West Antarctica). As a result, we have plotted and analyzed the time series of the effective snow grain size and rock fraction in these areas across the last 20 years. We have found weak negative trends for the effective grain size on the coast of Enderby Land and the Ross Sea. The rock fraction does not demonstrate any trend. The study of snow cover trends on a continental scale can contribute to the investigation of environmental changes in Antarctica. Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

20 pages, 7023 KiB  
Article
Climatic Trend of Wind Energy Resource in the Antarctic
by Kai-Shan Wang, Di Wu, Tao Zhang, Kai Wu, Chong-Wei Zheng, Cheng-Tao Yi and Yue Yu
J. Mar. Sci. Eng. 2023, 11(5), 1088; https://doi.org/10.3390/jmse11051088 - 22 May 2023
Cited by 4 | Viewed by 2133
Abstract
Wind energy resource is an important support for the sustainable development of Antarctica. The evaluation of wind energy potential determines the feasibility and economy of wind power generation in Antarctica, among which mastering the variation rule of wind energy resource is the key [...] Read more.
Wind energy resource is an important support for the sustainable development of Antarctica. The evaluation of wind energy potential determines the feasibility and economy of wind power generation in Antarctica, among which mastering the variation rule of wind energy resource is the key to realizing the effective utilization of polar wind energy. Based on the 6-h ERA-5 reanalysis data of ECMWF from January 1981 to December 2020, this paper systematically analyzed the long-term variation trend of Antarctic wind energy resource by using the climate statistical analysis method and the least square fitting, with the comprehensive consideration of a series of key indicators such as Wind Power Density, Effective Wind Speed Occurrence, Energy Level Occurrence, and Stability. The results show that it indicates a positive trend for wind power density (0.5~2 W × m−2 × a−1), effective wind speed occurrence (2~3%/a), energy level occurrence (0.1~0.2%/a), and coefficient of variation (−0.005/a) in the South Pole—Kunlun station and the central region of Queen Maud land. The westerly belt exhibits a decreasing index (−0.5%/a) in terms of stability trend, indicating a positive potential. Kemp Land, the Ross Island—Balleny Islands waters show shortages in all indicators. The wind power density in the Antarctic region is stronger in spring and summer than in autumn and winter, with the weakest in autumn. Based on the above indicators, the variation trend in the East Antarctic coast, Wilhelm II Land—Wilkes Land, the South Pole—Kunlun station, and the westerlies is generally superior. Full article
Show Figures

Figure 1

18 pages, 50192 KiB  
Article
Antarctic Basal Water Storage Variation Inferred from Multi-Source Satellite Observation and Relevant Models
by Jingyu Kang, Yang Lu, Yan Li, Zizhan Zhang and Hongling Shi
Remote Sens. 2022, 14(10), 2337; https://doi.org/10.3390/rs14102337 - 12 May 2022
Cited by 1 | Viewed by 2390
Abstract
Antarctic basal water storage variation (BWSV) refers to mass changes of basal water beneath the Antarctic ice sheet (AIS). Identifying these variations is critical for understanding Antarctic basal hydrology variations and basal heat conduction, yet they are rarely accessible due to a lack [...] Read more.
Antarctic basal water storage variation (BWSV) refers to mass changes of basal water beneath the Antarctic ice sheet (AIS). Identifying these variations is critical for understanding Antarctic basal hydrology variations and basal heat conduction, yet they are rarely accessible due to a lack of direct observation. This paper proposes a layered gravity density forward/inversion iteration method to investigate Antarctic BWSV based on multi-source satellite observations and relevant models. During 2003–2009, BWSV increased at an average rate of 43 ± 23 Gt/yr, which accounts for 29% of the previously documented total mass loss rate (−76 ± 20 Gt/yr) of AIS. Major uncertainty arises from satellite gravimetry, satellite altimetry, the glacial isostatic adjustment (GIA) model, and the modelled basal melting rate. We find that increases in basal water mainly occurred in regions with widespread active subglacial lakes, such as the Rockefeller Plateau, Siple Coast, Institute Ice Stream regions, and marginal regions of East Antarctic Ice Sheet (EAIS), which indicates the increased water storage in these active subglacial lakes, despite the frequent water drainage events. The Amundsen Sea coast experienced a significant loss during the same period, which is attributed to the basal meltwater discharging into the Amundsen Sea through basal channels. Full article
(This article belongs to the Topic Cryosphere: Changes, Impacts and Adaptation)
Show Figures

Graphical abstract

22 pages, 3665 KiB  
Article
Inter-Annual Variability in the Antarctic Ice Sheets Using Geodetic Observations and a Climate Model
by Athul Kaitheri, Anthony Mémin and Frédérique Rémy
Remote Sens. 2021, 13(11), 2199; https://doi.org/10.3390/rs13112199 - 4 Jun 2021
Cited by 8 | Viewed by 4675
Abstract
Quantifying the mass balance of the Antarctic Ice Sheet (AIS), and the resulting sea level rise, requires an understanding of inter-annual variability and associated causal mechanisms. Very few studies have been exploring the influence of climate anomalies on the AIS and only a [...] Read more.
Quantifying the mass balance of the Antarctic Ice Sheet (AIS), and the resulting sea level rise, requires an understanding of inter-annual variability and associated causal mechanisms. Very few studies have been exploring the influence of climate anomalies on the AIS and only a vague estimate of its impact is available. Changes to the ice sheet are quantified using observations from space-borne altimetry and gravimetry missions. We use data from Envisat (2002 to 2010) and Gravity Recovery And Climate Experiment (GRACE) (2002 to 2016) missions to estimate monthly elevation changes and mass changes, respectively. Similar estimates of the changes are made using weather variables (surface mass balance (SMB) and temperature) from a regional climate model (RACMO2.3p2) as inputs to a firn compaction (FC) model. Elevation changes estimated from different techniques are in good agreement with each other across the AIS especially in West Antarctica, Antarctic Peninsula, and along the coasts of East Antarctica. Inter-annual height change patterns are then extracted using for the first time an empirical mode decomposition followed by a principal component analysis to investigate for influences of climate anomalies on the AIS. Investigating the inter-annual signals in these regions revealed a sub-4-year periodic signal in the height change patterns. El Niño Southern Oscillation (ENSO) is a climate anomaly that alters, among other parameters, moisture transport, sea surface temperature, precipitation, in and around the AIS at similar frequency by alternating between warm and cold conditions. This periodic behavior in the height change patterns is altered in the Antarctic Pacific (AP) sector, possibly by the influence of multiple climate drivers, like the Amundsen Sea Low (ASL) and the Southern Annular Mode (SAM). Height change anomaly also appears to traverse eastwards from Coats Land to Pine Island Glacier (PIG) regions passing through Dronning Maud Land (DML) and Wilkes Land (WL) in 6 to 8 years. This is indicative of climate anomaly traversal due to the Antarctic Circumpolar Wave (ACW). Altogether, inter-annual variability in the SMB of the AIS is found to be modulated by multiple competing climate anomalies. Full article
(This article belongs to the Special Issue GRACE Satellite Gravimetry for Geosciences)
Show Figures

Graphical abstract

13 pages, 1609 KiB  
Technical Note
On the Detection and Long-Term Path Visualisation of A-68 Iceberg
by Ludwin Lopez-Lopez, Flavio Parmiggiani, Miguel Moctezuma-Flores and Lorenzo Guerrieri
Remote Sens. 2021, 13(3), 460; https://doi.org/10.3390/rs13030460 - 28 Jan 2021
Cited by 8 | Viewed by 3125
Abstract
The article presents a methodology for examining a temporal sequence of synthetic aperture radar (SAR) images, as applied to the detection of the A-68 iceberg and its drifting trajectory. Using an improved image processing scheme, the analysis covers a period of eighteen months [...] Read more.
The article presents a methodology for examining a temporal sequence of synthetic aperture radar (SAR) images, as applied to the detection of the A-68 iceberg and its drifting trajectory. Using an improved image processing scheme, the analysis covers a period of eighteen months and makes use of a set of Sentinel-1 images. A-68 iceberg calved from the Larsen C ice shelf in July 2017 and is one of the largest icebergs observed by remote sensing on record. After the calving, there was only a modest decrease in the area (about 1%) in the first six months. It has been drifting along the east coast of the Antarctic Peninsula, and is expected to continue its path for more than a decade. It is important to track the huge A-68 iceberg to retrieve information on the physics of iceberg dynamics and for maritime security reasons. Two relevant problems are addressed by the image processing scheme presented here: (a) How to achieve quasi-automatic analysis using a fuzzy logic approach to image contrast enhancement, and (b) The use of ferromagnetic concepts to define a stochastic segmentation. The Ising equation is used to model the energy function of the process, and the segmentation is the result of a stochastic minimization. Full article
(This article belongs to the Special Issue Remote Sensing of the Polar Oceans)
Show Figures

Graphical abstract

17 pages, 3501 KiB  
Article
Victoria Land, Antarctica: An Improved Geodynamic Interpretation Based on the Strain Rate Field of the Current Crustal Motion and Moho Depth Model
by Antonio Zanutta, Monia Negusini, Luca Vittuari, Leonardo Martelli, Paola Cianfarra, Francesco Salvini, Francesco Mancini, Paolo Sterzai, Nicola Creati, Marco Dubbini and Alessandro Capra
Remote Sens. 2021, 13(1), 87; https://doi.org/10.3390/rs13010087 - 29 Dec 2020
Cited by 4 | Viewed by 3737
Abstract
In Antarctica, the severe climatic conditions and the thick ice sheet that covers the largest and most internal part of the continent make it particularly difficult to systematically carry out geophysical and geodetic observations on a continental scale. It prevents the comprehensive understanding [...] Read more.
In Antarctica, the severe climatic conditions and the thick ice sheet that covers the largest and most internal part of the continent make it particularly difficult to systematically carry out geophysical and geodetic observations on a continental scale. It prevents the comprehensive understanding of both the onshore and offshore geology as well as the relationship between the inner part of East Antarctica (EA) and the coastal sector of Victoria Land (VL). With the aim to reduce this gap, in this paper multiple geophysical dataset collected since the 1980s in Antarctica by Programma Nazionale di Ricerche in Antartide (PNRA) were integrated with geodetic observations. In particular, the analyzed data includes: (i) Geodetic time series from Trans Antarctic Mountains DEFormation (TAMDEF), and Victoria Land Network for DEFormation control (VLNDEF) GNSS stations installed in Victoria Land; (ii) the integration of on-shore (ground points data and airborne) gravity measurements in Victoria Land and marine gravity surveys performed in the Ross Sea and the narrow strip of Southern Ocean facing the coasts of northern Victoria Land. Gravity data modelling has improved the knowledge of the Moho depth of VL and surrounding the offshore areas. By the integration of geodetic and gravitational (or gravity) potential results it was possible to better constrain/identify four geodynamic blocks characterized by homogeneous geophysical signature: the Southern Ocean to the N, the Ross Sea to the E, the Wilkes Basin to the W, and VL in between. The last block is characterized by a small but significant clockwise rotation relative to East Antarctica. The presence of a N-S to NNW-SSE 1-km step in the Moho in correspondence of the Rennick Geodynamic Belt confirms the existence of this crustal scale discontinuity, possibly representing the tectonic boundary between East Antarctica and the northern part of VL block, as previously proposed by some geological studies. Full article
(This article belongs to the Special Issue Remote Sensing and Geodynamics)
Show Figures

Figure 1

19 pages, 6747 KiB  
Article
A Long-Term Cloud Albedo Data Record Since 1980 from UV Satellite Sensors
by Clark J. Weaver, Dong L. Wu, Pawan K. Bhartia, Gordon J. Labow and David P. Haffner
Remote Sens. 2020, 12(12), 1982; https://doi.org/10.3390/rs12121982 - 19 Jun 2020
Cited by 5 | Viewed by 3601
Abstract
Black-sky cloud albedo (BCA) is derived from satellite UV 340 nm observations from NOAA and NASA satellites to infer long-term (1980–2018) shortwave cloud albedo variations induced by volcano eruptions, the El Niño–Southern Oscillation, and decadal warming. While the UV cloud albedo has shown [...] Read more.
Black-sky cloud albedo (BCA) is derived from satellite UV 340 nm observations from NOAA and NASA satellites to infer long-term (1980–2018) shortwave cloud albedo variations induced by volcano eruptions, the El Niño–Southern Oscillation, and decadal warming. While the UV cloud albedo has shown no long-term trend since 1980, there are statistically significant reductions over the North Atlantic and over the marine stratocumulus decks off the coast of California; increases in cloud albedo can be seen over Southeast Asia and over cloud decks off the coast of South America. The derived BCA assumes a C-1 water cloud model with varying cloud optical depths and a Cox–Munk surface BRDF over the ocean, using radiances calibrated over the East Antarctic Plateau and Greenland ice sheets during summer. Full article
(This article belongs to the Special Issue Remote Sensing of Clouds)
Show Figures

Graphical abstract

Back to TopTop