A Long-Term Cloud Albedo Data Record Since 1980 from UV Satellite Sensors
Abstract
:1. Introduction
2. Black-Sky Cloud Albedo
2.1. Determination of COD from Iobs
2.2. Determination of Hemispherically-Integrated Flux from Cloud Optical Depth
3. Zonal Mean SBUV Time Series
3.1. Inter-Satellite Differences
3.2. Diurnal Adjustment Based on Frequency Distributions
3.3. Merging SBUV Instruments, OMPS
4. Comparison with CERES SW Broadband
5. Cloud Responses
5.1. ENSO
5.2. Volcanoes
5.3. Decadal Warming
6. Discussion
7. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cess, R.D.; Potter, G.L.; Blanchet, J.P.; Boer, G.J.; Del Genio, A.D.; Deque, M.; Dymnikov, V.; Galin, V.; Gates, W.L. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res. Atmos. 1990, 95, 16601–16615. [Google Scholar] [CrossRef]
- Bony, S.; Dufresne, J.L. Marine boundary layer clouds at the heart of tropical cloud feed-back uncertainties in climate models. Geophys. Res. Lett. 2005, 32, L20806. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.; Lee, R.B., III; Smith, G.L.; Cooper, J.E. Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Amer. Meteor. Soc. 1996, 77, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, B.A.; Barkstrom, B.R.; Baum, B.A.; Charlock, T.P.; Green, R.N.; Kratz, D.P.; Lee, R.B.; Minnis, P.; Smith, G.L.; Wong, T.; et al. Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1127–1141. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.R.; DeLand, M.T.; Huang, L.K.; Labow, G.; Larko, D.; Lloyd, S.A.; Mao, J.; Qin, W.; Weaver, C. A net decrease in the Earth’s cloud plus aerosol reflectivity during the past 33 yr (1979–2011) and increased solar heating at the surface. Atmos. Chem. Phys. 2013, 13, 8505–8524. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.; Herman, J.; Labow, G.; Larko, D.; Huang, L. Shortwave TOA Cloud Radiative Forcing Derived from a Long-Term (1980–Present) Record of Satellite UV Reflectivity and CERES Measurements. J. Clim. 2015, 28, 9473–9488. [Google Scholar] [CrossRef]
- GISTEMP Team. GISS Surface Temperature Analysis (GISTEMP), Version 4. NASA Goddard Institute for Space Studies. 2020. Available online: https://data.giss.nasa.gov/gistemp/ (accessed on May 2020).
- Lenssen, N.; Schmidt, G.; Hansen, J.; Menne, M.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 2019, 124, 6307–6326. [Google Scholar] [CrossRef]
- Frederick, J.E.; Cebula, R.P.; Heath, D.F. Instrument characterization for the detection of long-term changes in stratospheric ozone: An analysis of the SBUV/2 radiometer. J. Atmos. Ocean. Technol. 1986, 3, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Heath, D.F.; Krueger, A.J.; Roeder, H.A.; Henderson, B.D. The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for Nimbus G. Opt. Eng. 1975, 14, 323–331. [Google Scholar] [CrossRef]
- Flynn, L.E.; Seftor, C.J.; Larsen, J.C.; Xu, P. The Ozone Mapping and Profiler Suite. In Earth Science Satellite Remote Sensing; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 279–296. [Google Scholar] [CrossRef]
- Weaver, C.; Bhartia, P.K.; Wu, D.L.; Labow, G.; Haffner, D. Inter-Calibration of nine UV sensing instruments over Antarctica and Greenland since 1980. Atmos. Meas. Tech. Discuss. 2020. in review. [Google Scholar] [CrossRef] [Green Version]
- Spurr, R.J.D. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectrosc. Radiat. Transfer 2006, 102, 316–342. [Google Scholar] [CrossRef]
- DeLand, M.T.; Taylor, S.L.; Huang, L.K.; Fisher, B.L. Calibration of the SBUV version 8.6 ozone data product. Atmos. Meas. Tech. Discuss. 2012, 5, 5151–5203. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. Josa 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern- Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Eck, T.F.; Bhartia, P.K.; Hwang, P.H.; Stowe, L.L. Reflectivity of Earth’s surface and clouds in ultraviolet from satellite observations. J. Geophys. Res. Atmos. 1987, 92, 4287–4296. [Google Scholar] [CrossRef]
- Deirmendjian, D. Electromagnetic Scattering on Spherical Polydispersions; RAND Corporation: Santa Monica, CA, USA, 1969; Available online: https://www.rand.org/pubs/reports/R0456.html (accessed on July 2016).
- Loeb, N.G.; Davies, R. Observational evidence of plane parallel model biases: Apparent dependence of cloud optical depth on solar zenith angle. J. Geophys. Res. 1996, 101, 1621–1634. [Google Scholar] [CrossRef]
- Loeb, N.G.; Davies, R. Angular dependence of observed reflectances: A comparison with plane parallel theory. J. Geophys. Res. 1997, 102, 6865–6881. [Google Scholar] [CrossRef]
- Loeb, N.G.; Coakley, J.A., Jr. Inference of marine stratus cloud optical depth from satellite measurements: Does 1D theory apply? J. Clim. 1998, 11, 215–233. [Google Scholar] [CrossRef]
- Grosvenor, D.P.; Wood, R. The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds. Atmos. Chem. Phys. 2014, 14, 7291–7321. [Google Scholar] [CrossRef] [Green Version]
- Várnai, T.; Marshak, A. Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thickness Retrievals. J. Atmos. Sci. 2002, 59, 1607–1618. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Hayasaka, T. Effects of Cloud Horizontal Inhomogeneity on the Optical Thickness Retrieved from Moderate-Resolution Satellite Data. J. Atmos. Sci. 2002, 59, 2227–2242. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus Clouds. Mon. Wea. Rev. 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Eastman, R.; Warren, S.G. Diurnal Cycles of Cumulus, Cumulonimbus, Stratus, Stratocumulus, and Fog from Surface Observations over Land and Ocean. J. Clim. 2014, 27, 2386–2404. [Google Scholar] [CrossRef] [Green Version]
- Labow, G.; Herman, J.R.; Huang, L.K.; Lloyd, S.A.; DeLand, M.T.; Qin, W.; Mao, J.; Larko, D.E. Diurnal variation of 340 nm Lambertian equivalent reflectivity due to clouds and aerosols over land and oceans. J. Geophys. Res. 2011, 116, D11202. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech. 2015, 8, 611–632. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Validation. Atmos. Meas. Tech. 2015, 8, 3297–3313. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Leovy, C.B. Marine low-cloud anomalies associated with ENSO. J. Clim. 2004, 17, 3448–3469. [Google Scholar] [CrossRef]
- Eastman, R.; Warren, S.G.; Hahn, C.J. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954–2008. J. Clim. 2011, 24, 5914–5934. [Google Scholar] [CrossRef]
- Moore, R.W.; Vonder Haar, T.H. Interannual variability of cloud forcing and meridional energy transport for the Northern Hemisphere winter from 1984–1990. J. Clim. 2001, 14, 3643–3654. [Google Scholar] [CrossRef]
- Kato, S. Interannual variability of global radiation budget. J. Clim. 2009, 22, 4893–4907. [Google Scholar] [CrossRef] [Green Version]
- Wolter, K.; Timlin, M.S. Monitoring ENSO in COADS with a seasonally adjusted principal component index. In Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK, USA, 18–23 October 1992; NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey, CIMMS and the School of Meteor; Univ. of Oklahoma: Norman, OK, USA, 1993; pp. 52–57. [Google Scholar]
- Global Volcanism Program, 2013. Volcanoes of the World, v. 4.8.8 (17 Apr 2020). Venzke, E (Ed.). Smithsonian Institution. Available online: https://doi.org/10.5479/si.GVP.VOTW4-2013 (accessed on 12 May 2020).
- Bluth, G.J.S.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. Global tracking of the SO2 cloud from the June, 1991Mount Pinatubo eruptions. Geophys. Res. Lett. 1992, 19, 151–154. [Google Scholar] [CrossRef]
- McCormick, M.P.; Swissler, T.J. Stratospheric aerosolmass and latitudinal distribution of the El Chichón eruption cloudfor October 1982. Geophys. Res. Lett. 1983, 10, 877–880. [Google Scholar] [CrossRef]
- McCormick, M.P.; Veiga, R.E. SAGE-II measurements of early Pinatubo aerosols. Geophys. Res. Lett. 1992, 19, 155–158. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Zhou, C.; Klein, S.A. Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett. 2016, 43, 9259–9269. [Google Scholar] [CrossRef]
- Seethala, C.; Norris, J.R.; Myers, T.A. How has sub- tropical stratocumulus and associated meteorology changed since the 1980s? J. Clim. 2015, 28, 8396–8410. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for climate change in the satellite cloud record. Nature 2016, 536, 72–75. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weaver, C.J.; Wu, D.L.; Bhartia, P.K.; Labow, G.J.; Haffner, D.P. A Long-Term Cloud Albedo Data Record Since 1980 from UV Satellite Sensors. Remote Sens. 2020, 12, 1982. https://doi.org/10.3390/rs12121982
Weaver CJ, Wu DL, Bhartia PK, Labow GJ, Haffner DP. A Long-Term Cloud Albedo Data Record Since 1980 from UV Satellite Sensors. Remote Sensing. 2020; 12(12):1982. https://doi.org/10.3390/rs12121982
Chicago/Turabian StyleWeaver, Clark J., Dong L. Wu, Pawan K. Bhartia, Gordon J. Labow, and David P. Haffner. 2020. "A Long-Term Cloud Albedo Data Record Since 1980 from UV Satellite Sensors" Remote Sensing 12, no. 12: 1982. https://doi.org/10.3390/rs12121982
APA StyleWeaver, C. J., Wu, D. L., Bhartia, P. K., Labow, G. J., & Haffner, D. P. (2020). A Long-Term Cloud Albedo Data Record Since 1980 from UV Satellite Sensors. Remote Sensing, 12(12), 1982. https://doi.org/10.3390/rs12121982