Victoria Land, Antarctica: An Improved Geodynamic Interpretation Based on the Strain Rate Field of the Current Crustal Motion and Moho Depth Model
Abstract
:1. Introduction
2. GNSS and Gravimetric Data
2.1. GNSS Dataset
2.2. Gravimetric Dataset
3. Strain Map Rate from GNSS Observations
4. Computation of the Moho Depths from Gravimetric Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Negusini, M.; Mancini, F.; Gandolfi, S.; Capra, A. Terra Nova Bay GPS permanent station (Antarctica): Data quality and first attempt in the evaluation of regional displacement. J. Geodyn. 2005, 39, 81–90. [Google Scholar] [CrossRef]
- Zanutta, A.; Negusini, M.; Vittuari, L.; Cianfarra, P.; Salvini, F.; Mancini, F.; Sterzai, P.; Dubbini, M.; Galeandro, A.; Capra, A. Monitoring geodynamic activity in the Victoria Land, East Antarctica: Evidence from GNSS measurements. J. Geodyn. 2017. [Google Scholar] [CrossRef]
- Martín-Español, A.; Zammit-Mangion, A.; Clarke, P.J.; Flament, T.; Helm, V.; King, M.A.; Luthcke, S.B.; Petrie, E.; Rémy, F.; Nana, S.; et al. Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. J. Geophys. Res. Earth Surf. 2016, 121, 182–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevis, M.; Kendrick, E.; Smalley, R., Jr.; Dalziel, I.; Caccamise, D.; Sasgen, I.; Helsen, M.; Taylor, F.W.; Zhou, H.; Brown, A.; et al. Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Capra, A.; Mancini, F.; Negusini, M. GPS as a geodetic tool for geodynamic in Northern Victoria Land, Antarctica. Antarct. Sci. 2007, 19, 107–114. [Google Scholar] [CrossRef]
- Dubbini, M.; Cianfarra, P.; Casula, G.; Capra, A.; Salvini, F. Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting. J. Geophys. Res. Solid Earth 2010, 115, B12. [Google Scholar] [CrossRef]
- Sjöberg, L.; Walyeldeen, H.; Horemuz, M. Estimation of crustal motions at the permanent GPS station SVEA, Antarctica from 2005 to 2009. J. Geod. Sci. 2011, 1, 215–220. [Google Scholar] [CrossRef]
- Zanutta, A.; Vittuari, L.; Gandolfi, S. Geodetic GPS-based analysis of recent crustal motions in Victoria Land (Antarctica). Glob. Planet. Chang. 2008, 62, 115–131. [Google Scholar] [CrossRef]
- Amalvict, M.; Willis, P.; Wöppelmann, G.; Ivins, E.R.; Bouin, M.N.; Testut, L.; Hinderer, J. Isostatic stability of the East Antarctic station Dumont d’Urville from longterm geodetic observations and geophysical models. Polar Res. 2009, 28, 193–202. [Google Scholar] [CrossRef]
- Argus, D.F.; Peltier, W.R.; Drummond, R.; Moore, A.W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 2014, 198, 537–563. [Google Scholar] [CrossRef]
- King, M.A.; Altamimi, Z.; Boehm, J.; Bos, M.; Dach, R.; Elosegui, P.; Fund, F.; Hernández-Pajares, M.; Lavallée, D.; Mendes Cerveira, P.J.; et al. Improved constraints to models of glacial isostatic adjustment: A review of the contribution of ground-based geodetic observations. Surv. Geophys. 2010, 31, 465–507. [Google Scholar] [CrossRef]
- King, M.A.; Whitehouse, P.L.; Van der Wal, W. Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophys. J. Int. 2016, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Thomas, I.D.; King, M.A.; Bentley, M.J.; Whitehouse, P.L.; Penna, N.T.; Williams, S.D.P.; Riva, R.E.M.; Lavallee, D.A.; Clarke, P.J.; King, E.; et al. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Zanutta, A.; Negusini, M.; Vittuari, L.; Martelli, L.; Cianfarra, P.; Salvini, F.; Mancini, F.; Sterzai, P.; Dubbini, M.; Capra, A. New Geodetic and Gravimetric Maps to Infer Geodynamics of Antarctica with Insights on Victoria Land. Remote Sens. 2018, 10, 1608. [Google Scholar] [CrossRef] [Green Version]
- Aitken, A.R.A.; Betts, P.G.; Young, D.A.; Blankenship, D.D.; Roberts, J.L.; Siegert, M.J. The Australo-Antarctic Columbia to Gondwana transition. Gondwana Res. 2016, 29, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Baranov, A.; Tenzer, R.; Bagherbandi, M. Combined Gravimetric–Seismic Crustal Model for Antarctica. Surv. Geophys. 2018, 39, 23–56. [Google Scholar] [CrossRef] [Green Version]
- Ferraccioli, F.; Finn, C.A.; Jordan, T.A.; Bell, R.E.; Anderson, L.M.; Damaske, D. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 2011, 479, 388–392. [Google Scholar] [CrossRef]
- Golynsky, A.V.; Ferraccioli, F.; Hong, J.K.; Golynsky, D.A.; von Frese, R.R.B.; Young, D.A.; Blankenship, D.D.; Holt, J.W.; Ivanov, S.V.; Kiselev, A.V.; et al. New magnetic anomaly map of the Antarctic. Geophys. Res. Lett. 2018, 45, 6437–6449. [Google Scholar] [CrossRef]
- Jordan, T.A.; Ferraccioli, F.; Armadillo, E.; Bozzo, E. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data. Tectonophysics 2013, 585, 196–206. [Google Scholar] [CrossRef]
- Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; et al. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica. Geophys. Res. Lett. 2016, 43, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Wiens, D.A.; Anandakrishnan, S.; Aster, R.C.; Gerstoft, P.; Bromirski, P.D.; Hansen, S.E.; Dalziel, I.W.D.; Heeszel, D.S.; Huerta, A.D.; et al. The crust and upper mantle structure of central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions. J. Geophys. Res. Solid Earth 2018, 123, 7824–7849. [Google Scholar] [CrossRef]
- Llubes, M.; Florsch, N.; Legresy, B.; Lemoine, J.M.; Loyer, S.; Crossley, D.; Rémy, F. Crustal thickness in Antarctica from CHAMP gravimetry. Earth Planet. Sci. Lett. 2003, 212, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C.; Rexer, M.; Scheinert, M.; Pail, R.; Claessens, S.; Holmes, S. A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data. J. Geod. 2016, 90, 105–127. [Google Scholar] [CrossRef]
- Block, A.E.; Bell, R.E.; Studinger, M. Antarctic crustal thickness from satellite gravity: Implications for the Transantarctic and Gamburtsev Subglacial Mountains. Earth Planet. Sci. Lett. 2009, 288, 194–203. [Google Scholar] [CrossRef]
- O’Donnell, J.P.; Nyblade, A.A. Antarctica’s hypsometry and crustal thickness: Implications for the origin of anomalous topography in East Antarctica. Earth Planet. Sci. Lett. 2014, 388, 143–155. [Google Scholar] [CrossRef]
- Pappa, F.; Ebbing, J.; Ferraccioli, F. Moho depths of Antarctica: Comparison of seismic, gravity, and isostatic results. Geochem. Geophys. Geosyst. 2019, 20, 1629–1645. [Google Scholar] [CrossRef] [Green Version]
- Salvini, F.; Brancolini, G.; Busetti, M.; Storti, F.; Mazzarini, F.; Coren, F. Cenozoic geodynamics of the Ross Sea Region, Antartica: Crustal extension, intraplate strike-slip faulting tectonic inheritance. J. Geophys. Res. 1997, 102, 24669–24696. [Google Scholar] [CrossRef]
- Storti, F.; Salvini, F.; Rossetti, F.; Phipps Morgan, J. Intraplate termination of transform faulting within the Antarctic continent. Earth Planet. Sci. Lett. 2007, 260, 115–126. [Google Scholar] [CrossRef]
- Gantar, C.; Zanolla, C. Gravity and Magnetic Exploration in the Ross Sea (Antarctica). Boll. Geof. Teor. Appl. 1993, 219, 230. [Google Scholar]
- Scheinert, M. Progress and prospects of the Antarctic Geoid Project (Commission Project 2.4). In Geodesy for Planet Earth; Kenyon, S., Pacino, M.C., Marti, U., Eds.; Springer: Berlin, Germany, 2012; pp. 451–456. [Google Scholar] [CrossRef]
- Forsberg, R.; Olesen, A.V.; Yildiz, H.; Tscherning, C.C. Polar gravity fields from GOCE and airborne gravity. In Proceedings of the 4th International GOCE User Workshop, Munich, Germany, 31 March–1 April 2011. [Google Scholar]
- Mancini, F. Geodetic activities: A new GPS network for crustal deformation control in northern Victoria Land. Terra Antart. Rep. 2001, 5, 23–28. [Google Scholar]
- Capra, A.; Dubbini, M.; Galeandro, A.; Gusella, L.; Zanutta, A.; Casula, G.; Negusini, M.; Vittuari, L.; Sarti, P.; Mancini, F.; et al. VLNDEF Project for Geodetic Infrastructure Definition of Northern Victoria Land, Antarctica. In Geodetic and Geophysical Observations in Antarctica. An Overview in the IPY Perspective; Capra, A., Dietrich, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; User manual, Astronomical Institute, University of Bern, Bern Open Publishing: Bern, Switzerland, 2015; ISBN 978-3-906813-05-9. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from Cryo-Sat-2 and jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Uieda, L.; Barbosa, V.C.F. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho. Geophys. J. Int. 2017, 208, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Götze, H. Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics 2001, 66, 1660–1668. [Google Scholar] [CrossRef]
- Blakely, R. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Uieda, L.; Barbosa, V.C.F.; Braitenberg, C. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics 2016, 81, F41–F48. [Google Scholar] [CrossRef]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Lindeque, A.; Gohl, K.; Wobbe, F.; Uenzelmann-Neben, G. Preglacial to glacial sediment thickness grids for the Southern Pacific Margin of West Antarctica. Geochem. Geophys. Geosyst. 2016, 17, 4276–4285. [Google Scholar] [CrossRef] [Green Version]
- Araszkiewcz, A.; Figurski, M.; Jarosinski, M. Erroneous GNSS Strain Rate Patterns and their Application to Investigate the Tectonic Credibility of GNSS Velocities. Acta Geophys. 2016, 64, 1412–1429. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, N.; Allmendinger, R.W.W. SSPX: A program to compute strain from displacement/velocity data. Comput. Geosci. 2009, 35, 1343–1357. [Google Scholar] [CrossRef]
- Goudarzi, M.; Cocard, M.; Santerre, R. EPC: Matlab software to estimate Euler pole parameters. GPS Solut. 2014, 18, 153–162. [Google Scholar] [CrossRef]
- Shen, Z.K.; Jackson, D.D.; Ge, B.X. Crustal deformation across and beyond the Los Angeles basic from geodetic measurements. J. Geophys. Res. 1996, 101, 27957–27980. [Google Scholar] [CrossRef]
- Allmendinger, R.W.; Smalley, R.; Bevis, M.; Nicole, H.; Brooks, B. Bending the Bolivian oro-cline in real time. Geology 2005, 33, 905–908. [Google Scholar] [CrossRef] [Green Version]
- Allmendinger, R.W.; Reilinger, R.; Loveless, J. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 2007, 26, TC3013. [Google Scholar] [CrossRef] [Green Version]
- Trey, H.; Cooper, A.K.; Pellis, G.; della Vedova, B.; Cochrane, G.; Brancolini, G.; Makris, J. Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics 1999, 301, 61–74. [Google Scholar] [CrossRef]
- Ji, F.; Li, F.; Gao, J.; Zxhang, Q.; Hao, W. 3-D density structure of the Ross Sea basins, West Antarctica from constrained gravity inversion and their tectonic implications. Geophys. J. Int. 2018, 215, 1241–1256. [Google Scholar] [CrossRef]
- D’Agostino, N.; Métois, M.; Koci, R.; Duni, L.; Kuka, N.; Ganas, A.; Georgiev, I.; Jouanne, F.; Kaludjerovic, N.; Kandić, R. Active crustal deformation and rotations in the southwestern Balkans from continuous GPS measurements. Earth Planet. Sci. Lett. 2020, 539, 116246. [Google Scholar] [CrossRef]
- Cianfarra, P.; Maggi, M. Cenozoic extension along the reactivated Aurora Fault System in the East Antarctic Craton. Tectonophysics 2017, 703, 135–153. [Google Scholar] [CrossRef]
- Cianfarra, P.; Salvini, F. Origin of the Adventure Subglacial Trench linked to Cenozoic extension in the East Antarctic Craton. Tectonophysics 2016, 670, 30–37. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. Free software helps map and display data. EOS Trans. Am. Geophys. Union 1991, 72, 441–446. [Google Scholar] [CrossRef]
Model | NS (a) | ωx (mas yr−1) | ωy (mas yr−1) | ωz (mas yr−1) | ω (° Myr−1) | Lon (°) | Lat (°) |
---|---|---|---|---|---|---|---|
VLNDEF18 | 95 | −0.260 | −0.325 | 0.638 | 0.212 | 51.4018 | 56.8956 |
±0.005 | ±0.004 | ±0.016 | ±0.004 | 0.6815 | 0.6290 | ||
VLNDEF20 | 36 | −0.217 | −0.339 | 0.798 | 0.248 | 57.3652 | 63.2239 |
±0.012 | ±0.004 | ±0.039 | ±0.009 | 1.6439 | 0.9491 |
ID | Lon (°) | Lat (°) | H (m) | Ve | ±σe | Vn | ±σn |
---|---|---|---|---|---|---|---|
TNB1 | 164.1029 | −74.6988 | 72.24947 | 0.03 | 0.06 | −0.18 | 0.06 |
VL01 | 169.7251 | −72.4501 | 596.904 | 0.15 | 0.05 | −0.19 | 0.07 |
VL02 | 167.3781 | −72.5649 | 2047.183 | 0.24 | 0.05 | 1.00 | 0.06 |
VL03 | 162.9264 | −72.9505 | 2469.591 | 0.57 | 0.05 | −0.01 | 0.06 |
VL04 | 169.7487 | −73.5182 | 1834.54 | 0.26 | 0.05 | −0.39 | 0.07 |
VL05 | 169.6122 | −73.0631 | 478.4783 | 0.11 | 0.05 | 0.12 | 0.07 |
VL06 | 164.6907 | −74.35 | 2671.024 | 0.18 | 0.06 | −0.12 | 0.06 |
VL07 | 165.3793 | −73.7599 | 2039.205 | −0.70 | 0.05 | 0.04 | 0.06 |
VL08 | 163.7395 | −73.7643 | 2655.37 | 0.23 | 0.05 | 0.04 | 0.06 |
VL09 | 162.1694 | −73.3308 | 2270.461 | −0.02 | 0.05 | 0.14 | 0.06 |
VL10 | 162.7686 | −73.6885 | 2619.389 | −0.30 | 0.05 | 0.10 | 0.06 |
VL11 | 162.5417 | −74.3714 | 2362.313 | 0.02 | 0.06 | 0.52 | 0.06 |
VL12 | 163.727 | −72.2744 | 1932.967 | 0.05 | 0.05 | −0.86 | 0.06 |
VL13 | 162.205 | −74.8478 | 1460.353 | −0.33 | 0.06 | 0.43 | 0.06 |
VL14 | 165.9057 | −73.2282 | 2084.013 | 0.39 | 0.05 | −0.20 | 0.06 |
VL15 | 163.7157 | −74.9343 | −28.0657 | −0.40 | 0.06 | −0.06 | 0.06 |
VL16 | 162.5455 | −75.2326 | 311.3152 | 0.66 | 0.07 | −0.39 | 0.06 |
VL17 | 161.5387 | −75.0951 | 683.5092 | −0.49 | 0.07 | 0.17 | 0.06 |
VL18 | 162.5937 | −75.8985 | 58.0139 | −0.08 | 0.08 | 0.11 | 0.06 |
VL19 | 161.7816 | −75.805 | 809.8439 | −0.25 | 0.08 | 0.26 | 0.06 |
VL21 | 163.7329 | −71.6687 | 1899.384 | −2.69 | 0.06 | 0.24 | 0.06 |
VL22 | 162.0404 | −71.4219 | 274.8542 | −0.15 | 0.06 | −0.06 | 0.06 |
VL23 | 170.3047 | −71.3458 | 1118.984 | 0.11 | 0.06 | 0.16 | 0.07 |
VL29 | 163.8963 | −71.1541 | 1624.468 | −0.02 | 0.07 | 0.03 | 0.06 |
VL30 | 162.5251 | −70.5987 | 1491.51 | −0.67 | 0.07 | −0.59 | 0.06 |
VL32 | 166.1646 | −71.7331 | 1784.029 | 0.66 | 0.06 | −0.72 | 0.06 |
VLHG | 162.2017 | −75.398 | 165.6562 | −0.10 | 0.07 | −0.17 | 0.06 |
BRIP | 158.4691 | −75.7957 | 2110.894 | −0.08 | 0.08 | −0.38 | 0.07 |
BURI | 155.8942 | −79.1474 | 2006.296 | −0.36 | 0.14 | −0.49 | 0.08 |
COTE | 161.9978 | −77.8059 | 1878.372 | 0.42 | 0.11 | 0.05 | 0.06 |
FIE0 | 168.4235 | −76.1446 | 153.8106 | 0.45 | 0.08 | 0.52 | 0.06 |
FLM5 | 160.2714 | −77.5327 | 1869.704 | −0.34 | 0.11 | −0.07 | 0.06 |
FTP4 | 162.5647 | −78.9277 | 243.185 | −0.14 | 0.14 | 0.01 | 0.06 |
MCM4 | 166.6693 | −77.8384 | 97.97845 | 0.18 | 0.12 | −0.15 | 0.06 |
MIN0 | 167.1638 | −78.6503 | 676.8787 | −0.19 | 0.13 | 0.41 | 0.06 |
ROB4 | 163.1901 | −77.0344 | −41.6182 | 0.46 | 0.10 | −0.32 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanutta, A.; Negusini, M.; Vittuari, L.; Martelli, L.; Cianfarra, P.; Salvini, F.; Mancini, F.; Sterzai, P.; Creati, N.; Dubbini, M.; et al. Victoria Land, Antarctica: An Improved Geodynamic Interpretation Based on the Strain Rate Field of the Current Crustal Motion and Moho Depth Model. Remote Sens. 2021, 13, 87. https://doi.org/10.3390/rs13010087
Zanutta A, Negusini M, Vittuari L, Martelli L, Cianfarra P, Salvini F, Mancini F, Sterzai P, Creati N, Dubbini M, et al. Victoria Land, Antarctica: An Improved Geodynamic Interpretation Based on the Strain Rate Field of the Current Crustal Motion and Moho Depth Model. Remote Sensing. 2021; 13(1):87. https://doi.org/10.3390/rs13010087
Chicago/Turabian StyleZanutta, Antonio, Monia Negusini, Luca Vittuari, Leonardo Martelli, Paola Cianfarra, Francesco Salvini, Francesco Mancini, Paolo Sterzai, Nicola Creati, Marco Dubbini, and et al. 2021. "Victoria Land, Antarctica: An Improved Geodynamic Interpretation Based on the Strain Rate Field of the Current Crustal Motion and Moho Depth Model" Remote Sensing 13, no. 1: 87. https://doi.org/10.3390/rs13010087
APA StyleZanutta, A., Negusini, M., Vittuari, L., Martelli, L., Cianfarra, P., Salvini, F., Mancini, F., Sterzai, P., Creati, N., Dubbini, M., & Capra, A. (2021). Victoria Land, Antarctica: An Improved Geodynamic Interpretation Based on the Strain Rate Field of the Current Crustal Motion and Moho Depth Model. Remote Sensing, 13(1), 87. https://doi.org/10.3390/rs13010087