Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = EWPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4321 KiB  
Article
Efficient Hydrolysis of Earthworm Protein and the Lipid-Lowering Mechanism of Peptides in the Hydrolysate
by Mengmeng Zhang, Xiang Mai, Shanghua Yang, Yuhua Huang, Lina Zhang, Wenbin Ren, Weidong Bai, Xuan Xin, Wenhong Zhao and Lisha Hao
Foods 2025, 14(13), 2338; https://doi.org/10.3390/foods14132338 - 1 Jul 2025
Viewed by 452
Abstract
Earthworms are valued as a dietary protein source in many regions. Earthworm protein can yield bioactive peptides, but enzymatic hydrolysis is inefficient by commercial proteases, and bioactivity development is still inadequate. This study developed a novel efficient method for degrading earthworm protein and [...] Read more.
Earthworms are valued as a dietary protein source in many regions. Earthworm protein can yield bioactive peptides, but enzymatic hydrolysis is inefficient by commercial proteases, and bioactivity development is still inadequate. This study developed a novel efficient method for degrading earthworm protein and investigated the lipid-lowering activity and mechanism of earthworm peptides. It was found that combining autolysis and alcalase exhibited a higher hydrolysis degree of earthworm protein of 43.64 ± 0.78% compared to using autolysis or alcalase only. The hydrolysate significantly reduced lipid accumulation in steatotic hepatocytes. LC-MS/MS results showed that the primary lipid-lowering peptides (EWPs) in the hydrolysate were small molecule peptides with molecular weights of 500–1000 Da and chain lengths of 4–7 amino acid residues. Western blot results demonstrated that EWP regulated the expression of lipid metabolism-related proteins, including APOC3, HMGCR, PCSK9, SREBP1, C/EBP-α, NPC1L1, PPAR-γ, and CYP7A1. Transcriptomic analysis and validation experiments indicated that the lipid-lowering activity of EWP was associated with its suppression of inflammatory factors, such as IL-6. This study presents an efficient enzymatic hydrolysis strategy for earthworm protein utilization, laying the foundation for its application in functional foods such as protein supplements, nutraceutical capsules, hypoallergenic infant formulas, and sports nutrition products. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 1865 KiB  
Article
FEA for Optimizing Design and Fabrication of Frame Structure of Elevating Work Platforms
by Antonio Berardi, Cosimo Damiano Dellisanti, Domenico Tarantino, Karine Sophie Leheche Ouette, Alessandro Leone and Antonia Tamborrino
Appl. Sci. 2025, 15(13), 7356; https://doi.org/10.3390/app15137356 - 30 Jun 2025
Viewed by 278
Abstract
This study investigated the application of Finite Element Analysis (FEA) to optimize the design and material selection for the construction of the telescopic arm of an elevating work platform (EWP) used in agricultural environments. By comparing the structural performance of four materials—Aluminum Alloy [...] Read more.
This study investigated the application of Finite Element Analysis (FEA) to optimize the design and material selection for the construction of the telescopic arm of an elevating work platform (EWP) used in agricultural environments. By comparing the structural performance of four materials—Aluminum Alloy (EN-AW 1200), Aluminum Alloy (EN-AW 2014), High-Strength Low-Alloy (HSLA) Steel Fe275JR, and HSLA Steel S700—under simulated operational conditions, this research identified the most suitable material for robust yet lightweight platforms. The results revealed that HSLA Steel S700 provides superior performance in terms of strength, low deformation, and high safety factors, making it ideal for scenarios requiring maximum durability and load-bearing capacity. Conversely, Aluminum Alloy (EN-AW 2014), while exhibiting lower strength compared with HSLA Steel S700, significantly reduces platform weight by approximately 60% and lowers the center of gravity, enhancing maneuverability and compatibility with smaller, less powerful tractors. These findings highlight the potential of FEA in optimizing EWP design by enabling precise adjustments to material selection and structural geometry. The outcomes of this research contribute to the development of safer, more efficient, and cost-effective EWPs, with a specific focus on improving productivity and safety in agricultural operations such as pruning and harvesting. Future work will explore advanced geometries and hybrid materials to further enhance the performance and versatility of these platforms. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

23 pages, 2278 KiB  
Article
The Evolution of Ecological Well-Being Performance and Its Effects on Population Longevity: A County-Level Spatiotemporal Analysis of Hubei Province, China
by Jinbo Yan, Rongjun Ao, Xiaoqi Zhou and Jing Jiang
Sustainability 2025, 17(13), 5669; https://doi.org/10.3390/su17135669 - 20 Jun 2025
Viewed by 509
Abstract
Building an ecological civilization and promoting national health are crucial for high-quality development. These goals are linked to ecological well-being performance (EWP). This study aimed to evaluate EWP based on county-scale input–output relationships, analyze its spatiotemporal evolution, and explore how EWP changes affect [...] Read more.
Building an ecological civilization and promoting national health are crucial for high-quality development. These goals are linked to ecological well-being performance (EWP). This study aimed to evaluate EWP based on county-scale input–output relationships, analyze its spatiotemporal evolution, and explore how EWP changes affect longevity through spatial spillover and interaction mechanisms. We first used the super-SBM model to assess county-level EWP from 2000 to 2020. Then, spatial econometric models and geographical detectors were applied to analyze the impact of EWP on longevity. The results show a persistent uptrend in overall EWP, indicating that Hubei Province has enhanced its sustainable development capacity. Regions with high EWP values have distinct characteristics. There is polarization in the east, expansive connectivity in the west, and fragmentation in the center, forming a clear “core–edge” structure. The improvement in EWP directly promotes male, female, and overall population longevity and has spatial spillover effects. EWP also interacts with the natural environment and socioeconomic development, serving as a key factor promoting population longevity within Hubei Province. These findings provide a reference for regions in China or other developing countries to understand the relationships between the extension of population lifespan and regional sustainable development. Full article
(This article belongs to the Special Issue Ecosystem Services and Sustainable Development of Human Health)
Show Figures

Figure 1

20 pages, 22582 KiB  
Article
The Effects of Ultra-High Pressure Combined with Egg White Protein on the Gel Physical Properties of Reduced-Salt Shrimp Surimi
by Yefan Wang, Zisheng Zhai, Xinchi Yu and Deyang Li
Foods 2025, 14(12), 2144; https://doi.org/10.3390/foods14122144 - 19 Jun 2025
Viewed by 424
Abstract
This study investigated the synergistic effects of ultra-high pressure (UHP) and egg white protein (EWP) on the gel properties of sodium-reduced shrimp surimi. A Box–Behnken design targeting UHP pressure (200–400 MPa), duration (10–20 min), and EWP/myofibrillar protein (MP) ratio (1:9–5:5) was implemented to [...] Read more.
This study investigated the synergistic effects of ultra-high pressure (UHP) and egg white protein (EWP) on the gel properties of sodium-reduced shrimp surimi. A Box–Behnken design targeting UHP pressure (200–400 MPa), duration (10–20 min), and EWP/myofibrillar protein (MP) ratio (1:9–5:5) was implemented to optimize gel strength, water holding capacity (WHC), and whiteness. Optimal conditions (290 MPa/15 min/EWP:MP = 3:5) yielded the following validated improvements, versus conventional processing: 282.27 g·mm gel strength, 14.90% WHC enhancement, and 16.63% reduced cooking loss. Texture profile analysis demonstrated superior elasticity in composite gels. Magnetic resonance imaging and scanning electron microscopy revealed a denser microstructure with enhanced water-binding capacity, corroborated by the rheological evidence of strengthened viscoelasticity. UHP promotes the partial expansion of MP, exposing hydrophobic groups and sulfhydryl groups, thereby enhancing intermolecular interactions. It also promotes the expansion of EWP, enabling the formation of disulfide bonds between molecules and facilitating the formation of network structures. These findings propose a scalable strategy for developing clean-label salt-reduced aquatic surimi products. Full article
(This article belongs to the Special Issue Nutrition, Safety and Storage of Seafoods)
Show Figures

Figure 1

21 pages, 4044 KiB  
Article
Dynamic Portfolio Optimization with Diversification Analysis and Asset Selection Amidst High Correlation Using Cryptocurrencies and Bank Equities
by Hamdan Bukenya Ntare, John Weirstrass Muteba Mwamba and Franck Adekambi
Risks 2025, 13(6), 113; https://doi.org/10.3390/risks13060113 - 16 Jun 2025
Viewed by 1108
Abstract
There has been growing interest among investors to include cryptocurrencies in their portfolios because of their diversification potential. However, the diversification role of cryptocurrencies when added to South African bank equities is yet to be determined. This study rigorously evaluates asset co-movement and [...] Read more.
There has been growing interest among investors to include cryptocurrencies in their portfolios because of their diversification potential. However, the diversification role of cryptocurrencies when added to South African bank equities is yet to be determined. This study rigorously evaluates asset co-movement and diversification benefits of integrating cryptocurrencies into South African bank equity portfolios. Using advanced financial engineering techniques, including multi-asset particle swarm optimizer (MA-PSO), random optimizer, and a static equal-weighted portfolio (EWP) model, this study analyzed the dynamic portfolio performance and diversification of cryptocurrencies in the 2017–2024 period. The portfolio performance of the three methods is also compared with the results from the traditional one-period mean–variance optimization (MVO) method. The findings underscore the superiority of dynamic models over static EWP in assessing the impact of cryptocurrency inclusion in bank equity portfolios. While pre-COVID-19 studies identified cryptocurrencies as effective hedges against market downturns, this protective role appears attenuated in the post-COVID-19 era. The dynamic MA-PSO model emerges as the optimal approach, delivering better-diversified portfolios. Consequently, South African portfolio managers must carefully evaluate investor risk tolerance before incorporating cryptocurrencies, with regulators imposing stringent guidelines to mitigate potential losses. Full article
Show Figures

Figure 1

22 pages, 2330 KiB  
Article
A Local-Temporal Convolutional Transformer for Day-Ahead Electricity Wholesale Price Forecasting
by Bowen Zhang, Hongda Tian, Adam Berry and A. Craig Roussac
Sustainability 2025, 17(12), 5533; https://doi.org/10.3390/su17125533 - 16 Jun 2025
Viewed by 676
Abstract
Accurate electricity wholesale price (EWP) forecasting is crucial for advancing sustainability in the energy sector, as it supports more efficient utilization and integration of renewable energy by informing when and how it should be consumed, dispatched, curtailed, or stored. However, high fluctuations in [...] Read more.
Accurate electricity wholesale price (EWP) forecasting is crucial for advancing sustainability in the energy sector, as it supports more efficient utilization and integration of renewable energy by informing when and how it should be consumed, dispatched, curtailed, or stored. However, high fluctuations in EWP, often resulting from demand–supply imbalances typically caused by sudden surges in electricity usage and the intermittency of renewable energy generation, and unforeseen external events, pose a challenge for accurate forecasting. Incorporating local temporal information (LTI) in time series, such as hourly price changes, is essential for accurate EWP forecasting, as it helps detect rapid market shifts. However, existing methods remain limited in capturing LTI, either relying on point-wise input sequences or, for fixed-length, non-overlapping segmentation methods, failing to effectively model dependencies within and across segments. This paper proposes the Local-Temporal Convolutional Transformer (LT-Conformer) model for day-ahead EWP forecasting, which addresses the challenge of capturing fine-grained LTI using Local-Temporal 1D Convolution and incorporates two attention modules to capture global temporal dependencies (e.g., daily price trends) and cross-feature dependencies (e.g., solar output influencing price). An initial evaluation in the Australian market demonstrates that LT-Conformer outperforms existing state-of-the-art methods and exhibits adaptability in forecasting EWP under volatile market conditions. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

17 pages, 991 KiB  
Article
Insights into the Formation of Ternary Complexes Among Wheat Starch, Lauric Acid and Protein: Effects of Plasma Pretreatment Times and Protein Types
by Bin Niu, Ziyu Wang and Yizhe Yan
Foods 2025, 14(11), 1922; https://doi.org/10.3390/foods14111922 - 28 May 2025
Viewed by 403
Abstract
Starch-lipid-protein ternary complexes have attracted more attention, and physical processing is gradually being applied to their preparation. This study was to understand the effect of atmospheric cold plasma (ACP) pretreatment times (1–4 min) and protein types (whey protein isolate (WPI), soy protein isolate [...] Read more.
Starch-lipid-protein ternary complexes have attracted more attention, and physical processing is gradually being applied to their preparation. This study was to understand the effect of atmospheric cold plasma (ACP) pretreatment times (1–4 min) and protein types (whey protein isolate (WPI), soy protein isolate (SPI), and egg white protein isolate (EWP)) on the wheat starch (WS)-lauric acid (LA)-protein ternary complexes. Experimental results indicated that one-minute ACP pretreatment of WS led to the increase in the amylose content to 30.02%, which produced the largest number of WS-LA-protein complexes (CI value of 69.21%, 67.41%, and 62.81% for WS-LA-WPI, WS-LA-SPI, and WS-LA-EWP complexes, respectively), resulting in the most ordered structure and higher enthalpy change. In vitro digestibility results based on starch showed that WS1-LA-protein complexes exhibited the lowest digestibility with the highest resistant starch content of 28.09%, 27.93%, and 27.41% for these three kinds of complexes, respectively. However, when the treatment time for WS was more than 1 min, a downward trend occurred, indicating that ACP pretreatment of WS for 1 min was the most beneficial for forming complexes. PCA results also verified that ACP pretreatment of WS for different times could significantly impact the generation and structure of ternary complexes. Moreover, protein types also affected the formation and physicochemical properties of ternary complexes. Notably, WPI, with the higher emulsifying property, formed a larger number (CI value of 69.21%), more ordered structure (Xv of 10.56%), and higher thermal stability of ternary complexes than SPI and EWP. This study presents a burgeoning technology to regulate the generation, structure, and functional properties of starch-lipid-protein complexes. Full article
Show Figures

Graphical abstract

34 pages, 4965 KiB  
Systematic Review
Carbon Footprint Variability in Engineered Wood Products for Timber Buildings: A Systematic Review of Carbon Accounting Methodologies
by Yi Qian, Tharaka Gunawardena, Priyan Mendis and Lu Aye
Sustainability 2025, 17(11), 4804; https://doi.org/10.3390/su17114804 - 23 May 2025
Viewed by 1007
Abstract
Engineered wood products (EWPs) and timber buildings are increasingly recognised for their potential to reduce greenhouse gas emissions by storing biogenic carbon and replacing emission-intensive materials. This article systematically evaluates the carbon footprint (CF) of EWPs and timber buildings during the production stage [...] Read more.
Engineered wood products (EWPs) and timber buildings are increasingly recognised for their potential to reduce greenhouse gas emissions by storing biogenic carbon and replacing emission-intensive materials. This article systematically evaluates the carbon footprint (CF) of EWPs and timber buildings during the production stage (A1–A3), identifies key sources of variability, and extracts quantitative emission reduction metrics. Based on a review of 63 peer-reviewed studies, CF values vary widely, from −40 to 1050 kg CO2eq m−2 for buildings and 12 to 759 kg CO2eq m−3 for EWPs, due to inconsistent system boundaries, functional units, and emission factor assumptions. Median CFs were 165.5 kg CO2eq m−2 and 169.3 kg CO2eq m−3, respectively. Raw material extraction (50.7%), manufacturing (37.1%), and transport (12.2%) were the dominant contributors. A mitigation matrix was developed, showing potential reductions: 20% via transport optimisation, 24–28% through low-density timber, 76% from renewable energy, 11% via sawmill efficiency, 75% through air drying, and up to 92% with reclaimed timber. The geographic skew toward Europe and North America underscores the need for region-specific data. The findings provide actionable benchmarks and strategies to support carbon accounting, emissions modelling, and climate policy for more sustainable construction. Full article
(This article belongs to the Special Issue Sustainable Materials: Recycled Materials Toward Smart Future)
Show Figures

Figure 1

20 pages, 15147 KiB  
Article
Design for Loss Reduction in a Compact AFPM Electric Water Pump with a PCB Motor
by Do-Hyeon Choi, Hyung-Sub Han, Min-Ki Hong, Dong-Hoon Jung and Won-Ho Kim
Energies 2025, 18(10), 2538; https://doi.org/10.3390/en18102538 - 14 May 2025
Viewed by 636
Abstract
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process [...] Read more.
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process that requires specialized winding machinery and is both labor intensive and time consuming, ultimately incurring considerable manufacturing costs and delays. In contrast, PCB substrates offer significant advantages in manufacturability and mass production, effectively resolving these issues. Furthermore, the primary material used in PCB substrates, FR-4, exhibits a permeability similar to that of air, resulting in negligible electromagnetic cogging torque. Cogging torque arises from the attraction between permanent magnets and stator teeth, creating forces that interfere with motor rotation and generate unwanted vibration, noise, and potential mechanical collisions between the rotor and stator. In the PCB stator design, the conventional PCB circuit pattern is replaced by the motor’s coil configuration, and the absence of stator teeth eliminates these interference issues. Consequently, a slotless motor configuration with minimal vibration and noise is achieved. The PCB AFPM motor has been applied to a vehicle-mounted electric water pump (EWP), where mass production and space efficiency are critical. In an EWP, which integrates the impeller with the motor, it is essential that vibrations are minimized since excessive vibration could compromise impeller operation and, due to fluid resistance, require high power input. Moreover, the AFPM configuration facilitates higher torque generation compared to a conventional radial flux permanent magnet synchronous motor (RFPM). In a slotless AFPM motor, the absence of stator teeth prevents core flux saturation, thereby further enhancing torque performance. AC losses occur in the conductors as a result of the magnetic flux produced by the permanent magnets, and similar losses arise within the PCB circuits. Therefore, an optimized PCB circuit design is essential to reduce these losses. The Constant Trace Conductor (CTC) PCB circuit design process is proposed as a viable solution to mitigate AC losses. A 3D finite element analysis (3D FEA) model was developed, analyzed, fabricated, and validated to verify the proposed solution. Full article
Show Figures

Figure 1

12 pages, 4887 KiB  
Article
Quality Enhancement and In Vitro Starch Digestibility of Wheat–Yam Composite Flour Noodles via Adding Different Improvers
by Shuo Hu, Kai-Nong Sun, Qiu-Jia Peng, Run-Hui Ma, Zhi-Jing Ni, Kiran Thakur and Zhao-Jun Wei
Foods 2025, 14(10), 1654; https://doi.org/10.3390/foods14101654 - 8 May 2025
Viewed by 590
Abstract
The addition of Chinese yam powder (CYP) to wheat flour (WF) can compromise the elasticity of noodles due to weakening of the gluten network. To address this, we investigated the effects of TGase, vital wheat gluten (VWG), and egg white powder + sodium [...] Read more.
The addition of Chinese yam powder (CYP) to wheat flour (WF) can compromise the elasticity of noodles due to weakening of the gluten network. To address this, we investigated the effects of TGase, vital wheat gluten (VWG), and egg white powder + sodium alginate (EWP + SA) on the quality of wheat yam composite flour noodles (color, cooking, textural, thermal properties, and in vitro starch digestibility). Our findings demonstrated that VWG, TGase, and EWP + SA exert distinct yet complementary effects on the quality of composite flour noodles. Combining TGase and VWG yielded the densest microstructure and better textural properties, including hardness, adhesiveness, and springiness. TGase and EWP + SA addition significantly increased slow digestible starch (SDS) content (G6: 33.81%) while reducing starch digestibility. These findings demonstrate that synergetic combinations of improvers, particularly TGase with VWG or EWP + SA, improve both the processing characteristics and nutritional quality of yam-based products. Full article
Show Figures

Figure 1

19 pages, 32670 KiB  
Article
Insight into the Relationship of Spray-Drying Conditions with the Physicochemical and Gelation Properties of Egg White Protein
by Yuying Hu, Yan Hu, Huiyi Wu, Luyang Bao, Xin Shi, Can Wu, Bing Cui, Hongshan Liang and Bin Zhou
Foods 2025, 14(9), 1556; https://doi.org/10.3390/foods14091556 - 29 Apr 2025
Viewed by 517
Abstract
This study aimed to provide systematic insight into the relationship between spray conditions and the physicochemical and gelation properties of egg white protein (EWP). Specifically, the effects of two key factors, the inlet temperature and flow rate, on the physicochemical and structural properties [...] Read more.
This study aimed to provide systematic insight into the relationship between spray conditions and the physicochemical and gelation properties of egg white protein (EWP). Specifically, the effects of two key factors, the inlet temperature and flow rate, on the physicochemical and structural properties of EWP were determined. The analysis revealed that as the spray-drying temperature increased, more hydrophobic groups in EWP were exposed and prone to aggregate. Furthermore, the physicochemical and rheological properties and microstructure of egg white protein gel (EWPG) were determined. The results indicate that under a relatively high inlet temperature and a low flow rate, the hardness, springing, and water-holding capacity of the produced gel were improved. Excessively high temperatures were detrimental to pre-aggregate formation and the development of a homogeneous network. The rheological results demonstrate that the EWPG exhibited a weak frequency dependence and elastic-dominant gel characteristics. Further analysis indicated that the inlet temperature significantly influenced the nonlinear response of the EWPG, with the strongest higher-order viscous nonlinear properties observed at 140 °C. The microstructure suggested that at 140 °C, the EWPG achieved a minimum porosity of 50.07% and a maximum fractal dimension (Df) of 2.745, where a uniform network structure was generated. This study demonstrated that relatively high temperatures and low flow rates in the spray-drying process were advantageous for producing egg white protein gel with desirable characteristics, which has potential for the actual application of egg-based food products. Full article
Show Figures

Graphical abstract

17 pages, 2719 KiB  
Review
Adaptation of Connection Systems for Integration with Engineered Wood Products in Buildings: A Systematic Review
by Harshani Dissanayake, Tharaka Gunawardena and Priyan Mendis
Buildings 2025, 15(7), 1131; https://doi.org/10.3390/buildings15071131 - 31 Mar 2025
Viewed by 755
Abstract
Connection systems are a critical component of buildings constructed with engineered wood products (EWPs), influencing structural integrity, durability, and construction efficiency. This systematic review categorises connection types into mechanical, adhesive, and interlocking systems and evaluates their structural performance, adaptability in prefabrication, applicable design [...] Read more.
Connection systems are a critical component of buildings constructed with engineered wood products (EWPs), influencing structural integrity, durability, and construction efficiency. This systematic review categorises connection types into mechanical, adhesive, and interlocking systems and evaluates their structural performance, adaptability in prefabrication, applicable design standards, and modelling approaches. The review synthesises recent trends in EWP connection research, highlighting key developments in digital fabrication, reversible joints, and sustainable construction. Findings emphasise the need for standardisation, performance validation, and hybrid systems to support the wider adoption of prefabricated timber structures in environmentally responsible building practices. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3086 KiB  
Article
Protein–Protein Interactions and Structure of Heat-Set Gels Based on Pea Protein and Egg White Mixtures
by Jian Kuang, Pascaline Hamon, Jeehyun Lee, Said Bouhallab, Eliane Cases, Remi Saurel and Valérie Lechevalier
Gels 2025, 11(3), 176; https://doi.org/10.3390/gels11030176 - 27 Feb 2025
Cited by 1 | Viewed by 802
Abstract
The substitution of animal proteins with plant-based ones to fit environmental and economic demands is a challenge in gel applications. This study examined the thermal elation of mixtures of pea protein isolate (PPI) and egg white proteins (EWPs) at different PPI/EWP weight ratios [...] Read more.
The substitution of animal proteins with plant-based ones to fit environmental and economic demands is a challenge in gel applications. This study examined the thermal elation of mixtures of pea protein isolate (PPI) and egg white proteins (EWPs) at different PPI/EWP weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) at pH 7.5 and 9.0. Viscoelastic and texture properties of the composite gels, along with the microstructure and molecular interactions involved in the gel network, were investigated. Except for PPI-EWP 100/0 at pH 9.0, all systems gelled with increasing gel hardness, springiness, and cohesiveness when EWP content increased. This was explained by the microstructure of the gels, wherein the presence of PPI enhanced the formation of aggregates embedded in the EWP network, thus loosening it. The rheological properties of the mixed gels were primarily influenced by the EWP network, involving disulfide bonds. However, upon the addition of PPI, hydrogen bonds and hydrophobic interactions predominated and the structure of the gel became more sensitive to pH as electrostatic repulsions interfered. Adjusting the ratio of PPI/EWP allows the production of gels with varying textures, and suggests the possibility of partially substituting egg white with pea proteins in food gel formulation. Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
Show Figures

Graphical abstract

19 pages, 3630 KiB  
Article
Transformation of Terraces with Irrigation Systems: Profitability and Water Savings in Potato Crop (Solanum tuberosum L.)
by Russell Poma-Chamana, Ricardo Flores-Marquez, Joel Cordova-Tadeo, Antony Quello, José Arapa-Quispe and Richard Solórzano-Acosta
Water 2025, 17(5), 668; https://doi.org/10.3390/w17050668 - 25 Feb 2025
Cited by 1 | Viewed by 952
Abstract
In recent decades, climate change has intensified the challenges in agriculture, increasing the incidence of water and heat stress during critical stages of the crop cycle. It includes the exacerbation of the seasonality of rainfall and temperature. This significantly affects their development and [...] Read more.
In recent decades, climate change has intensified the challenges in agriculture, increasing the incidence of water and heat stress during critical stages of the crop cycle. It includes the exacerbation of the seasonality of rainfall and temperature. This significantly affects their development and yield. In addition, climate change has reduced irrigation water availability, highlighting the need to evaluate joint strategies to increase water productivity. These strategies include the implementation of irrigation systems, the use of terraces, and the application of deficit irrigation (DI). In this context, the present research aims to evaluate the irrigation water productivity (WPirri) and the economic water productivity (EWP) of the combined use of DI through a pressurized irrigation system in terraces of the southern highlands of Peru for a potato crop. The treatments included L0: traditional surface irrigation with irrigation depth equivalent to 100% ETc, L1: drip irrigation with irrigation depth equivalent to 100% ETc, L2: drip irrigation with DI at 75% ETc, and L3: drip irrigation with DI at 50% ETc. The DI treatments (L2 and L3) were implemented by forming stolons (60 DAS). As a result, L2 allows saving irrigation water of 3930 m3 ha−1 compared to L0 and 1164 m3 ha−1 compared to L1. It means a WPirri of 6.15 ± 0.35 kg m−3 allowing a commercial yield (CY: 27.15 ± 1.47 t ha−1) statistically similar to L1 (WPirri: 5.45 ± 0.34 kg m−3; CY: 30.14 ± 1.83 t ha−1) and higher than the traditional surface irrigation (WPirri: 2.63 ± 0.23 kg m−3; CY: 21.62 ± 1.99 t ha−1). This water saving meant a net income of 3097.04 ± 435.52 USD ha−1 for L2, close to L1 (4421.12 ± 724.24 USD ha−1), and much higher than L0 (1664.50 ± 834.24 USD ha−1). The results suggest that using drip irrigation systems in terraced crops optimizes water savings, maintains yields and profitability, and could promote the modernization of terraces in rural environments. Full article
Show Figures

Figure 1

21 pages, 3836 KiB  
Article
Citric Acid Improves Egg White Protein Foaming Characteristics and Meringue 3D Printing Performance
by Huajiang Zhang, Shihui Hua, Mengzhuo Liu, Rui Chuang, Xin Gao, Hanyu Li, Ning Xia and Chaogeng Xiao
Foods 2025, 14(2), 198; https://doi.org/10.3390/foods14020198 - 10 Jan 2025
Cited by 1 | Viewed by 1911
Abstract
Meringue has limited the use of meringue for personalization because of its thermally unstable system. Citric acid (CA) enhancement of egg white protein (EWP) foaming properties is proposed for the preparation of 3D-printed meringues. The results showed that CA increased the viscosity, exposure [...] Read more.
Meringue has limited the use of meringue for personalization because of its thermally unstable system. Citric acid (CA) enhancement of egg white protein (EWP) foaming properties is proposed for the preparation of 3D-printed meringues. The results showed that CA increased the viscosity, exposure of hydrophobic groups (79.8% increase), and free sulfhydryl content (from 5 µmol/g to 34.8 µmol/g) of the EWP, thereby increasing the foaminess (from 50% to 178.2%). CA treatment increased the rates of adsorption, stretching, and orientation of EWP at the air–water interface to form multiple layers, resulting in a delay in foam thinning. The secondary structure of CA-treated EWP remained intact, and the exposure of amino acid residues in the tertiary structure increased with the expansion of the hydrophobic region. CA-treated EWP-prepared protein creams had a suitable viscosity (from 233.4 Pa·s to 1007 Pa·s at 0.1 s−1), shear thinning, structural restorability, and elasticity, which ensured good fidelity of their printed samples. Experiments involving 3D printing of CA-treated EWP showed that CA could significantly enhance the 3D printing fidelity of EWP. Our study could provide new ideas for the development of customizable 3D-printed foam food products. Full article
Show Figures

Figure 1

Back to TopTop