Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ETMonitor evapotranspiration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10535 KiB  
Article
Performance Evaluation and Spatiotemporal Dynamics of Nine Reanalysis and Remote Sensing Evapotranspiration Products in China
by Yujie Liu, Wen Wang, Tianqing Zhao and Zhiyuan Huo
Remote Sens. 2025, 17(11), 1881; https://doi.org/10.3390/rs17111881 - 28 May 2025
Viewed by 456
Abstract
Evapotranspiration (ET) is a critical component of the hydrological cycle. The eddy covariance data at 40 flux stations in different climatic regions in China were used to evaluate the accuracy of five reanalysis actual ET datasets (ERA5, ERA5-LAND, GLDAS-2.1, MERRA-2, TerraClimate) and four [...] Read more.
Evapotranspiration (ET) is a critical component of the hydrological cycle. The eddy covariance data at 40 flux stations in different climatic regions in China were used to evaluate the accuracy of five reanalysis actual ET datasets (ERA5, ERA5-LAND, GLDAS-2.1, MERRA-2, TerraClimate) and four remote sensing estimation ET datasets (ETMonitor, GLEAM4.2a, PML_V2, SiTHv2), which are widely used by the hydrometeorological and climatological communities, in terms of the root mean square error, Pearson correlation coefficient, mean absolute deviation, and Taylor skill score. The results show that remote sensing products outperform reanalysis datasets. Among them, ETMonitor has the highest accuracy, followed by PML_V2 and SiTHv2. TerraClimate and MERRA-2 have the least agreement with the observations at flux sites across nearly all evaluation metrics. All products can capture the seasonality of ET in China, but underestimate ET in northwest China and overestimate ET in southern China throughout the year. We tried to merge three optimal data products (ETMonitor, PML_V2, and SiTHv2) using the triple collocation analysis method to improve the ET estimation, but the results showed that the improvement by the data fusion approach is marginal. The estimation of the multi-year average evapotranspiration during the period from 2001 to 2020 ranges from 397.8 mm/year (GLEAM4.2a) to 504.8 mm/year (ERA5-Land) in China. From 2001 to 2020, annual evapotranspiration in China generally increased, but with varying rates across different products. MERRA-2 showed the largest annual increase rate (3.71 mm/year), while SiTHv2 had the smallest (0.17 mm/year). There are no significant changes in the seasonality of ET by most ET products from 2001 to 2020, except for PML_V2 and SiTHv2, which indicate an increase in seasonality in terms of the evapotranspiration concentration index. This ET intercomparison addresses a key knowledge gap in terrestrial water flux quantification, aiding climate and hydrological research. Full article
Show Figures

Figure 1

23 pages, 11792 KiB  
Article
Quantifying Long Term (2000–2020) Water Balances Across Nepal by Integrating Remote Sensing and an Ecohydrological Model
by Kailun Jin, Ning Liu, Run Tang, Ge Sun and Lu Hao
Remote Sens. 2025, 17(11), 1819; https://doi.org/10.3390/rs17111819 - 23 May 2025
Viewed by 795
Abstract
Nepal is known for its complex terrain, climate, and vegetation dynamics, resulting in tremendous hydrologic variability and complexity. Accurately quantifying the water balances at the national level in Nepal is extremely challenging and is currently not available. This study constructed long-term (2000–2022) water [...] Read more.
Nepal is known for its complex terrain, climate, and vegetation dynamics, resulting in tremendous hydrologic variability and complexity. Accurately quantifying the water balances at the national level in Nepal is extremely challenging and is currently not available. This study constructed long-term (2000–2022) water balances for 358 watersheds across Nepal by integrating watershed hydrometeorological monitoring data, remote sensing products including Leaf Area Index and land use and land cover data, with an existing ecohydrological model, Water Supply Stress Index (WaSSI). The WaSSI model’s performance is assessed at both watershed and national levels using observed water yield (Q) and evapotranspiration (ET) products derived from remote sensing (ETMonitor, PEW, SSEBop) and eddy flux network (i.e., FLUXCOM). We show that the WaSSI model captured the seasonal dynamics of ET and Q, providing new insights about climatic controls on ET and Q across Nepal. At the national scale, the simulated long-term (2000–2020) mean annual Q and ET was about half of the precipitation (1567 mm), but both Q and ET varied tremendously in space and time as influenced by a monsoon climate and mountainous terrain. We found that watersheds in the central Gandaki River basin had the highest Q (up to 1600 mm yr−1) and ET (up to 1000 mm yr−1). This study offers a validated ecohydrological modeling tool for the Himalaya region and a national benchmark dataset of the water balances for Nepal. These products are useful for quantitative assessment of ecosystem services and science-based watershed management at the national scale. Future studies are needed to improve the WaSSI model and remote sensing ET products by conducting ecohydrological research on key hydrologic processes (i.e., forest ET, streamflow generations of small watersheds) across physiographic gradients to better answer emerging questions about the impacts of environmental change in Nepal. Full article
Show Figures

Figure 1

25 pages, 17776 KiB  
Article
Analysis of Spatial and Temporal Variations in Evapotranspiration and Its Driving Factors Based on Multi-Source Remote Sensing Data: A Case Study of the Heihe River Basin
by Xiang Li, Zijie Pang, Feihu Xue, Jianli Ding, Jinjie Wang, Tongren Xu, Ziwei Xu, Yanfei Ma, Yuan Zhang and Jinlong Shi
Remote Sens. 2024, 16(15), 2696; https://doi.org/10.3390/rs16152696 - 23 Jul 2024
Cited by 4 | Viewed by 2152
Abstract
The validation of remotely sensed evapotranspiration (ET) products is important for the development of ET estimation models and the accuracy of the scientific application of the products. In this study, different ET products such as HiTLL, MOD16A2, ETMonitor, and SoGAE were compared using [...] Read more.
The validation of remotely sensed evapotranspiration (ET) products is important for the development of ET estimation models and the accuracy of the scientific application of the products. In this study, different ET products such as HiTLL, MOD16A2, ETMonitor, and SoGAE were compared using multi-source remote sensing data and ground-based data to evaluate their applicability in the Heihe River Basin (HRB) during 2010–2019. The results of the comparison with the site observations show that ETMonitor provides a more stable and reliable estimation of ET than the other three products. The ET exhibited significant variations over the decade, characterized by a general increase in rates across the HRB. These changes were markedly influenced by variations in land use and topographical features. Specifically, the analysis showed that farmland and forested areas had higher ET rates due to greater vegetation cover and moisture availability, while grasslands and water bodies demonstrated lower ET rates, reflecting their respective land cover characteristics. This study further explored the influence of various factors on ET, including land use changes, NDVI, temperature, and precipitation. It was found that changes in land use, such as increases in agricultural areas or reforestation efforts, directly influenced ET rates. Moreover, meteorological conditions such as temperature and precipitation patterns also played crucial roles, with warmer temperatures and higher precipitation correlating with increased ET. This study highlights the significant impact of land use and climatic factors on spatiotemporal variations in ET within the HRB, underscoring its importance for optimizing water resource management and land use planning in arid regions. Full article
Show Figures

Figure 1

17 pages, 11847 KiB  
Article
Estimating Evapotranspiration in the Qilian Mountains Using GRACE/GRACE-FO Satellite Data
by Bing Bai, Ping Yue, Xueyuan Ren, Qiang Zhang, Jinyu Zhang, Jinhu Yang and Youyan Jiang
Remote Sens. 2024, 16(11), 1877; https://doi.org/10.3390/rs16111877 - 24 May 2024
Cited by 1 | Viewed by 1188
Abstract
Evapotranspiration (ET) is the most significant constituent of the response to climate warming. It serves as a crucial link in the soil–vegetation–atmospheric continuum. Analyzing the driving forces and response of ET to regional-scale climate warming holds scientific significance in improving global water resource [...] Read more.
Evapotranspiration (ET) is the most significant constituent of the response to climate warming. It serves as a crucial link in the soil–vegetation–atmospheric continuum. Analyzing the driving forces and response of ET to regional-scale climate warming holds scientific significance in improving global water resource assessment methods and drought monitoring techniques. The innovation presented in this article is the calculation of ET by using GRACE/GRACE-FO satellite data through the water balance equation. The inter-annual and seasonal changes in ET in different regions of the Qilian Mountains were analyzed, along with quantifying the contribution of environmental meteorological factors to ET. The ETGRACE and ETMonitor products have good consistency, with a monthly correlation coefficient of 0.92, an NSE coefficient of 0.80, and a root mean square error of 10.38 mm. The results indicate that the increasing trend of ET in the Qilian Mountains region exhibits a “medium–high–low” distribution pattern. The rate of increase in ET is 5.2 mm/year in the central segment. In spring and summer, the overall trend of ET is an increasing one. However, the central and western segments exhibit a slight decreasing trend of ET in autumn. During winter, the southern part of the Qilian Mountains experiences a notable reduction in ET. The correlation between the changes in ET and soil moisture exhibited a strong association, with soil moisture change contributing significantly to ET: 57.8% for the eastern section, 52.8% for the middle section, and 46.9% for the western section. The thermal effect primarily controls ET variations within eastern sections, where temperature change accounts for approximately 6.7% of the total variation in ET levels. Conversely, the moisture factor dominates western sections, where precipitation change accounts for about 6.5% of the total variation in ET levels. Due to the distinct gradient characteristics of environmental meteorological factors in the central segment, the fluctuation of these factors collaboratively drives ET changes. This article provides a new approach for obtaining continuous and reliable actual evapotranspiration in high-altitude areas. Full article
Show Figures

Figure 1

29 pages, 9153 KiB  
Article
Estimation and Spatiotemporal Evolution Analysis of Actual Evapotranspiration in Turpan and Hami Cities Based on Multi-Source Data
by Lei Wang, Jinjie Wang, Jianli Ding and Xiang Li
Remote Sens. 2023, 15(10), 2565; https://doi.org/10.3390/rs15102565 - 14 May 2023
Cited by 14 | Viewed by 3617
Abstract
The accurate inversion of actual evapotranspiration (ETa) at a regional scale is crucial for understanding water circulation, climate change, and drought monitoring. In this study, we produced a 1 km monthly ETa dataset for Turpan and Hami, two typical arid cities in northwest [...] Read more.
The accurate inversion of actual evapotranspiration (ETa) at a regional scale is crucial for understanding water circulation, climate change, and drought monitoring. In this study, we produced a 1 km monthly ETa dataset for Turpan and Hami, two typical arid cities in northwest China, using multi-source remote sensing data, reanalysis information, and the ETMonitor model from 1980 to 2021. We analyzed the spatiotemporal variation of ETa using various statistical approaches and discussed the impact of climate and land use and cover changes (LUCC) on ETa. The results show the following: (1) the estimation results correlate well with ETa products on monthly scales (coefficient of determination (R2) > 0.85, root mean square error (RMSE) < 15 mm/month) with high reliability. (2) The ETa values were spatially distributed similarly to precipitation and LUCC, with the multi-year (1980–2021) average of 66.31 mm and a slightly fluctuating downward trend (−0.19 mm/a). (3) During the 42-year period, 63.16% of the study area exhibited an insignificant decrease in ETa, while 86.85% experienced pronounced fluctuations (coefficient of variation (CV) > 0.20), and 78.83% will show an upward trend in the future. (4) ETa was significantly positively correlated with precipitation (94.17%) and insignificantly positively correlated with temperature (55.81%). The impact of human activities showed an insignificant decreasing trend (85.41%). Additionally, the intensity of ETa varied considerably among land types, with the largest for cropland (424.12 mm/a). The results of the study have implications for promoting the rational allocation of regional water resources and improving water use efficiency in arid zones. Full article
Show Figures

Graphical abstract

26 pages, 5724 KiB  
Article
Integrated Validation of Coarse Remotely Sensed Evapotranspiration Products over Heterogeneous Land Surfaces
by Yuan Zhang, Shaomin Liu, Lisheng Song, Xiang Li, Zhenzhen Jia, Tongren Xu, Ziwei Xu, Yanfei Ma, Ji Zhou, Xiaofan Yang, Xinlei He, Yunjun Yao and Guangcheng Hu
Remote Sens. 2022, 14(14), 3467; https://doi.org/10.3390/rs14143467 - 19 Jul 2022
Cited by 15 | Viewed by 2409
Abstract
Validation of remotely sensed evapotranspiration (RS_ET) products is important because their accuracy is critical for various scientific applications. In this study, an integrated validation framework was proposed for evaluating RS_ET products with coarse spatial resolution extending from homogenous to heterogeneous land surfaces. This [...] Read more.
Validation of remotely sensed evapotranspiration (RS_ET) products is important because their accuracy is critical for various scientific applications. In this study, an integrated validation framework was proposed for evaluating RS_ET products with coarse spatial resolution extending from homogenous to heterogeneous land surfaces. This framework was applied at the pixel and river basin scales, using direct and indirect validation methods with multisource validation datasets, which solved the spatial mismatch between ground measurements and remotely sensed products. The accuracy, rationality of spatiotemporal variations, and error sources of RS_ET products and uncertainties during the validation process were the focuses in the framework. The application of this framework is exemplified by validating five widely used RS_ET products (i.e., GLEAM, DTD, MOD16, ETMonitor, and GLASS) in the Heihe River Basin from 2012 to 2016. Combined with the results from direct (as the priority method) and indirect validation (as the auxiliary method), DTD showed the highest accuracy (1-MAPE) in the vegetation growing season (75%), followed by ETMonitor (71%), GLASS (68%), GLEAM (54%), and MOD16 (44%). Each product reasonably reflected the spatiotemporal variations in the validation dataset. ETMonitor exhibited the highest consistency with the ground truth ET at the basin scale (ETMap) (R = 0.69), followed by GLASS (0.65), DTD (0.63), MOD16 (0.62), and GLEAM (0.57). Error sources of these RS_ET products were mainly due to the limitations of the algorithms and the coarse spatial resolution of the input data, while the uncertainties in the validation process amounted to 15–28%. This work is proposed to effectively validate and improve the RS_ET products over heterogeneous land surfaces. Full article
(This article belongs to the Special Issue Quantitative Remote Sensing Product and Validation Technology)
Show Figures

Figure 1

31 pages, 6054 KiB  
Article
Calibration and Validation of SWAT Model by Using Hydrological Remote Sensing Observables in the Lake Chad Basin
by Ali Bennour, Li Jia, Massimo Menenti, Chaolei Zheng, Yelong Zeng, Beatrice Asenso Barnieh and Min Jiang
Remote Sens. 2022, 14(6), 1511; https://doi.org/10.3390/rs14061511 - 21 Mar 2022
Cited by 51 | Viewed by 9205
Abstract
Model calibration and validation are challenging in poorly gauged basins. We developed and applied a new approach to calibrate hydrological models using distributed geospatial remote sensing data. The Soil and Water Assessment Tool (SWAT) model was calibrated using only twelve months of remote [...] Read more.
Model calibration and validation are challenging in poorly gauged basins. We developed and applied a new approach to calibrate hydrological models using distributed geospatial remote sensing data. The Soil and Water Assessment Tool (SWAT) model was calibrated using only twelve months of remote sensing data on actual evapotranspiration (ETa) geospatially distributed in the 37 sub-basins of the Lake Chad Basin in Africa. Global sensitivity analysis was conducted to identify influential model parameters by applying the Sequential Uncertainty Fitting Algorithm–version 2 (SUFI-2), included in the SWAT-Calibration and Uncertainty Program (SWAT-CUP). This procedure is designed to deal with spatially variable parameters and estimates either multiplicative or additive corrections applicable to the entire model domain, which limits the number of unknowns while preserving spatial variability. The sensitivity analysis led us to identify fifteen influential parameters, which were selected for calibration. The optimized parameters gave the best model performance on the basis of the high Nash–Sutcliffe Efficiency (NSE), Kling–Gupta Efficiency (KGE), and determination coefficient (R2). Four sets of remote sensing ETa data products were applied in model calibration, i.e., ETMonitor, GLEAM, SSEBop, and WaPOR. Overall, the new approach of using remote sensing ETa for a limited period of time was robust and gave a very good performance, with R2 > 0.9, NSE > 0.8, and KGE > 0.75 applying to the SWAT ETa vs. the ETMonitor ETa and GLEAM ETa. The ETMonitor ETa was finally adopted for further model applications. The calibrated SWAT model was then validated during 2010–2015 against remote sensing data on total water storage change (TWSC) with acceptable performance, i.e., R2 = 0.57 and NSE = 0.55, and remote sensing soil moisture data with R2 and NSE greater than 0.85. Full article
(This article belongs to the Special Issue Remote Sensing of Hydrological Processes: Modelling and Applications)
Show Figures

Figure 1

18 pages, 7254 KiB  
Article
A Scheme to Estimate Diurnal Cycle of Evapotranspiration from Geostationary Meteorological Satellite Observations
by Jing Lu, Li Jia, Chaolei Zheng, Ronglin Tang and Yazhen Jiang
Water 2020, 12(9), 2369; https://doi.org/10.3390/w12092369 - 24 Aug 2020
Cited by 4 | Viewed by 2768
Abstract
The diurnal cycle of evapotranspiration (ET) is significant in studying the dynamics of land–atmosphere interactions. The diurnal ET cycle can be considered as an indicator of dry/wet surface conditions. However, the accuracy of current models in estimating the diurnal ET cycle is generally [...] Read more.
The diurnal cycle of evapotranspiration (ET) is significant in studying the dynamics of land–atmosphere interactions. The diurnal ET cycle can be considered as an indicator of dry/wet surface conditions. However, the accuracy of current models in estimating the diurnal ET cycle is generally low. This study developed an improved scheme to estimate the diurnal cycle of ET by solving the surface energy balance equation combined with simplified parameterization, with daily ET as the constraint. Meteosat Second Generation (MSG) land surface temperature, and longwave and shortwave radiation products were the primary inputs. Daily ET was from the remote sensing-based ETMonitor model. The estimated instantaneous (30 min) ET from the improved scheme outperformed the official MSG instantaneous ET product when compared with in situ half-hourly measurements at 35 flux sites from the FLUXNET2015 dataset, and was also comparable with European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 ET data, with an R2 of 0.617 and root mean square error (RMSE) of 65.8 W/m2 for the improved scheme. Results were largely improved compared with those without daily ET as the constraint. The improved method was stable for the estimation of ET’s diurnal cycle at the similar atmospheric conditions and the accuracy was comparative at different land cover surfaces. Errors in the input variables and the simplification of surface heat flux parameterization affected surface energy balance closure, which can lead to instability of the solution of constants in the simplified parameterization and further to the uncertainty of ET’s diurnal cycle estimation. Measurement errors, different source areas in measured variables, and inconsistent spatial representativeness between remote sensing and site measurements also impacted the evaluation. Full article
(This article belongs to the Special Issue Evapotranspiration Measurements and Modeling)
Show Figures

Figure 1

7 pages, 186 KiB  
Editorial
Editorial for the Special Issue “Remote Sensing of Evapotranspiration (ET)”
by Pradeep Wagle and Prasanna H. Gowda
Remote Sens. 2019, 11(18), 2146; https://doi.org/10.3390/rs11182146 - 15 Sep 2019
Cited by 6 | Viewed by 3682
Abstract
Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in 11 papers published in this [...] Read more.
Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in 11 papers published in this special issue. The major research topics covered by this special issue include inter-comparison and performance evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model (ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET products; development or improvement of data fusion frameworks to provide continuous daily ET at a high spatial resolution (field-scale or 30 m) by fusing the advanced space-borne thermal emission reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS), and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of 36 land surface models and four diagnostic datasets. The effects of the differences among ET products on water resources and ecosystem management were also investigated. More accurate ET estimates and improved understanding of remotely sensed ET products can help maximize crop productivity while minimizing water loses and management costs. Full article
(This article belongs to the Special Issue Remote Sensing of Evapotranspiration (ET))
17 pages, 7232 KiB  
Article
Earth Observations-Based Evapotranspiration in Northeastern Thailand
by Chaolei Zheng, Li Jia, Guangcheng Hu and Jing Lu
Remote Sens. 2019, 11(2), 138; https://doi.org/10.3390/rs11020138 - 12 Jan 2019
Cited by 23 | Viewed by 5044
Abstract
Thailand is characterized by typical tropical monsoon climate, and is suffering serious water related problems, including seasonal drought and flooding. These issues are highly related to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful to understand and cope with these [...] Read more.
Thailand is characterized by typical tropical monsoon climate, and is suffering serious water related problems, including seasonal drought and flooding. These issues are highly related to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful to understand and cope with these problems. It is critical to study the spatiotemporal pattern of ET in Thailand to support the local water resource management. In the current study, daily ET was estimated over Thailand by ETMonitor, a process-based model, with mainly satellite earth observation datasets as input. One major advantage of the ETMonitor algorithm is that it introduces the impact of soil moisture on ET by assimilating the surface soil moisture from microwave remote sensing, and it reduces the dependence on land surface temperature, as the thermal remote sensing is highly sensitive to cloud, which limits the ability to achieve spatial and temporal continuity of daily ET. The ETMonitor algorithm was further improved in current study to take advantage of thermal remote sensing. In the improved scheme, the evaporation fraction was first obtained by land surface temperature—vegetation index triangle method, which was used to estimate ET in the clear days. The soil moisture stress index (SMSI) was defined to express the constrain of soil moisture on ET, and clear sky SMSI was retrieved according to the estimated clear sky ET. Clear sky SMSI was then interpolated to cloudy days to obtain the SMSI for all sky conditions. Finally, time-series ET at daily resolution was achieved using the interpolated spatio-temporal continuous SMSI. Good agreements were found between the estimated daily ET and flux tower observations with root mean square error ranging between 1.08 and 1.58 mm d−1, which showed better accuracy than the ET product from MODerate resolution Imaging Spectroradiometer (MODIS), especially for the forest sites. Chi and Mun river basins, located in Northeast Thailand, were selected to analyze the spatial pattern of ET. The results indicate that the ET had large fluctuation in seasonal variation, which is predominantly impacted by the monsoon climate. Full article
(This article belongs to the Special Issue Remote Sensing of Evapotranspiration (ET))
Show Figures

Graphical abstract

21 pages, 8925 KiB  
Article
Development of an Evapotranspiration Data Assimilation Technique for Streamflow Estimates: A Case Study in a Semi-Arid Region
by Ying Zhang, Ling Zhang, Jinliang Hou, Juan Gu and Chunlin Huang
Sustainability 2017, 9(10), 1658; https://doi.org/10.3390/su9101658 - 21 Sep 2017
Cited by 16 | Viewed by 5585
Abstract
Streamflow estimates are substantially important as fresh water shortages increase in arid and semi-arid regions where evapotranspiration (ET) is a significant contribution to the water balance. In this regard, evapotranspiration data can be assimilated into a distributed hydrological model (SWAT, Soil and Water [...] Read more.
Streamflow estimates are substantially important as fresh water shortages increase in arid and semi-arid regions where evapotranspiration (ET) is a significant contribution to the water balance. In this regard, evapotranspiration data can be assimilated into a distributed hydrological model (SWAT, Soil and Water Assessment Tool) for improving streamflow estimates. The SWAT model has been widely used for streamflow estimations, but the applications combining SWAT and ET products were rare. Thus, this study aims to develop a SWAT-based evapotranspiration data assimilation system. In particular, SWAT is gridded at Hydrologic Response Unit (HRU) level to incorporate gridded ET products acquired from the remote sensing-based ETMonitor model. In the modeling case, Gridded SWAT (GSWAT) shows a good agreement of streamflow modeling with the original SWAT. Such a scant margin between them is due to the modeling domain mismatch caused by different HRU delineations. In the ET assimilation case, we carry out a synthetic data experiment to illustrate the state augmentation Direct Insertion (DI) method and a real data experiment for the upper Heihe River Basin. The results demonstrate the benefits of the ET assimilation for improving hydrologic processes representations. In the future, more remotely sensed data can be assimilated into the data assimilation system to provide more reliable hydrological predictions. Full article
Show Figures

Figure 1

32 pages, 38195 KiB  
Article
Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations
by Guangcheng Hu and Li Jia
Remote Sens. 2015, 7(3), 3056-3087; https://doi.org/10.3390/rs70303056 - 16 Mar 2015
Cited by 131 | Viewed by 11491
Abstract
As a typical inland river basin, Heihe River basin has been experiencing severe water resource competition between different land cover types, especially in the middle stream and downstream areas. Terrestrial actual evapotranspiration (ETa), including evaporation from soil and water surfaces, evaporation of rainfall [...] Read more.
As a typical inland river basin, Heihe River basin has been experiencing severe water resource competition between different land cover types, especially in the middle stream and downstream areas. Terrestrial actual evapotranspiration (ETa), including evaporation from soil and water surfaces, evaporation of rainfall interception, transpiration of vegetation canopy and sublimation of snow and glaciers, is an important component of the water cycle in the Heihe River basin. We developed a hybrid remotely sensed ETa estimation model named ETMonitor to estimate the daily actual evapotranspiration of the Heihe River basin for the years 2009–2011 at a spatial resolution of 1 km. The model was forced by a variety of biophysical parameters derived from microwave and optical remote sensing observations. The estimated ETa was evaluated using eddy covariance (EC) flux observations at local scale and compared with the annual precipitation and the MODIS ETa product (MOD16) at regional scale. The spatial distribution and the seasonal variation of the estimated ETa were analyzed. The results indicate that the estimated ETa shows reasonable spatial and temporal patterns with respect to the diverse cold and arid landscapes in the upstream, middle stream and downstream regions, and is useful for various applications to improve the rational allocation of water resources in the Heihe River basin. Full article
Show Figures

Graphical abstract

Back to TopTop