Estimation and Spatiotemporal Evolution Analysis of Actual Evapotranspiration in Turpan and Hami Cities Based on Multi-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
2.2.2. Meteorological and LUCC Data
2.3. Methods
2.3.1. Algorithm of ET
2.3.2. Precision Evaluation
2.3.3. Statistical Analysis
3. Results
3.1. Accuracy Evaluation
3.1.1. Comparison with ET0-PM
3.1.2. Comparisons with Other ETa Datasets
3.2. Spatiotemporal Variations of ETa
3.2.1. Annual Scale
3.2.2. Seasonal Scale
3.2.3. Monthly Scale
3.3. Trend Analysis of ET
3.3.1. Spatial Variability
3.3.2. Spatial Volatility of ET
3.3.3. Analysis of Future Trends in ETa
3.4. Analysis of Factors Influencing ETa
3.4.1. Climate Factors
3.4.2. Human Factors
- The differences in the physicochemical properties of different land classes determine the disparities in their ETa capacities. As shown in Figure 19, the annual average ETa of cropland in Tuha was the highest, reaching 424.12 mm/a, indicating that cropland has higher water-use efficiency and ET potential. The annual average ETa of unused land was the lowest, at only 32.27 mm/a, reflecting the low vegetation coverage and weak evaporation capacity of unused land. The annual average ETa values of the forest, construction land, water, and grassland were between these two values.
- The urban heat-island effect has a certain impact on the ETa of construction and unused land. The land-surface temperatures of these two types of land were higher than those of other land types, especially in the summer. Since TEM is one of the important factors affecting the ET process, the ETa values of these two land types likewise fluctuated with TEM; nevertheless, their ETa values remained lower because bare soil acts as a suppressor of water evaporation [66].
- LUCC has a significant effect on Tuha’s ETa. During 1980–2021, significant land-use changes occurred in Tuha, and this led to corresponding changes in the ETa values for different land types. Except for the forest, the annual average ETa values of the other five types of land showed downward trends, indicating an overall decrease in the ETa capacity of Tuha.
4. Discussion
5. Conclusions
- The R between the estimated results of this study and the PM calculation results and existing ETa products such as PEW are all greater than 0.8, the corresponding R2 values are between 0.7 and 0.9, and the RMSE values are all less than 15 mm/month. This verifies that the results of the ETMonitor model in Tuha inversion have high reliability and can be used to analyze the spatial and temporal variation characteristics of Tuha’s ETa.
- There are significant regional differences and seasonal variations in the spatial distribution of Tuha’s ETa. The high values are mainly located in mountainous valley areas with high PRCP and in plain areas adjacent to rivers and water supply zones; this is similar to the spatial patterns of LUCC and PRCP. The trend of annual ETa in each pixel was mainly dominated by the trend of ETa in summer; the influences of spring, autumn, and winter on the trend of annual ETa were weak. The overall interannual changes in ETa in Tuha from 1980 to 2021 showed a fluctuating decreasing trend; the monthly ETa showed a single-peaked curve, which was basically consistent with the characteristics of the monthly TEM and PRCP changes. This indicates that the changes in Tuha’s ETa were closely related to the changes in hydrothermal conditions, especially maintaining a correlation with water changes. A similar pattern was shown on the pixel scale: ETa and PRCP were mainly significantly and positively correlated, while there was a non-significant positive correlation with TEM.
- The trend rate of change of ETa in Tuha from 1980 to 2021 ranged from −16.78 to 2.17 mm/a, with an average trend rate of change of −0.2 mm/a, showing an overall decreasing trend. Spatially, there was an increase around the mountain range, the southwestern part of Yizhou, the northern part of Balikunhasake and Yiwu, and there was a decrease in the southern part of Turpan City. The areas of high ETa fluctuation were mainly concentrated in the south of Tuha and the northeast of Balikunhasake and Yiwu, and the land types in these areas were mainly bare land; the huge ETa fluctuations here could be due to the implementation of the ecological restoration project (returning cropland to forest and grass) in Tuha and the increase in urbanization. The ETa evolution trends were all significantly resistant to persistence, and 78.23% of the areas were predicted to have increases in ETa.
- The anthropogenic impact in the Turpan–Hami region exhibited a slight decreasing trend (85.41%), with 91.65% of the area experiencing an increase while only 8.35% showing a decrease in human impact. The ETa intensities of different land-use types in Tuha differed significantly: cropland (424.12 mm/a) > forest (354.65 mm/a) > construction (324.9 mm/a) > water (301.45 mm/a) > grassland (241.39 mm/a) > unused land (32.27 mm/a). During the study period, the average annual ETa values of cropland, grassland, water, construction, and unused land showed decreasing trends; the forest showed a roughly stable and constant trend, and the changes in land-use type also affected the changes in ETa.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mai, M.; Wang, T.; Han, Q.; Jing, W.; Bai, Q. Comparison of environmental controls on daily actual evapotranspiration dynamics among different terrestrial ecosystems in China. Sci. Total Environ. 2023, 871, 162124. [Google Scholar] [CrossRef]
- Wu, B.; Quan, Q.; Yang, S.; Dong, Y. A social-ecological coupling model for evaluating the human-water relationship in basins within the Budyko framework. J. Hydrol. 2023, 619, 129361. [Google Scholar] [CrossRef]
- Zhao, M.; Geruo, A.G.; Liu, Y.; Konings, A.G. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 2022, 12, 1024–1030. [Google Scholar] [CrossRef]
- Mustafa, A.; Alam, I.M.; Najah, A.A.; Feng, H.Y. A novel application of transformer neural network (TNN) for estimating pan evaporation rate. Appl. Water Sci. 2022, 13, 31. [Google Scholar] [CrossRef]
- Mokhtari, A.; Sadeghi, M.; Afrasiabian, Y.; Yu, K. OPTRAM-ET: A novel approach to remote sensing of actual evapotranspiration applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2023, 286, 113443. [Google Scholar] [CrossRef]
- Shang, K.; Yao, Y.; Di, Z.; Jia, K.; Zhang, X.; Fisher, J.B.; Chen, J.; Guo, X.; Yang, J.; Yu, R.; et al. Coupling physical constraints with machine learning for satellite-derived evapotranspiration of the Tibetan Plateau. Remote Sens. Environ. 2023, 289, 113519. [Google Scholar] [CrossRef]
- Song, L.; Ding, Z.; Kustas, W.P.; Xu, Y.; Zhao, G.; Liu, S.; Ma, M.; Xue, K.; Bai, Y.; Xu, Z. Applications of a thermal-based two-source energy balance model coupled to surface soil moisture. Remote Sens. Environ. 2022, 271, 112923. [Google Scholar] [CrossRef]
- Yang, J.; Yao, Y.; Shao, C.; Li, Y.; Fisher, J.B.; Cheng, J.; Chen, J.; Jia, K.; Zhang, X.; Shang, K.; et al. A novel TIR-derived three-source energy balance model for estimating daily latent heat flux in mainland China using an all-weather land surface Temperature product. Agric. For. Meteorol. 2022, 323, 109066. [Google Scholar] [CrossRef]
- Wei, J.; Cui, Y.; Luo, Y. Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation. Agric. Water Manag. 2023, 278, 108141. [Google Scholar] [CrossRef]
- Zhang, C.; Long, D.; Zhang, Y.; Anderson, M.C.; Kustas, W.P.; Yang, Y. A decadal (2008–2017) daily evapotranspiration data set of 1 km spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion. Remote Sens. Environ. 2021, 262, 112519. [Google Scholar] [CrossRef]
- Jaafar, H.; Mourad, R.; Schull, M. A global 30-m ET model (HSEB) using harmonized Landsat and Sentinel-2, MODIS and VIIRS: Comparison to ECOSTRESS ET and LST. Remote Sens. Environ. 2022, 274, 112995. [Google Scholar] [CrossRef]
- Zou, M.; Yang, K.; Lu, H.; Ren, Y.; Sun, J.; Wang, H.; Tan, S.; Zhao, L. Integrating eco-evolutionary optimality principle and land processes for evapotranspiration estimation. J. Hydrol. 2023, 616, 128855. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Hu, G. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. J. Hydrol. 2022, 613, 128444. [Google Scholar] [CrossRef]
- Hu, G.; Jia, L. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations. Remote Sens. 2015, 7, 3056–3087. [Google Scholar] [CrossRef]
- Paciolla, N.; Corbari, C.; Hu, G.; Zheng, C.; Menenti, M.; Jia, L.; Mancini, M. Evapotranspiration estimates from an energy-water-balance model calibrated on satellite land surface Temperature over the Heihe basin. J. Arid. Environ. 2021, 188, 104466. [Google Scholar] [CrossRef]
- Abbasi, N.; Nouri, H.; Didan, K.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Opp, C.; Nagler, P.; Thenkabail, P.S.; Siebert, S. Mapping Vegetation Index-Derived Actual Evapotranspiration across Croplands Using the Google Earth Engine Platform. Remote Sens. 2023, 15, 1017. [Google Scholar] [CrossRef]
- Senay, G.B.; Friedrichs, M.; Morton, C.; Parrish, G.E.L.; Schauer, M.; Khand, K.; Kagone, S.; Boiko, O.; Huntington, J. Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model. Remote Sens. Environ. 2022, 275, 113011. [Google Scholar] [CrossRef]
- Degano, M.F.; Rivas, R.E.; Carmona, F.; Niclòs, R.; Sánchez, J.M. Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region. Egypt. J. Remote Sens. Space Sci. 2021, 24, 319–328. [Google Scholar] [CrossRef]
- Wei, T.; Wang, Y.Q. Temporal and spatial dynamic analysis of terrestrial evapotranspiration in China based on PML-V2 product. Arid. Land Geogr. 2023, 1–15. [Google Scholar]
- Deng, H.; Tang, Q.; Yun, X.; Tang, Y.; Liu, X.; Xu, X.; Sun, S.; Zhao, G.; Zhang, Y.; Zhang, Y. Wetting trend in Northwest China reversed by warmer Temperature and drier air. J. Hydrol. 2022, 613, 128435. [Google Scholar] [CrossRef]
- Condon, L.E.; Atchley, A.L.; Maxwell, R.M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 2020, 11, 873. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, G.; Li, Z.; Luo, S.; Wang, H.; Xiong, Z.; Zhu, J.; Hu, J. A Strategy for Variable-Scale InSAR Deformation Monitoring in a Wide Area: A Case Study in the Turpan–Hami Basin, China. Remote Sens. 2022, 14, 3832. [Google Scholar] [CrossRef]
- Yan, N.; Wu, B.; Zhu, W. Assessment of Agricultural Water Productivity in Arid China. Water 2020, 12, 1161. [Google Scholar] [CrossRef]
- Zhang, M.; Philp, P. Geochemical characterization of aromatic hydrocarbons in crude oils from the Tarim, Qaidam and Turpan Basins, NW China. Pet. Sci. 2010, 7, 448–457. [Google Scholar] [CrossRef]
- Liu, N.F.; Liu, Q.; Wang, L.Z.; Liang, S.L.; Wen, J.G.; Qu, Y.; Liu, S.H. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Liu, S.; Tang, H.; Liang, S. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 2013, 6, 69–95. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S.; et al. Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Networks from MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. Multi-period land use remote sensing data set in China (CNLUCC). Resour. Environ. Sci. Data Regist. Publ. Syst. 2018, 7, 201. [Google Scholar]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Jianyu, F.; Weiguang, W.; Quanxi, S.; Wanqiu, X.; Mingzhu, C.; Jia, W.; Zefeng, C.; Wanshu, N. Improved global evapotranspiration estimates using proportionality hypothesis-based water balance constraints. Remote Sens. Environ. 2022, 279, 113140. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.B.; Zhang, N.; Chen, J.; Cheng, J.; Zhao, S.; Zhang, X.; et al. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric. For. Meteorol. 2013, 171–172, 187–202. [Google Scholar] [CrossRef]
- Yin, L.; Tao, F.; Chen, Y.; Liu, F.; Hu, J. Improving terrestrial evapotranspiration estimation across China during 2000–2018 with machine learning methods. J. Hydrol. 2021, 600, 126538. [Google Scholar] [CrossRef]
- Li, Z.; Sang, X.; Zhang, S.; Zheng, Y.; Lei, Q. Conversion Coefficient Analysis and Evaporation Dataset Reconstruction for Two Typical Evaporation Pan Types—A Study in the Yangtze River Basin, China. Atmosphere 2022, 13, 1322. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; Food and Agriculture Organization: Rome, Italy, 1998; p. 56. [Google Scholar]
- Binbin, G.; Jing, Z.; Xianyong, M.; Tingbao, X.; Yongyu, S. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly Temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Suling, H.; Jie, L.; Jinliang, W.; Fang, L. Evaluation and analysis of upscaling of different land use/land cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): A case study in China. Geocarto Int. 2022, 37, 17340–17360. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Hu, G.; Lu, J. Earth Observations-Based Evapotranspiration in Northeastern Thailand. Remote Sens. 2019, 11, 138. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G.; Zha, Y. A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model. Water Resour. Res. 2018, 54, 9774–9790. [Google Scholar] [CrossRef]
- Ning, W.; Li, J.; Chaolei, Z.; Massimo, M. Estimation of subpixel snow sublimation from multispectral satellite observations. J. Appl. Remote Sens. 2017, 11, 46017. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Noilhan, J.; Planton, S. A Simple Parameterization of Land Surface Processes for Meteorological Models. Am. Meteorol. Soc. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Guo, J.; Shi, J.; Zhao, T.; Tong, B. A 1-km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019. Earth Syst. Sci. Data 2022, 14, 2613–2637. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration–a review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Xie, Z.; Yao, Y.; Zhang, X.; Liang, S.; Fisher, J.B.; Chen, J.; Jia, K.; Shang, K.; Yang, J.; Yu, R.; et al. The Global LAnd Surface Satellite (GLASS) evapotranspiration product Version 5.0: Algorithm development and preliminary validation. J. Hydrol. 2022, 610, 127990. [Google Scholar] [CrossRef]
- Chang, J.; Liu, Q.; Wang, S.; Huang, C. Vegetation Dynamics and Their Influencing Factors in China from 1998 to 2019. Remote Sens. 2022, 14, 3390. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Wang, Y.Q.; Sun, J.P.; Zhang, C.F. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia. Remote Sens. Land Resour. 2020, 32, 200–208. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Roderick, M.L.; Hobbins, M.T.; Farquhar, G.D. Pan Evaporation Trends and the Terrestrial Water Balance. I. Principles and Observations. Geogr. Compass 2009, 3, 746–760. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Yue, P.; Wang, J. Effects of evapotranspiration and precipitation on dryness/wetness changes in China. Theor. Appl. Climatol. 2020, 142, 1027–1038. [Google Scholar] [CrossRef]
- Wu, J.; Yao, H. Simulating dissolved organic carbon during dryness/wetness periods based on hydrological characteristics under multiple timescales. J. Hydrol. 2022, 614, 128534. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, P.; Zhu, F.; Xu, C.; Wang, Y.; Liu, W. Analysis and Forecasting of Wetness-Dryness Encountering of a Multi-Water System Based on a Vine Copula Function-Bayesian Network. Water 2022, 14, 1701. [Google Scholar] [CrossRef]
- Duan, H.; Qi, Y.; Kang, W.; Zhang, J.; Wang, H.; Jiang, X. Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China. Sustainability 2022, 14, 4926. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Q.; Chen, H.; Quan, Q.; Li, C.; Dong, J.; Chang, M.; Yan, S.; Liu, J. Effect of Vegetation Carryover and Climate Variability on the Seasonal Growth of Vegetation in the Upper and Middle Reaches of the Yellow River Basin. Remote Sens. 2022, 14, 5011. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, Z.; Feng, T.Q.; Cheng, Z.M.; Wang, F.J.; Huang, K. Analysis of evapotranspiration estimation and its spatial-Temporal characteristics: Taking Zhanghe irrigation district as an example. Bull. Surv. Mapp. 2022, 12, 57–63. [Google Scholar] [CrossRef]
- Fu, J.; Gong, Y.; Zheng, W.; Zou, J.; Zhang, M.; Zhang, Z.; Qin, J.; Liu, J.; Quan, B. Spatial-Temporal variations of terrestrial evapotranspiration across China from 2000 to 2019. Sci. Total Environ. 2022, 825, 153951. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Jiao, X.; Jin, X.; Li, B.; Liu, K.; Shi, L. Satellite time series data reveal interannual and seasonal spatioTemporal evapotranspiration patterns in China in response to effect factors. Agric. Water Manag. 2021, 255, 107046. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y.; Wang, J.; Qi, Y. Estimation of evaporation of different cover types using a stable isotope method: Pan, bare soil, and crop fields in the North China Plain. J. Hydrol. 2022, 613, 128414. [Google Scholar] [CrossRef]
- Deng, X.Y.; Liu, Y.; Liu, Z.H.; Yao, J.Q. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China. Acta Ecol. Sin. 2017, 37, 2994–3008. [Google Scholar] [CrossRef]
- Ji, P.; Yuan, X. Modeling the evapotranspiration and its long-term trend over Northwest China using different machine learning models. Trans. Atmos. Sci. 2023, 46, 69–81. [Google Scholar] [CrossRef]
- Kong, J.J.; Zan, M.; Zhang, Z.D. Spatiotemporal Variation of Evapotranspiration in the Manas River Basin in Xinjiang. J. Irrig. Drain. 2021, 40, 117–124. [Google Scholar] [CrossRef]
- Liu, H.Y.; Ning, X.L.; Hai, Q.S.; Xie, Y.H.; Liu, M.P. Spatiotemporal variability of evapotranspiration and its responses to vegetation and climate in Otindag sandy land. J. Arid. Land Resour. Environ. 2022, 36, 110–118. [Google Scholar] [CrossRef]
- Wu, G.; Lu, X.; Zhao, W.; Cao, R.; Xie, W.; Wang, L.; Wang, Q.; Song, J.; Gao, S.; Li, S.; et al. The increasing contribution of greening to the terrestrial evapotranspiration in China. Ecol. Model. 2023, 477, 110273. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Chen, H.; Ju, W.; Xu, C.; Liu, Y.; Zhou, B.; Zhou, Y.; Zhou, Y.; Yu, M. Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agric. For. Meteorol. 2022, 324, 109118. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Li, Z.; Fang, G. Recent recovery of surface wind speed in northwest China. Int. J. Climatol. 2018, 38, 4445–4458. [Google Scholar] [CrossRef]
Type | Variables | Datasets | Resolutions | Periods |
---|---|---|---|---|
Input | Albedo | GLASS02 [25,26] | 1981–2020, 8-day, 1 km, 0.05° | 1980–2021 |
MOD09GA | 2000–2023, Daily, 500 m | |||
CDR AVHRR 1 v5.3 | 1979–2022, Daily, 0.05° | |||
Leaf Area Index (LAI) | GLASS01 [27] | 1981–2021, 8-day, 250 m, 0.05° | ||
Fraction Vegetation Coverage (FVC) | GLASS10 [28] | 1981–2021, 8-day, 500 m, 0.05° | ||
Landsat-3-NDVI | 1980, 16-day, 80 m | |||
Land Use and Cover Change (LUCC) | MCD12Q1 v061 [29] | 2001–2021, Yearly, 500 m | ||
CLCD 2 [30] | 1985–2021, Yearly, 30 m | |||
CNLUCC 2 [31] | 1980–2020, 5—year, 30 m, 1 km | |||
MOD10A2_Snow | 2000–2023, 8-day, 500 m | |||
Surface Soil Moisture (SSM) | ESA CCI 3 v07.1 [32] | 1978–2021, Daily, 0.25° | ||
ERA 3 5-Fill Null | 1950–2023, Hourly, 0.1° | |||
2 m TEM (Ta) | ERA5-Land | |||
2 m Dewpoint TEM (Td) | ||||
Surface Pressure (Pa) | ||||
Surface Thermal Radiation Downwards (RL↓) | ||||
Surface Solar Radiation Downwards (RS↓) | ||||
Wind Speed (WIN, µ10 and v10) | ||||
Total PRCP | ||||
Cross-comparison | ETa Products | GLEAM 4 v3.6a_E [33] | 1980–2021, Daily, 0.25° | 2000–2018 |
PEW 4 [34] | 1982–2018, Month, 0.1° | |||
GLASS_ET [35,36] | 1982–2018, 8-day, 1 km, 0.05° | |||
GPR 4 [37] | 2000–2018, 10-day, 1 km |
Station | Name | Latitude | Longitude | Altitude | CLCD [30]_2021 | 1980–2021 | |
---|---|---|---|---|---|---|---|
LUCC | TEM (°C) | PRCP (mm/a) | |||||
51,495 | Thirteen rooms | 43.216667 | 91.733333 | 721.40 | Barren | 10.90 | 35.41 |
51,526 | Kumish | 42.233333 | 88.216667 | 922.40 | 11.23 | 66.23 | |
51,571 | Toksun | 42.766667 | 88.60 | 49.50 | Grassland | 15.35 | 42.44 |
51,572 | Turpan Dongkan | 42.833333 | 89.25 | −48.70 | Cropland | 15.31 | 18.73 |
51,573 | Turpan | 42.95 | 89.233333 | 39.30 | 15.64 | 20.31 | |
51,581 | Shanshan | 42.85 | 90.233333 | 398.60 | Barren | 13.03 | 32.91 |
52,101 | Balikun | 43.60 | 93.05 | 1679.40 | Grassland | 2.68 | 181.76 |
52,112 | Naomaohu | 43.75 | 94.983333 | 479.00 | Barren | 10.55 | 27.84 |
52,118 | Yiwu | 43.266667 | 94.70 | 1728.60 | 4.62 | 85.97 | |
52,203 | Hami | 42.816667 | 93.516667 | 737.20 | Impervious | 10.80 | 39.40 |
52,313 | Hongliuhe | 41.533333 | 94.666667 | 1573.80 | Barren | 7.81 | 50.48 |
Purpose | Equation | Description |
---|---|---|
Net radiation (Rn) | = 5.67 × 10−8 W/(m2·K4); T: average temperature, °C; | |
Resistance (r) [14] | : soil surface r; SMsat, SMres: soil map, pedo-transfer. | |
: canopy surface r; : minimum leaf stomatal r, s/m; KVPD: fitting parameters; : relative water content; Ksf: tenacity factor. | ||
; ; | zref: reference height, m; : wind speed, m/s; : stability correction functions. | |
ET [52] | : Slope of es; : psychrometer constant, 0.067 kPa/°C; | |
K: conversion coefficient, 0.55; Kpan: pan evaporation coefficient; Epan: pan evaporation. | ||
KC: crop coefficient; ETC: ETa of crops, mm. |
Index | Formula | Description |
---|---|---|
R | The number of samples is denoted as n; ETobs and ETest represent the observed and simulated ET, respectively; The upper line denotes the temporal average; σ denotes the standard deviation; The range of KGE is from −∞ to 1. | |
R2 | ||
RMSE | ||
Bias | ||
KGE |
Method | Formula | Description | Note |
---|---|---|---|
Sen | The ET at times j and i are represented by ETj and ETi, respectively. | 1980 ≤ i< j ≤ 2021. | |
Mann–Kendall (MK) | n = 42 > 10; α = 0.05, Z0.95 = 1.96. | ||
Coefficient of Variation (CV) | σ denotes the standard deviation. | The interval is 0.05. | |
Hurst Rescaled Range Analysis | Define the mean series. | 0 < H < 0.5; H = 0.5; 0.5 < H < 1. | |
Cumulative deviations. | |||
Extreme differences. | |||
Standard deviation. | |||
Hurst index. | |||
Pearson Correlation | x represents ETa; y represents TEM; z represents PRCP. | p < 0.05; df = 39; t0.05 = 2.023; t0.01 = 2.708. | |
Partial Correlation Analysis | |||
Residual Analysis (RA) | If the ETRes is >0, it indicates that human activities exert a promoting effect on ETa, whereas ETRes < 0 indicates an inhibitory effect. |
R | T Value 1,2 | Type | Percentage | |
---|---|---|---|---|
ETa-TEM | ETa-PRCP | |||
<0 | <−2.708 | Negative (p < 0.01) | 5.69% | 0.37% |
−2.708 ≤ T < −2.023 | Negative (p < 0.05) | 5.78% | 0.66% | |
−2.023 ≤ T < −0 | Negative (n.s.) | 29.43% | 1.07% | |
>0 | 0 ≤ T < −2.023 | Positive (n.s.) | 55.81% | 3.74% |
2.023 ≤ T ≤ −2.708 | Positive (p < 0.05) | 1.43% | 6.30% | |
>2.708 | Positive (p < 0.01) | 1.86% | 87.87% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, J.; Ding, J.; Li, X. Estimation and Spatiotemporal Evolution Analysis of Actual Evapotranspiration in Turpan and Hami Cities Based on Multi-Source Data. Remote Sens. 2023, 15, 2565. https://doi.org/10.3390/rs15102565
Wang L, Wang J, Ding J, Li X. Estimation and Spatiotemporal Evolution Analysis of Actual Evapotranspiration in Turpan and Hami Cities Based on Multi-Source Data. Remote Sensing. 2023; 15(10):2565. https://doi.org/10.3390/rs15102565
Chicago/Turabian StyleWang, Lei, Jinjie Wang, Jianli Ding, and Xiang Li. 2023. "Estimation and Spatiotemporal Evolution Analysis of Actual Evapotranspiration in Turpan and Hami Cities Based on Multi-Source Data" Remote Sensing 15, no. 10: 2565. https://doi.org/10.3390/rs15102565
APA StyleWang, L., Wang, J., Ding, J., & Li, X. (2023). Estimation and Spatiotemporal Evolution Analysis of Actual Evapotranspiration in Turpan and Hami Cities Based on Multi-Source Data. Remote Sensing, 15(10), 2565. https://doi.org/10.3390/rs15102565