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Abstract: Evapotranspiration (ET) is a critical component of the water and energy balances, and the
number of remote sensing-based ET products and estimation methods has increased in recent years.
Various aspects of remote sensing of ET are reported in 11 papers published in this special issue.
The major research topics covered by this special issue include inter-comparison and performance
evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil
Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model
(ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET
products; development or improvement of data fusion frameworks to provide continuous daily ET at
a high spatial resolution (field-scale or 30 m) by fusing the advanced space-borne thermal emission
reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS),
and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of
36 land surface models and four diagnostic datasets. The effects of the differences among ET products
on water resources and ecosystem management were also investigated. More accurate ET estimates
and improved understanding of remotely sensed ET products can help maximize crop productivity
while minimizing water loses and management costs.

Keywords: data fusion; evapotranspiration partitioning; land surface model; process-based model;
water stress

1. Introduction

Evapotranspiration (ET), a critical and major component of the water and energy balances, is a
key variable for linking ecosystem functions and climate feedbacks [1], determination of crop water
or irrigation requirements and crop coefficients [2], and estimation of productivity and water use
efficiency of ecosystems [3,4]. Although the eddy covariance (EC) technique has been widely used for
continuous measurements of ET in recent decades [5,6], it is not possible to measure ET by the EC
technique at all places all the time and especially over heterogeneous landscapes. Thus, a wide range
of remote sensing-based ET products at the global and regional scales has been developed in recent
decades to complement the limited land surface coverage of the ground-based ET measurements [7–9].
These ET products include numerous remote sensing reanalysis-based [10–12], land surface model
(LSM)-based [13,14], surface energy balance (SEB)-based [15–17], and empirical up-scaling of in situ ET
observations [18,19]. The SEB-based models are gaining increased popularity because remote sensing
in the thermal infrared provides information not only on the partitioning of the available energy to
sensible and latent heat fluxes, but also on the predicting water stress levels [17,20]. However, a major
shortcoming of SEB-based models is that they rely on available land surface temperature (LST) data
from satellite observations. Consequently, SEB modeling estimates are not available for cloudy days.
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Thus, the process-based ET models are gaining more acceptance to generate continuous ET estimates
by utilizing a variety of biophysical parameters derived from microwave and optical remote sensing
observations [21,22]. It is also recognized that there are large differences among a wide range of ET
products. Validations and inter-comparisons of various ET models or ET products under diverse
ecosystems and agrometeorological conditions are needed due to different levels of uncertainties and
accuracies that vary over space and time [23,24].

Although several remote sensing-based ET products are available, these datasets cannot generally
provide ET data at both higher spatial and temporal resolutions to derive field-scale ET estimates over
heterogeneous landscapes due to satellite orbital dynamics and physical limitations of the satellite
sensors. Thus, downscaling and data fusion approaches have been employed to improve the higher
spatial and temporal resolutions of remote sensing-based ET products [25–28].

Accurate ET estimates are crucial to manage water resources and to assess the impacts of climate
on agriculture and food security [29]. High uncertainty in ET estimates is a major obstacle to examine
spatial and temporal variability in regional hydrology [30]. Thus, understanding the uncertainty of ET
estimates can help to better determine water availability for agriculture and livelihoods.

This special issue compiles contributions on research related to the above-mentioned various
aspects of remote sensing of ET. The major topics covered by the 11 papers in this special issue include
inter-comparison and performance evaluation of several ET models or products, data fusion approach to
generate higher spatial and temporal resolution ET products, model development and/or improvement,
and investigating uncertainties in ET estimates. A short summary of the varied contributions to this
special issue is presented in the next section.

2. Overview of Contributions

2.1. Inter-Comparison and Performance Evaluation of Several ET Models or Products

Yang et al. [31] compared three Two-Source Energy Balance (TSEB) models for estimating ET
and its components (evaporation, E and transpiration, T) in semiarid climates of China. Those three
TSEB models were: TSEB model with the Priestley–Taylor equation (TSEB-PT), TSEB model with the
Penman–Monteith equation (TSEB-PM), and TSEB model using component temperatures derived from
vegetation fractional cover and land surface temperature (VFC/LST) space (TSEB-TC-TS). The study
provided valuable insights into understanding the performances of TSEB models with different
temperature decomposition methods since they were responsible for the observed discrepancies in the
partitioned E and T fluxes. Based on the soil wetness isoline in the VFC/LST space, the VFC/LST-based
temperature decomposition method can add a further constraint on vegetation T. This could also be
used as a substitution for the interactive procedure adopted in the TSEB model.

Grosso et al. [32] employed the Surface Energy Balance Algorithm for Land (SEBAL) in a
salt-affected and water-stressed maize field using Landsat images to map the spatial structure of
water fluxes and crop yield. The SEBAL results were compared with ET estimates of the Food and
Agriculture Organization (FAO) method and three-dimensional soil–plant simulations. The study
highlighted that the integration of SEBAL with field observations and soil–plant simulations could be
beneficial for precision agriculture practices (e.g., precision irrigation).

Li et al. [33] evaluated four popular global ET products: Global Land Evaporation
Amsterdam Model version 3.0a (GLEAM3.0a), Modern Era Retrospective-Analysis for Research
and Applications-Land (MERRA-Land), Global Land Data Assimilation System version 2.0 with
the Noah model (GLDAS2.0-Noah), and EartH2Observe ensemble (EartH2Observe-En) over China
using a stratification method, six validation criteria, and EC measurements at 12 sites. The model
performances were evaluated by biome, elevation, and climate regime as well. The study recommended
the use of multi-source ET datasets since no ET product consistently performed best for the selected
validation criterion.
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Delogu et al. [34] assessed the model predictions of water stress and ET components for the
two proposed versions (the “patch” and “layer” resistances network) of the new dual-source Soil
Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model over 20 in situ datasets
encompassing diverse vegetation and climate conditions. The SPARSE model showed good estimates
of latent and sensible heat fluxes and water stress over a large range of leaf area indexes and contrasting
water stress levels.

Zheng et al. [22] used ETMonitor, a process-based model, with satellite earth observation datasets
as main inputs to derive daily ET by utilizing surface soil moisture from microwave remote sensing
and LST from thermal remote sensing. Estimated daily ET showed good agreement with EC-measured
ET in Northeastern Thailand.

Khand et al. [35] developed an automated modeling framework to construct daily time series of
ET maps, addressing the challenges related to processing and gap filling of non-continuous satellite
data using the moderate resolution imaging spectroradiometer (MODIS) imagery and the Surface
Energy Balance System (SEBS) model. The daily ET maps generated by this modeling framework
captured the spatial and temporal variations (2001–2014) of ET across Oklahoma, USA. The proposed
ET modeling framework provided a pathway to construct daily time series of ET maps at a regional
scale and highlighted a range of potential applications for making informed decision and policies.

Lu et al. [36] evaluated the effects of differences among five representative ET products
(Australian Water Availability Project (AWAP) as a reference, ET product developed by Commonwealth
Scientific and Industrial Research Organization (CSIRO), LSM-based ET product from GLDAS, remote
sensing-based ET product from MODIS, and water budget-based ET product from TerraClimate) on
water resources and ecosystem management in the Murrumbidgee River catchment in Australia. Large
differences in ET budgets among these five ET products propagated into the estimates of mean annual
runoff, soil water storage, and irrigation demands.

2.2. Data Fusion Approach to Generate Higher Spatial and Temporal Resolution ET Products

Considering the lack of concurrent higher spatial and temporal resolution ET products, Yi et al. [37]
employed a data fusion framework for predicting continuous daily ET at the field-scale over
heterogeneous agricultural areas of Northwest China by fusing the advanced space-borne thermal
emission reflectance radiometer (ASTER) and the MODIS data. Through a combination with the linear
unmixing-based method, the spatial and temporal adaptive reflectance fusion model (STARFM) was
modified to generate high-resolution ET estimates over heterogeneous areas. As compared with the
original STARFM, the modified STARFM showed a significant improvement in daily ET estimation,
preserved more spatial details for heterogeneous agricultural fields, and provided field-to-field
variability in water use.

Wang et al. [38] proposed an improved ET fusion method— the Spatio-temporal Adaptive Data
Fusion Algorithm for EvapoTranspiration mapping (SADFAET)—by introducing critical surface
temperature (the corresponding temperature to determine soil moisture), importing the weights of
surface ET-indicative similarity (the influencing factor of ET), and modifying the spectral similarity (the
differences in spectral characteristics of different spatial resolution images) for the Enhanced Spatial
and Temporal Adaptive Reflectance Fusion Model (ESTARFM). The study successfully fused daily
MODIS and periodic Landsat 8 ET data in the SADFAET for producing ET at high spatial (30 m) and
temporal (daily) resolutions.

2.3. Model Development and/or Improvement

Considering the knowledge gaps in differences among final ET estimates resulting from subjectivity
in selecting “hot” and “cold” pixel pair, Dhungel and Barber [39] tested the assumption of low
variability of surface properties by first applying an automated calibration pixel selection process
for a SEB model—Mapping EvapoTranspiration at high Resolution with Internalized Calibration
(METRIC). Consequently, they computed vertical near-surface temperature differences (dT) vs. surface
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temperature (Ts) relationships at all pixels, which could potentially be used for model calibration
to explore ET variance among the outcomes from multiple calibration schemes where normalized
difference vegetation index (NDVI) and Ts variability are intrinsically negligible. Significant variability
in ET (ranging from 5% to 20%) and a high and statistically consistent variability in dT suggested that
additional surface properties, which were not captured when using only NDVI and Ts, affected the
calibration process. This approach of quantifying ET variability based on candidate pixel selection
helps to quantify the biases inadvertently introduced by user subjectivity as well as to improve the
model’s usability and performance.

Zheng et al. [22] developed and applied a new scheme in ETMonitor, a process-based model,
to take advantage of thermal remote sensing. In the improved scheme, the evaporation fraction was
obtained by LST-vegetation index triangle method to estimate ET in clear days. The soil moisture
stress index (SMSI) was defined to express the impact of soil moisture on ET. Clear sky SMSI, retrieved
according to the estimated clear sky ET, was interpolated to cloudy days to obtain the SMSI for
all sky conditions. Finally, interpolated spatio-temporal continuous SMSI was used to derive daily
time-series ET.

Wang et al. [38] developed an improved ET fusion method (SADFAET) based on ESTARFM.
The improvements in SADFAET were as follows: consideration of soil moisture by introducing
the critical surface temperature while selecting similar pixels, use of multiple spectral bands,
and introduction of the surface ET-indicative similarity to calculate the weights of similar pixels.
This new method can effectively fuse ET at high and low spatial resolutions.

2.4. Investigating Uncertainties in ET Estimates

Jung et al. [40] investigated uncertainties in ET estimates over five different climatic regions in West
Africa using an ET ensemble composed of 36 LSM experiments and four diagnostic datasets (GLEAM,
ALEXI, MOD16, and FLUXNET). The LSM-based ET values had greater uncertainty estimates and
larger seasonal variations than the diagnostic ET datasets. The LSM formulations and parameters had
the largest impact on ET in humid regions (contributing to 90% of the ET uncertainty estimates), while
precipitation contributed to the ET uncertainty primarily in arid regions. The results indicated that
assimilating diagnostic ET datasets into LSMs or hydrological models could improve the accuracy of
ET estimates.

3. Conclusions

The 11 papers published in this special issue highlight a variety of topics related to remote sensing
of ET. This special issue provides valuable insights into understanding the performances of different
ET models and products under diverse ecosystems and agrometeorological conditions. In addition,
improvements on the ET models have also been proposed. Proposed ET data fusion approaches
provide unique means of monitoring continuous daily ET at higher spatial resolutions (e.g., field-scale
or less) over heterogeneous landscapes. More accurate ET estimates and improved understanding of
remotely sensed ET products are crucial to maximize crop productivity while minimizing water losses
and management costs.
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