Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (611)

Search Parameters:
Keywords = EP composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1942 KB  
Article
Anticancer Effects and Phytochemical Profile of Lavandula stoechas
by Hatice Sevim Nalkiran and Ihsan Nalkiran
Pharmaceuticals 2025, 18(11), 1706; https://doi.org/10.3390/ph18111706 - 10 Nov 2025
Viewed by 70
Abstract
Background/Objectives: Lavandula stoechas has reported bioactivities, but its selective anticancer potential in human models remains insufficiently defined. This study aimed to compare cytotoxicity and selectivity of ethanol and methanol extracts prepared from fresh and dried L. stoechas and to profile candidate bioactive [...] Read more.
Background/Objectives: Lavandula stoechas has reported bioactivities, but its selective anticancer potential in human models remains insufficiently defined. This study aimed to compare cytotoxicity and selectivity of ethanol and methanol extracts prepared from fresh and dried L. stoechas and to profile candidate bioactive metabolites. Methods: Aerial parts Lavandula stoechas L. subsp. stoechas (L. stoechas L.) were extracted with ethanol or methanol from fresh (LsFE, LsFM) and dried (LsDE, LsDM) material. Cytotoxicity was assessed in cancer (MDA-MB-231, T98G, RT4) and non-malignant (hGF, ARPE-19) cells using Hoechst 33342-stained nuclear counts and MTS viability at 24–48 h. Metabolite identification was performed using LC–QTOF–MS in both positive and negative ESI modes, supported by database search results. Results: All extracts reduced viability in a dose- and time-dependent manner. Among them, the ethanol extract from fresh material (LsFE) displayed the highest cytotoxic potency and the most favorable selectivity profile, markedly reducing viability in breast (MDA-MB-231) and glioblastoma (T98G) cells while exerting only mild effects on non-malignant fibroblast (hGF) and retinal epithelial (ARPE-19) cells. In contrast, extracts from dried material, particularly LsDE, showed broader cytotoxicity across both cancerous and non-cancerous lines. LC–MS highlighted sesquiterpenoids (Kikkanol A; 3(4→5)-Abeo-4,11:4,12-diepoxy-3-eudesmanol), phenolics (tyrosol; 3,4-dihydroxybenzoic acid), flavonoid/ionone derivatives (luteolin 5,3′-dimethyl ether; 3-hydroxy-β-ionone), oxidized fatty acids (9(S)-HpODE, α-EpODE, 5,12-dihydroxy-eicosatetraenoic acid), and jasmonates (12-hydroxyjasmonic acid; dihydrojasmonic acid methyl ester), especially enriched in LsFE. Conclusions: Ethanol extracts of L. stoechas L., especially LsFE, demonstrated selective cytotoxicity against cancer cells while exerting relatively mild effects on non-malignant cells. The metabolite profile of L. stoechas L. extracts revealed a diverse composition, including phenolics, terpenoids, flavonoids, and oxidized lipids, which are commonly associated with biological activity. These results suggest that LsFE is a promising candidate for further studies focusing on compound isolation and mechanistic analysis. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

23 pages, 6706 KB  
Article
Mechanical and Microstructural Evaluation of Compacted Mixtures of Tropical Soils with Expanded Polystyrene (EPS) Waste for Sustainable Construction Applications
by Gian Fonseca dos Santos, Heraldo Nunes Pitanga, Klaus Henrique de Paula Rodrigues, Gustavo Henrique Nalon and Taciano Oliveira da Silva
Buildings 2025, 15(22), 4037; https://doi.org/10.3390/buildings15224037 - 9 Nov 2025
Viewed by 182
Abstract
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into [...] Read more.
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into mortars, concrete, or soil–cement mixtures, often relying on the addition of cement to improve its mechanical performance. This approach compromises sustainability and has generally overlooked the role of microstructural interactions in the behavior of soil–EPS waste mixes without cement. This study differs from prior works by exploring the mechanical and microstructural properties of soil–EPS waste mixtures without cementitious binders under different compaction energies. Experimental tests were carried out for the technical characterization of soils, ground EPS waste, and mixtures of soil and different contents of EPS waste (0%, 20%, 30%, and 40% of the total apparent volume of the composite), using different compaction energies (Intermediate and Modified Proctor). The mixtures were subjected to Unconfined Compressive Strength (UCS), California Bearing Ratio (CBR), and direct shear strength tests, in addition to physical and microstructural characterization. The results indicated that both soil type and compaction energy influenced the engineering behavior of the mixtures. The clayey soil exhibited superior mechanical performance, while the sandy soil showed reductions in all mechanical properties. The UCS values of the clayey soil with the addition of EPS did not change significantly (297 kPa to 286 kPa at intermediate energy and 514 kPa to 505 kPa at modified energy), while for the sandy soil, there was a decrease in values (from 167 kPa to 46 kPa at intermediate energy and from 291 kPa to 104 kPa at modified energy). In the CBR tests, only the 20% and 30% addition of EPS to the clayey soil, using the Modified Proctor energy, showed an increase (from 18% to 20% for both percentages). This behavior was primarily attributed to adhesion mechanisms at the soil–EPS waste interface, with friction playing a secondary role, thereby suggesting that clayey soils may offer better mechanical response. The lower dry density of these mixtures compared to compacted natural soils presents a technical benefit for use as backfill in areas with low bearing capacity, where minimizing the load from the fill material is critical. Full article
Show Figures

Figure 1

22 pages, 1906 KB  
Article
Effect of Torrefaction Condensate on the Growth and Exopolysaccharide Production of Chlamydomonas reinhardtii
by Salini Chandrasekharan Nair, Amal D. Premarathna, Anjana Hari, Christine Gardarin, Céline Laroche, Rando Tuvikene, Renu Geetha Bai and Timo Kikas
Molecules 2025, 30(21), 4313; https://doi.org/10.3390/molecules30214313 - 6 Nov 2025
Viewed by 290
Abstract
Torrefaction, a mild thermochemical pretreatment process, generates the fuel-torrefied biomass along with non-condensable and condensable gases. The latter can be condensed to yield a dark, viscous liquid called torrefaction condensate (TC). In this study, we investigated the effect of TC on growth and [...] Read more.
Torrefaction, a mild thermochemical pretreatment process, generates the fuel-torrefied biomass along with non-condensable and condensable gases. The latter can be condensed to yield a dark, viscous liquid called torrefaction condensate (TC). In this study, we investigated the effect of TC on growth and exopolysaccharide (EPS) production by the green microalgae Chlamydomonas reinhardtii, a well-known model organism. Aspen wood pellets were torrefied at different temperatures, and the condensate formed at each temperature was analyzed. Based on the GC-MS analysis, 225 °C TC was selected and used for the cultivation of C. reinhardtii. Results show that at 2 mL/L and 2.5 mL/L concentrations, TC negatively impacts growth, EPS production, as well as the composition of amino acids, lipids, and fatty acids n of C. reinhardtii. However, C. reinhardtii gradually adapted to TC and attained the growth patterns comparable to the control, showing the resilience of the culture. The biochemical and antioxidant properties of the EPS showed significant differences to that of the control. Therefore, cultivating these microalgae in TC suggests a new microalgal biorefinery approach through the utilization of low-value TC for the production of value-added products, such as EPS. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

30 pages, 4136 KB  
Article
Performance of EPS-Modified Lightweight Geopolymer and Cement Mortars Under Different Thermal and Cooling Regimes: A Comparative Study
by A. Y. F. Ali, Mohamed K. Ismail, Sabry A. Ahmed, Passant Youssef and M. S. El-Feky
Buildings 2025, 15(21), 3991; https://doi.org/10.3390/buildings15213991 - 5 Nov 2025
Viewed by 168
Abstract
The risk of explosive spalling in high-strength cement-based materials during fire exposure poses a significant threat to structural integrity. To help mitigate this issue, this study explores the use of expanded polystyrene (EPS) beads as both a lightweight filler and a potential spalling-reduction [...] Read more.
The risk of explosive spalling in high-strength cement-based materials during fire exposure poses a significant threat to structural integrity. To help mitigate this issue, this study explores the use of expanded polystyrene (EPS) beads as both a lightweight filler and a potential spalling-reduction agent in lightweight geopolymer and conventional cementitious mortars. Two EPS-containing mortars were developed: a lightweight alkali-activated slag (LWAS) mortar and a conventional lightweight Portland cement (LWPC) mortar, both incorporating EPS beads as a 50% volumetric replacement for sand. Specimens from both mortars were subjected to elevated temperatures of 200 °C, 400 °C, and 600 °C at a heating rate of 10 °C/min to simulate a rapid-fire scenario. Following thermal exposure, two cooling regimes were employed: gradual cooling within the furnace and rapid cooling by water immersion. Mechanical performance was evaluated through compressive, splitting tensile, and impact tests at room and elevated temperatures. Microstructural analysis was also conducted to examine internal changes and heat-induced damage. The results indicated that LWAS showed remarkable resistance to spalling, remaining intact up to 600 °C due to its nanoporous geopolymer structure, which allowed controlled steam release, while LWPC failed explosively at 550 °C despite EPS pores. At 400 °C, EPS beads enhanced thermal insulation in LWAS, lowering internal temperature by over 100 °C, but increased porosity led to faster strength loss. Both mortars gained strength at 200 °C from continued curing, yet LWAS retained strength better at high temperatures than LWPC. Microscopy revealed that EPS created beneficial fine cracks in the slag matrix but harmful voids in cement. Overall, LWAS composites offer excellent spalling resistance for fire-prone environments, though reinforcement is recommended to mitigate strength loss. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 7033 KB  
Article
Evaluation of Colonization by Candida albicans and Biofilm Formation on 3D-Printed Denture Base Resins
by Pedro Guilherme Lemos Corrêa, Sarah Ribeiro Cruz-Araújo, Carolina Alves Freiria de Oliveira, Raiane Rodrigues da Silva, Viviane de Cássia Oliveira, Valéria Oliveira Pagnano, Claudia Helena Silva-Lovato, Rodrigo Galo, Arunas Stirke, Wanessa C. M. A. Melo and Ana Paula Macedo
Materials 2025, 18(21), 5018; https://doi.org/10.3390/ma18215018 - 4 Nov 2025
Viewed by 342
Abstract
Beyond mechanical performance and aesthetics, the susceptibility of 3D-printed resins to microbial colonization and biofilm formation represent an important factor influencing dentures’ longevity. Therefore, this study evaluated Candida albicans colonization and mature biofilm formation on three different 3D-printed denture base resins (Bio Denture—BD; [...] Read more.
Beyond mechanical performance and aesthetics, the susceptibility of 3D-printed resins to microbial colonization and biofilm formation represent an important factor influencing dentures’ longevity. Therefore, this study evaluated Candida albicans colonization and mature biofilm formation on three different 3D-printed denture base resins (Bio Denture—BD; Denture Base Cosmos—CD; Smart Print Bio Denture—SP) and compared them to heat-curing resin (HC). Before the microbiological evaluation, the surface roughness (Sa) was assessed. Biofilm viability was determined through colony-forming units per milliliter (CFU/mL) and biofilm morphology was qualitatively examined using a scanning electron microscope (SEM). The composition of the extracellular polymeric substance (EPS) was investigated by measuring the amounts of carbohydrates (µg/mL), proteins (ng/mL), and extracellular DNA (eDNA) (fluorescence unit). One-way ANOVA was performed for eDNA and Sa and Kruskal–Wallis for the other properties (α = 0.05). Higher surface roughness mean values (standard deviation) (p < 0.05) were observed in CD [0.111 (0.013)] compared to HC [0.084 (0.018) and BD [0.078 (0.015)]. For wettability, BD [63.2 (5.2)] and SP [65.2 (3.1)] resins showed a greater wettability (p < 0.05) than HC resin [73.0 (3.5)], while SP showed lower (p < 0.01) protein levels (425 ng/mL) compared to HC (568.6 ng/mL) and BD (554.8 ng/mL) in the EPS. Despite these differences, the 3D-printed denture base resins exhibited microbial load (CFU/mL), EPS composition (carbohydrates and eDNA), and morphological features of C. albicans biofilm comparable to those of conventional heat-cured PMMA. These findings suggest that, despite resin-specific variations, 3D-printed denture base materials exhibit a similar susceptibility to C. albicans colonization and biofilm formation as conventional denture bases, thereby directing future research towards developing new 3D-printed resins with enhanced antimicrobial properties to improve clinical outcomes. Full article
Show Figures

Figure 1

31 pages, 17858 KB  
Article
Bond Strength of Adhesive Mortars to Substrates in ETICS—Comparison of Testing Methods
by Paweł Gaciek, Mariusz Gaczek and Paweł Krause
Materials 2025, 18(21), 4977; https://doi.org/10.3390/ma18214977 - 31 Oct 2025
Viewed by 451
Abstract
This study investigates the bond strength of fifteen cement-based adhesive mortars used for expanded polystyrene (EPS) in External Thermal Insulation Composite Systems (ETICS). Field surveys and contractor interviews (170 questionnaires) found that adhesive layer thicknesses in real applications typically range from 15–20 mm [...] Read more.
This study investigates the bond strength of fifteen cement-based adhesive mortars used for expanded polystyrene (EPS) in External Thermal Insulation Composite Systems (ETICS). Field surveys and contractor interviews (170 questionnaires) found that adhesive layer thicknesses in real applications typically range from 15–20 mm and frequently exceed 20 mm, in contrast to the smaller values most often recommended by guidelines and technical instructions. Laboratory testing was conducted using two approaches: the standardized pull-off procedure according to EAD 040083-00-0404 (EAD and EAD′ variants) and an in-house pull-off procedure designed to reflect practical conditions of substrate type (concrete slab, silicate block), substrate orientation (horizontal, vertical), and adhesive layer thickness (10 and 20 mm). The results showed that adhesive bond strength is strongly influenced by adhesive layer thickness, substrate type, and substrate orientation. Increasing thickness from 10 mm to 20 mm on concrete substrates typically reduced bond strength by about 65–75%, while vertical orientation lowered adhesion to about half of that obtained in horizontal placement. Silicate substrates exhibited generally lower bond strength but higher variability, occasionally with ratios above unity due to their greater porosity. In some configurations, detachment occurred already during specimen preparation, underlining the variability of performance. The combined effect of increased thickness and vertical orientation on concrete substrates reduced adhesion by about 85% compared to the 10 mm horizontal baseline, highlighting the severity of unfavorable application conditions, whereas on silicate blocks, the effect was weaker but accompanied by large variability. The findings indicate that adhesive layer thickness has a stronger impact on bond strength than orientation and that substrate properties play an important role. The study provides a comparative perspective on current and alternative testing approaches, revealing significant differences in the results. The author’s testing method makes it possible to account for, in laboratory conditions, primarily the geometric shape and orientation of samples that are close to the actual form of adhesive mortar application in real insulation installations. This allows for the assessment of the properties of mortars and substrates that were not exposed under the conditions of current testing methods. The above provides a basis for further discussion on the inclusion of realistic application conditions in the evaluation of adhesive mortars used for bonding thermal insulation in ETICS, and for the validation assessment of an additional testing method, which is currently of an experimental nature. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 1940 KB  
Article
A Comparative Study of Lightweight, Sparse Autoencoder-Based Classifiers for Edge Network Devices: An Efficiency Analysis of Feed-Forward and Deep Neural Networks
by Mi Young Jo and Hyun Jung Kim
Sensors 2025, 25(20), 6439; https://doi.org/10.3390/s25206439 - 17 Oct 2025
Viewed by 928
Abstract
This study proposes a lightweight classification framework for anomaly traffic detection in edge computing environments. Thirteen packet- and flow-level features extracted from the CIC-IDS2017 dataset were compressed into 4-dimensional latent vectors using a Sparse Autoencoder (SAE). Two classifiers were compared under the same [...] Read more.
This study proposes a lightweight classification framework for anomaly traffic detection in edge computing environments. Thirteen packet- and flow-level features extracted from the CIC-IDS2017 dataset were compressed into 4-dimensional latent vectors using a Sparse Autoencoder (SAE). Two classifiers were compared under the same pipeline: a Feed-Forward network (SAE-FF) and a Deep Neural Network (SAE-DNN). To ensure generalization, all experiments were conducted with 5-fold cross-validation. Performance evaluation revealed that SAE-DNN achieved superior classification performance, with an average accuracy of 99.33% and an AUC of 0.9993. The SAE-FF model, although exhibiting lower performance (average accuracy of 93.66% and AUC of 0.9758), maintained stable outcomes and offered significantly lower computational complexity (~40 FLOPs) compared with SAE-DNN (~8960 FLOPs). Device-level analysis confirmed that SAE-FF was the most efficient option for resource-constrained platforms such as Raspberry Pi 4, whereas SAE-DNN achieved real-time inference capability on the Coral Dev Board by leveraging Edge TPU acceleration. To quantify this trade-off between accuracy and efficiency, we introduce the Edge Performance Efficiency Score (EPES), a composite metric that integrates accuracy, latency, memory usage, FLOPs, and CPU performance into a single score. The proposed EPES provides a practical and comprehensive benchmark for balancing accuracy and efficiency and supporting device-specific model selection in practical edge deployments. These findings highlight the importance of system-aware evaluation and demonstrate that EPES can serve as a valuable guideline for efficient anomaly traffic classification in resource-limited environments. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

21 pages, 6757 KB  
Article
Untargeted Metabolomics-Based Characterization of the Metabolic Profile and Antioxidant Activity of Ophiocordyceps sinensis and Its Substitutes
by Bing Jia, Haoxu Tang, Chuyu Tang, Chao Feng, Yuling Li and Xiuzhang Li
J. Fungi 2025, 11(10), 740; https://doi.org/10.3390/jof11100740 - 16 Oct 2025
Viewed by 600
Abstract
Ophiocordyceps sinensis represents a valuable medicinal resource. In this study, mechanisms underlying differences in chemical composition and antioxidant capacity among wild O. sinensis (GL), artificially cultivated O. sinensis (RG), and product of O. sinensis “Bailing” capsules (BL) were systematically investigated via in vitro [...] Read more.
Ophiocordyceps sinensis represents a valuable medicinal resource. In this study, mechanisms underlying differences in chemical composition and antioxidant capacity among wild O. sinensis (GL), artificially cultivated O. sinensis (RG), and product of O. sinensis “Bailing” capsules (BL) were systematically investigated via in vitro antioxidant capacity assays and untargeted metabolomics. Results showed GL exhibited the highest total phenol (TPS) content and superior free radical scavenging activity. Additionally, superoxide dismutase (SOD) and peroxidase (POD) activities in RG were higher than those in BL. Correlation analysis of antioxidant indices demonstrated significant positive correlations between total phenols (TPS) and flavonoids (TF) with DPPH radical scavenging, ferric ion reducing antioxidant power (FRAP), hydroxyl radical scavenging rate, and superoxide anion radical scavenging rate (p < 0.01). A total of 6729 metabolites were detected, encompassing amino acids and their derivatives, lipids, and nucleotides and their derivatives, among other classes. Furthermore, metabolites exhibited distinct intergroup separation, indicating significant differences in metabolic profiles between O. sinensis and its substitute products. KEGG enrichment analysis showed that differential metabolites were mainly enriched in amino acid, lipid, and nucleotide metabolic pathways, among which the linoleic acid metabolic pathway was significantly downregulated. Key metabolites included γ-linolenic acid, 12(13)-EpOME-d, 9-HpODE, etc. Additionally, results of correlation analysis revealed that differential metabolites of lipids, nucleotides, and amino acids exhibited a significant positive correlation with antioxidant indices (p < 0.05). These findings suggest that the antioxidant capacity of O. sinensis and its substitutes may be regulated via linoleic acid metabolism, providing a theoretical basis for advancing targeted functional development of O. sinensis and its substitute products. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

27 pages, 14983 KB  
Article
Low Velocity Drop-Weight Impact of Flax–Glass Hybrid Composites for Application in Automotive Components: Numerical Modelling and Experimental Analysis
by Tegginamath Akshat, Michal Petru and Rajesh Kumar Mishra
Materials 2025, 18(20), 4740; https://doi.org/10.3390/ma18204740 - 16 Oct 2025
Viewed by 450
Abstract
This study focuses on the behavior of hybrid polymer composites made from glass fiber and natural fiber-based flax fabric when subjected to low velocity drop-weight impacts. With the rise in the utilization of composites in structural components in various industries like the marine, [...] Read more.
This study focuses on the behavior of hybrid polymer composites made from glass fiber and natural fiber-based flax fabric when subjected to low velocity drop-weight impacts. With the rise in the utilization of composites in structural components in various industries like the marine, aerospace and automotive industries, it is of paramount importance to study the effects of low velocity drop-weight impacts and their damage assessment on the composites. Low velocity drop-weight impacts can occur due to a tool falling on a composite part or due to an impact with a small object. The experimental tests were carried out according to ASTM standards with a drop-weight impact testing machine. Simulations were done to replicate the tests using explicit finite element software LS-DYNA. The experimental tests were carried out on samples of thickness ~2.5 mm and the energy at impact was 50 J. Upon comparing the experimental results, it was seen that an error percentage in the deformation varied between a minimum of 3.32% and a maximum of 8.93%, and the maximum force at impact varied between a minimum of 0.06% and a maximum of 17.14%. The variations between the experimental and simulated values can be attributed to the presence of voids or other defects that would have inadvertently crept in while making the composite. Additionally, composite laminates lined with a layer of EPS (expanded polystyrene) foam were tested and compared with composite laminates which were not lined with the foam. An improvement in the performance of the composite laminates lined with the EPS foam was observed. Full article
Show Figures

Graphical abstract

20 pages, 3357 KB  
Article
Noninvasive Cell Population Profiling of Normal and Dysplastic Cervical Biofluids by Multicolor Flow Cytometry as a Promising Tool for Companion Diagnostics
by Christoph Berger, Wolf Dietrich, Manuela Richter, Florian Kellner, Christian Kühne and Katharina Strasser
Cancers 2025, 17(20), 3328; https://doi.org/10.3390/cancers17203328 - 15 Oct 2025
Viewed by 393
Abstract
Background/Objectives: Cervical Pap smears are routinely used to detect cellular abnormalities as a cervical cancer screening tool and to assess the presence of HPV for risk stratification of the disease. Here, we aimed to extend the applications of this sampling procedure by [...] Read more.
Background/Objectives: Cervical Pap smears are routinely used to detect cellular abnormalities as a cervical cancer screening tool and to assess the presence of HPV for risk stratification of the disease. Here, we aimed to extend the applications of this sampling procedure by combining it with multicolor flow cytometry to characterize cell populations across cervical cancer disease stages. Methods: Cervical Pap smears from 30 patients with various disease stages ranging from normal to intraepithelial neoplasia up to treated cancers were analyzed as biofluids using multicolor flow cytometry. Individual samples were evaluated, and statistical analyses were performed over all sample stages. Cancer cell lines (CaSki, SiHa, HeLa, A549, U2OS) were examined as tumor cell controls. Results: Cervical biofluids were subdivided into cell populations according to their scattering properties and the expression of specific biomarkers: EpCAM and cytokeratin 8 for epithelial cells from tumors as well as healthy ectocervical and endocervical regions, and CD45 for immune cells. Discrimination of tumor cells was facilitated with cancer cell lines. Statistical analysis revealed that the composition of cell populations differs among disease stages, whereas treated cancer samples were consistently associated with a reduction in squamous epithelial cells and an increase in immune cells compared to normal samples. Conclusions: Herein, we identified the major cell populations in cervical biofluid samples and demonstrated that this method can detect changes in the cellular composition across different disease stages. This approach could be further exploited in cancer research and potentially serve as a companion diagnostic tool in tumor development, progression and during treatment. Full article
(This article belongs to the Special Issue Cervical Cancer Screening: Current Practices and Future Perspectives)
Show Figures

Figure 1

28 pages, 8557 KB  
Article
Surface Optimization of Additively Manufactured (AM) Stainless Steel Components Using Combined Chemical and Electrochemical Post-Processing
by Pablo Edilberto Sanchez Guerrero, Andrew Grizzle, Daniel Fulford, Juan Estevez Hernandez, Lucas Rice and Pawan Tyagi
Coatings 2025, 15(10), 1197; https://doi.org/10.3390/coatings15101197 - 11 Oct 2025
Viewed by 475
Abstract
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components [...] Read more.
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components that typically exhibit fatigue properties, resulting in component failure and unfavorable friction coefficients on the printed part. Therefore, to improve the surface quality of the fabricated parts, post-processing of AM-created components is required. With emphasis on electroless nickel plating, ChemPolishing (CP), and ElectroPolishing (EP), this study investigates post-processing methods for stainless steel that is additively manufactured (AM). The rough surfaces created by additive manufacturing (AM) restrict direct use. While ElectroPolishing (EP) achieves high material removal rates but may not be consistent, ChemPolishing (CP) offers uniform smoothening. Nickel plating enhances additive manufacturing (AM) products’ resistance to wear and scratches and corrosion protection. To optimize nickel deposition, medium (6%–9%) and high (10%–13%) phosphorus nickel was tested using the L9 Taguchi design of experiments (DOE). Mechanical properties, including scratch resistance and adhesion, were evaluated using the TABER 5900 reciprocating (Taber Industries, North Tonawanda, NY, USA) abraser apparatus, a 5 N scratch test, and ASTM B-733 thermal shock method. Surface analysis was performed with the KEYENCE VHX-7000 microscope (Keyence Corporation, Itasca, IL, USA), and chemical composition before and after nickel deposition was assessed via the ThermoFisher Phenom XL scanning electron microscope (SEM, Thermo Fisher Scientific, Waltham, MA, USA) Optimal processing conditions, determined using Qualitek-4 software, Version 20.1.0 revealed improvements in both surface finish and mechanical robustness. This comprehensive analysis underscores the potential of nickel-coated additive manufacturing (AM) parts for enhanced performance, offering a pathway to more durable and efficient additive manufacturing (AM) applications. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

24 pages, 4100 KB  
Article
Comparative In Vitro Evaluation of Buccal Films, Microcapsules, and Liposomal Systems for Naringin and Citrus × paradisi L. Peel Extract: Effects of Encapsulation Strategy and Compound Origin on Release Profiles
by Jolita Stabrauskiene, Mindaugas Marksa and Jurga Bernatoniene
Pharmaceutics 2025, 17(10), 1311; https://doi.org/10.3390/pharmaceutics17101311 - 9 Oct 2025
Viewed by 594
Abstract
Background/Objectives: Citrus × paradisi Macfad., Rutaceae. peel is a rich source of naringin (NR), but its poor solubility and low bioavailability limit applications. This study aimed to improve NR delivery by comparing microencapsulation, liposomal microencapsulation, and buccal films containing either pure NR [...] Read more.
Background/Objectives: Citrus × paradisi Macfad., Rutaceae. peel is a rich source of naringin (NR), but its poor solubility and low bioavailability limit applications. This study aimed to improve NR delivery by comparing microencapsulation, liposomal microencapsulation, and buccal films containing either pure NR or grapefruit peel extract. Methods: Four spray-dried powder formulations—spray-dried NR (NS), liposomal NR (NLS), spray-dried extract (ES), and liposomal extract (ELS)—were produced using maltodextrin, β-cyclodextrin, and HPMC as wall materials. Buccal films (EP1, EP2, NP1, NP2) were prepared via solvent casting with HPMC, alginate (ALG), or polyvinyl alcohol (PVA). All samples were evaluated for solubility, moisture content, mucoadhesion, and in vitro release under simulated gastric, intestinal, and salivary conditions. Results: NR powders had the highest absolute solubility (306.42 ± 10.34 µg/mL), whereas ELS showed the lowest due to low loading. However, relative to theoretical NR content, ELS achieved the highest dissolution efficiency (55.3%), followed by NLS (42.7%), outperforming NS (5.6%) and ES (91.8%) in sustained release potential. Dual encapsulation (NLS, ELS) slowed gastric release and maintained intestinal delivery, while non-liposomal powders released rapidly. In buccal films, NP2 (NR + PVA) showed the highest release (69.97 ± 3.01 µg/mL; 40.9% efficiency) and strongest mucoadhesion (0.47 N·s). Extract-based films had lower absolute NR release but higher relative efficiency to content, likely due to co-extracted compounds enhancing wettability and matrix erosion. Conclusions: Liposomal microencapsulation improves relative dissolution efficiency and sustains intestinal release, while PVA-based buccal films enhance both release and mucoadhesion. Polymer choice and active ingredient composition are critical for optimising oral delivery of NR. These results demonstrate the potential of the proposed systems in the pharmaceutical or dietary supplement field, especially in improving the oral delivery of poorly soluble flavonoids. A graphical summary is included, visually summarising the main formulation strategies and results. Full article
Show Figures

Figure 1

15 pages, 2680 KB  
Article
Performance Assessment of Mechanically Recycled EPS
by Domagoj Tkalčić, Jelena Vukadin, Bojan Milovanović and Ivana Banjad Pečur
Materials 2025, 18(19), 4547; https://doi.org/10.3390/ma18194547 - 30 Sep 2025
Cited by 1 | Viewed by 414
Abstract
This study investigates the influence of mechanically recycled EPS on the mechanical and thermal properties of EPS composites for use in thermal insulation. Composites containing 5%, 10%, 25%, and 50% recycled EPS were produced using two recycled sources (construction EPS and packaging EPS). [...] Read more.
This study investigates the influence of mechanically recycled EPS on the mechanical and thermal properties of EPS composites for use in thermal insulation. Composites containing 5%, 10%, 25%, and 50% recycled EPS were produced using two recycled sources (construction EPS and packaging EPS). The tested properties included density, compressive strength at 10% deformation, bending strength, and thermal conductivity. Results show that increasing recycled content leads to a decline in density, with a more pronounced drop at higher recycled levels, particularly above 10% recycled content in the S1–25 series and 25% in the other series. Compressive strength correlates closely with density regardless of recycled content or origin and the behavior largely aligns with EN 13163 predictive models for virgin EPS. Thermal conductivity remains unchanged at lower recycled contents, with minor increases (up to 6%) observed at 50% recycled content. Bending strength decreases with increasing recycled content with greater losses noted in specimens containing packaging EPS. However, despite containing recycled materials, the empirical equations stated in EN 13163:2016 for predicting thermal conductivity and compressive stress at 10% deformation remain closely correlated regardless of recycled material content, indicating that density remains the main parameter for predicting the tested properties. These findings suggest that EPS with moderate recycled content can meet performance expectations, though further research on microstructure is recommended to understand property degradation mechanisms at higher recycled levels. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

15 pages, 2808 KB  
Article
Extracellular Polymeric Substances Protect Chlorella sp. Against the Cadmium Stress
by Fangyuan Liu, Xingye Han, Zhengyang Wang, Xuefeng Zhao, Yibo Zhang and Hongmei Ge
Ecologies 2025, 6(4), 65; https://doi.org/10.3390/ecologies6040065 - 29 Sep 2025
Cited by 1 | Viewed by 589
Abstract
Extracellular polymeric substances (EPS) are secreted by microalgae and contribute to protecting cells from damage induced by cadmium (Cd) exposure. However, the response mechanism of Chlorella sp. to Cd(II) stress as well as associated changes in the chemical properties (including functional groups and [...] Read more.
Extracellular polymeric substances (EPS) are secreted by microalgae and contribute to protecting cells from damage induced by cadmium (Cd) exposure. However, the response mechanism of Chlorella sp. to Cd(II) stress as well as associated changes in the chemical properties (including functional groups and composition) of soluble EPS (SL-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB- EPS) in this microalga, remain unclear. This study aimed to investigate the role of EPS in enabling Chlorella sp. to resist Cd(II) stress. The results demonstrated that Cd(II) stress resulted in a significant inhibition of algal, chlorophyll a (Chl a) contents, and maximum photochemical quantum yield (Fv/Fm) of Chlorella sp., with 7 d EC30 of 6 mg/L. Nevertheless, Cd(II) exposure significantly increased both superoxide dismutase (SOD) activity and EPS content. Fourier transform infrared (FTIR) spectroscopic analysis revealed that differences existed in the functional groups involved in Cd(II) binding across algal cell density, SL-EPS, LB-EPS, and TB-EPS. The carboxyl group was identified as the most prominent functional group and were found to play a crucial role in the adsorption of Cd(II). Additionally, Tryptophan-like protein substance in EPS may be the main component binding with Cd(II) in Chlorella sp. This study indicated that Chlorella sp. resisted Cd(II) stress by increasing SOD activity and EPS content, with protein-like substance containing tryptophan proteins in EPS which could also contribute to protection against Cd stress. Full article
Show Figures

Figure 1

12 pages, 3170 KB  
Article
Electroless Pd Nanolayers for Low-Temperature Hybrid Cu Bonding Application: Comparative Analysis with Electroplated Pd Nanolayers
by Dongmyeong Lee, Byeongchan Go, Keiyu Komamura and Sarah Eunkyung Kim
Electronics 2025, 14(19), 3814; https://doi.org/10.3390/electronics14193814 - 26 Sep 2025
Viewed by 335
Abstract
As 3D stacking technologies advance, low-temperature hybrid Cu bonding has become essential for fine-pitch integration. This study focuses on evaluating Pd nanolayers deposited by electroless plating (ELP) on Cu surfaces and compares them to electroplated (EP) Pd to assess their suitability for hybrid [...] Read more.
As 3D stacking technologies advance, low-temperature hybrid Cu bonding has become essential for fine-pitch integration. This study focuses on evaluating Pd nanolayers deposited by electroless plating (ELP) on Cu surfaces and compares them to electroplated (EP) Pd to assess their suitability for hybrid bonding. Pd nanolayers (5~7 nm) were deposited on Cu films, and their surface morphology, crystallinity, and chemical composition were characterized using AFM, TEM, GIXRD, and XPS. EP-Pd layers exhibited lower roughness and larger grain size, acting as effective Cu diffusion barriers. In contrast, ELP-Pd layers showed small grains, higher surface roughness, and partial Cu diffusion and oxidation. At 200 °C, both Pd layers enabled bonding, but ELP-Pd samples achieved more uniform and continuous interfaces with thinner copper oxide layers. Shear testing revealed that ELP-Pd samples exhibited higher average bonding strength (20.58 MPa) and lower variability compared to EP-Pd (16.47 MPa). The improved bonding performance of ELP-Pd is attributed to its grain-boundary-driven diffusion and uniform interface formation. These findings highlight the potential of electroless Pd as a passivation layer for low-temperature hybrid Cu bonding and underscore the importance of optimizing pre-bonding surface treatments for improved bonding quality. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

Back to TopTop