Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = EMG dry electrodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10440 KiB  
Article
Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex
by Jihyeon Ha, Sangin Park, Yaeeun Han and Laehyun Kim
Biomimetics 2025, 10(2), 118; https://doi.org/10.3390/biomimetics10020118 - 18 Feb 2025
Cited by 1 | Viewed by 964
Abstract
Brain–computer interface (BCI)-based assistive technologies enable intuitive and efficient user interaction, significantly enhancing the independence and quality of life of elderly and disabled individuals. Although existing wet EEG-based systems report high accuracy, they suffer from limited practicality. This study presents a hybrid BCI [...] Read more.
Brain–computer interface (BCI)-based assistive technologies enable intuitive and efficient user interaction, significantly enhancing the independence and quality of life of elderly and disabled individuals. Although existing wet EEG-based systems report high accuracy, they suffer from limited practicality. This study presents a hybrid BCI system combining dry-type EEG-based flash visual-evoked potentials (FVEP) and pupillary light reflex (PLR) designed to control an LED-based meal-assist robot. The hybrid system integrates dry-type EEG and eyewear-type infrared cameras, addressing the preparation challenges of wet electrodes, while maintaining practical usability and high classification performance. Offline experiments demonstrated an average accuracy of 88.59% and an information transfer rate (ITR) of 18.23 bit/min across the four target classifications. Real-time implementation uses PLR triggers to initiate the meal cycle and EMG triggers to detect chewing, indicating the completion of the cycle. These features allow intuitive and efficient operation of the meal-assist robot. This study advances the BCI-based assistive technologies by introducing a hybrid system optimized for real-world applications. The successful integration of the FVEP and PLR in a meal-assisted robot demonstrates the potential for robust and user-friendly solutions that empower the users with autonomy and dignity in their daily activities. Full article
(This article belongs to the Special Issue Advances in Brain–Computer Interfaces)
Show Figures

Figure 1

16 pages, 6720 KiB  
Article
Stretchable Ag/AgCl Nanowire Dry Electrodes for High-Quality Multimodal Bioelectronic Sensing
by Tianyu Wang, Shanshan Yao, Li-Hua Shao and Yong Zhu
Sensors 2024, 24(20), 6670; https://doi.org/10.3390/s24206670 - 16 Oct 2024
Cited by 3 | Viewed by 2403
Abstract
Bioelectrical signal measurements play a crucial role in clinical diagnosis and continuous health monitoring. Conventional wet electrodes, however, present limitations as they are conductive gel for skin irritation and/or have inflexibility. Here, we developed a cost-effective and user-friendly stretchable dry electrode constructed with [...] Read more.
Bioelectrical signal measurements play a crucial role in clinical diagnosis and continuous health monitoring. Conventional wet electrodes, however, present limitations as they are conductive gel for skin irritation and/or have inflexibility. Here, we developed a cost-effective and user-friendly stretchable dry electrode constructed with a flexible network of Ag/AgCl nanowires embedded in polydimethylsiloxane (PDMS). We compared the performance of the stretched Ag/AgCl nanowire electrode with commonly used commercial wet electrodes to measure electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) signals. All the signal-to-noise ratios (SNRs) of the as-fabricated or stretched (50% tensile strain) Ag/AgCl nanowire electrodes are higher than that measured by commercial wet electrodes as well as other dry electrodes. The evaluation of ECG signal quality through waveform segmentation, the signal quality index (SQI), and heart rate variability (HRV) reveal that both the as-fabricated and stretched Ag/AgCl nanowire electrode produce high-quality signals similar to those obtained from commercial wet electrodes. The stretchable electrode exhibits high sensitivity and dependability in measuring EMG and EEG data, successfully capturing EMG signals associated with muscle activity and clearly recording α-waves in EEG signals during eye closure. Our stretchable dry electrode shows enhanced comfort, high sensitivity, and convenience for curved surface biosignal monitoring in clinical contexts. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 4393 KiB  
Article
A Cost-Effective and Easy-to-Fabricate Conductive Velcro Dry Electrode for Durable and High-Performance Biopotential Acquisition
by Jun Guo, Xuanqi Wang, Ruiyu Bai, Zimo Zhang, Huazhen Chen, Kai Xue, Chuang Ma, Dawei Zang, Erwei Yin, Kunpeng Gao and Bowen Ji
Biosensors 2024, 14(9), 432; https://doi.org/10.3390/bios14090432 - 6 Sep 2024
Cited by 2 | Viewed by 2114
Abstract
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through [...] Read more.
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through hair due to their flat contact surface. Claw electrodes can contact skin through hair on the head and body, but the internal claw structure is relatively hard and causes discomfort after being worn for a few hours. Here, we report a conductive Velcro electrode (CVE) with an elastic hook hair structure, which can collect biopotential through body hair. The elastic hooks greatly reduce discomfort after long-time wearing and can even be worn all day. The CVE electrode is fabricated by one-step immersion in conductive silver paste based on the cost-effective commercial Velcro, forming a uniform and durable conductive coating on a cluster of hook microstructures. The electrode shows excellent properties, including low impedance (15.88 kΩ @ 10 Hz), high signal-to-noise ratio (16.0 dB), strong water resistance, and mechanical resistance. After washing in laundry detergent, the impedance of CVE is still 16% lower than the commercial AgCl electrodes. To verify the mechanical strength and recovery capability, we conducted cyclic compression experiments. The results show that the displacement change of the electrode hook hair after 50 compression cycles was still less than 1%. This electrode provides a universal acquisition scheme, including effective acquisition of different parts of the body with or without hair. Finally, the gesture recognition from electromyography (EMG) by the CVE electrode was applied with accuracy above 90%. The CVE proposed in this study has great potential and promise in various human–machine interface (HMI) applications that employ surface biopotential signals on the body or head with hair. Full article
Show Figures

Figure 1

24 pages, 8919 KiB  
Article
Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring
by Deyao Shen, Jianping Wang, Vladan Koncar, Krittika Goyal and Xuyuan Tao
Sensors 2024, 24(13), 4114; https://doi.org/10.3390/s24134114 - 25 Jun 2024
Cited by 4 | Viewed by 2080
Abstract
This study presents the development and evaluation of an innovative intelligent garment system, incorporating 3D knitted silver biopotential electrodes, designed for long-term sports monitoring. By integrating advanced textile engineering with wearable monitoring technologies, we introduce a novel approach to real-time physiological signal acquisition, [...] Read more.
This study presents the development and evaluation of an innovative intelligent garment system, incorporating 3D knitted silver biopotential electrodes, designed for long-term sports monitoring. By integrating advanced textile engineering with wearable monitoring technologies, we introduce a novel approach to real-time physiological signal acquisition, focusing on enhancing athletic performance analysis and fatigue detection. Utilizing low-resistance silver fibers, our electrodes demonstrate significantly reduced skin-to-electrode impedance, facilitating improved signal quality and reliability, especially during physical activities. The garment system, embedded with these electrodes, offers a non-invasive, comfortable solution for continuous ECG and EMG monitoring, addressing the limitations of traditional Ag/AgCl electrodes, such as skin irritation and signal degradation over time. Through various experimentation, including impedance measurements and biosignal acquisition during cycling activities, we validate the system’s effectiveness in capturing high-quality physiological data. Our findings illustrate the electrodes’ superior performance in both dry and wet conditions. This study not only advances the field of intelligent garments and biopotential monitoring, but also provides valuable insights for the application of intelligent sports wearables in the future. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

16 pages, 6199 KiB  
Article
Benchtop Performance of Novel Mixed Ionic–Electronic Conductive Electrode Form Factors for Biopotential Recordings
by Matthew Colachis, Bryan R. Schlink, Sam Colachis, Krenar Shqau, Brittani L. Huegen, Katherine Palmer and Amy Heintz
Sensors 2024, 24(10), 3136; https://doi.org/10.3390/s24103136 - 15 May 2024
Cited by 2 | Viewed by 2529
Abstract
Background: Traditional gel-based (wet) electrodes for biopotential recordings have several shortcomings that limit their practicality for real-world measurements. Dry electrodes may improve usability, but they often suffer from reduced signal quality. We sought to evaluate the biopotential recording properties of a novel mixed [...] Read more.
Background: Traditional gel-based (wet) electrodes for biopotential recordings have several shortcomings that limit their practicality for real-world measurements. Dry electrodes may improve usability, but they often suffer from reduced signal quality. We sought to evaluate the biopotential recording properties of a novel mixed ionic–electronic conductive (MIEC) material for improved performance. Methods: We fabricated four MIEC electrode form factors and compared their signal recording properties to two control electrodes, which are electrodes commonly used for biopotential recordings (Ag-AgCl and stainless steel). We used an agar synthetic skin to characterize the impedance of each electrode form factor. An electrical phantom setup allowed us to compare the recording quality of simulated biopotentials with ground-truth sources. Results: All MIEC electrode form factors yielded impedances in a similar range to the control electrodes (all <80 kΩ at 100 Hz). Three of the four MIEC samples produced similar signal-to-noise ratios and interfacial charge transfers as the control electrodes. Conclusions: The MIEC electrodes demonstrated similar and, in some cases, better signal recording characteristics than current state-of-the-art electrodes. MIEC electrodes can also be fabricated into a myriad of form factors, underscoring the great potential this novel material has across a wide range of biopotential recording applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 1002 KiB  
Article
Multi-Electrode EMG Spatial-Filter Implementation Based on Current Conveyors
by Federico N. Guerrero, Valentín A. Catacora, Alfio Dario Grasso and Gaetano Palumbo
Electronics 2024, 13(9), 1735; https://doi.org/10.3390/electronics13091735 - 1 May 2024
Viewed by 1242
Abstract
In this work, a circuit topology for the implementation of a multi-electrode superficial electromyography (EMG) front-end is presented based on a type II current conveyor (CCII). The presented topology provides a feasible way to implement an amplifier capable of measuring several electrode locations [...] Read more.
In this work, a circuit topology for the implementation of a multi-electrode superficial electromyography (EMG) front-end is presented based on a type II current conveyor (CCII). The presented topology provides a feasible way to implement an amplifier capable of measuring several electrode locations and obtaining the signal of interest for posterior acquisition. In particular, a five-electrode normal double differential (NDD) EMG spatial filter is demonstrated. The signal modes necessary for the analysis of the circuit are derived, the respective rejection ratios are obtained, and the noise characteristic is calculated. A board-level electrode is implemented as a proof of concept, achieving a gain equal to 28 dB, a bandwidth of 17 Hz to 578 Hz, a noise voltage linked to the input of 3.7 μVrms and a common-mode rejection ratio higher than 95 dB at interference frequencies. The topology was validated after using it as an active electrode in experimental EMG measurements with an NDD dry-contact electrode in a flexible printed circuit board. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

13 pages, 9646 KiB  
Article
Design, Fabrication and Evaluation of a Stretchable High-Density Electromyography Array
by Rejin John Varghese, Matteo Pizzi, Aritra Kundu, Agnese Grison, Etienne Burdet and Dario Farina
Sensors 2024, 24(6), 1810; https://doi.org/10.3390/s24061810 - 11 Mar 2024
Cited by 10 | Viewed by 5437
Abstract
The adoption of high-density electrode systems for human–machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artefacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and [...] Read more.
The adoption of high-density electrode systems for human–machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artefacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and stretchable electromyography (EMG) array, and present its design, fabrication methodology, characterisation, and comprehensive evaluation. Our proposed solution comprises dry-electrodes on flexible printed circuit board (PCB) substrates, eliminating the need for time-consuming skin preparation. The proposed fabrication method allows the manufacturing of stretchable sleeves, with consistent and standardised coverage across subjects. We thoroughly tested our developed prototype, evaluating its potential for application in both research and real-world environments. The results of our study showed that the developed stretchable array matches or outperforms traditional EMG grids and holds promise in furthering the real-world translation of high-density EMG for human–machine interfaces. Full article
(This article belongs to the Special Issue EMG Sensors and Signal Processing Technologies)
Show Figures

Figure 1

7 pages, 2348 KiB  
Proceeding Paper
Improved Skin–Electrode Impedance Characteristics of Embroidered Textile Electrodes for Sustainable Long-Term EMG Monitoring
by Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy and Lieve Van Langenhove
Eng. Proc. 2023, 52(1), 29; https://doi.org/10.3390/engproc2023052029 - 7 Mar 2024
Cited by 2 | Viewed by 1303
Abstract
Textile-based electrodes offer several advantages such as washability, flexibility, and reusability. However, there are challenges when it comes to long-term, real-time continuous monitoring, particularly during self-administration situations which introduce severe motion artifacts. In response to these challenges, researchers have explored various moisture retaining [...] Read more.
Textile-based electrodes offer several advantages such as washability, flexibility, and reusability. However, there are challenges when it comes to long-term, real-time continuous monitoring, particularly during self-administration situations which introduce severe motion artifacts. In response to these challenges, researchers have explored various moisture retaining filling textiles to enhance the sustainability of long-term EMG monitoring. This study focuses on comparing three alternative textile fillings: 3D knitted fabric, nonwoven fabric, and microfiber sandwiched between embroidered textile electrodes to evaluate their moisture retention performance and ability to record EMG. The developed electrodes are comprised of embroidered a polyamide-silver hybrid conductive thread, with the filling textiles sandwiched between this yarn and the support fabric and bobbin yarn. The support fabric is an elastic textile band. The creation of these electrodes utilized satin stitch techniques. Impedance characteristics were analysed using an IVI-UM setup with a two-electrode configuration. The electrodes were applied to the subject’s bicep muscles using the elastic strap with a pressure of 12 mmHg. The developed textile filled embroidered electrodes using the satin stitch technique exhibited better dry and wet electrode skin-contact impedance performance compared to the normal satin stitch-based embroidered electrodes against to (Ag/AgCl) electrodes. Further evaluation focused on assessing the long-term stability and wettability of the wet electrode conditions with various drying time. The wet 3D knit (W3D) large satin stitched sandwiched electrodes displayed lower impedance characteristics than those made with wet nonwoven (WNW), wet microfiber (WMF), and the dry embroidered electrodes, with worst performing the normal satin stitch embroidered electrode. It was observed that increasing drying time increases skin-contact impedance, emphasizing the significance of selecting the appropriate filling materials capable of retaining moisture comfort over extended periods. This choice is vital for achieving long-term EMG monitoring and maintaining low contact impedance, which directly impacts the signal quality. The study evaluated the effects of moisture retention time for each textile filling type on sustainable long-term EMG monitoring. Among the tested electrodes, the wet ring satin stitch 3D knit (W3D) sandwiched embroidered electrode out-performed the others WNW, and wet MF based sandwiched electrode achieving a signal-to-noise ratio of 54.93 dB and a root mean square of 0.195 mV, respectively, at the parametric values identified in the experiments. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

5 pages, 3166 KiB  
Proceeding Paper
Investigating Construction and Integration Techniques of Dry Silver-Based Textile Electrodes on Electromyography of Biceps Brachii Muscle
by Rohil J Dave, Xue Min, Zhiyuan Lou and Rebecca Stewart
Eng. Proc. 2023, 52(1), 21; https://doi.org/10.3390/engproc2023052021 - 24 Jan 2024
Cited by 2 | Viewed by 1061
Abstract
This research paper recommends an electrode construction and integration technique for dry silver-based textile electrodes capturing electromyographic (EMG) signals. Three integration methods with two different conductive textiles were compared using two analysis methods; analysis was also conducted before and after six washing cycles. [...] Read more.
This research paper recommends an electrode construction and integration technique for dry silver-based textile electrodes capturing electromyographic (EMG) signals. Three integration methods with two different conductive textiles were compared using two analysis methods; analysis was also conducted before and after six washing cycles. Six wearable arm bands with each of the design parameter combinations were worn on the biceps brachii muscle to capture EMG signals from three users under a controlled task both before any washing of the bands occurred and after four washing cycles were completed. Additionally, impedance measurements over six frequency bands were recorded after each washing cycle. Textile electrodes made of Shieldex Techniktex P180B using an extended electrode integration method were found to perform best. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

12 pages, 4419 KiB  
Communication
Multi-Channel Soft Dry Electrodes for Electrocardiography Acquisition in the Ear Region
by Patrick van der Heijden, Camille Gilbert, Samira Jafari and Mattia Alberto Lucchini
Sensors 2024, 24(2), 420; https://doi.org/10.3390/s24020420 - 10 Jan 2024
Cited by 2 | Viewed by 2926
Abstract
In-ear acquisition of physiological signals, such as electromyography (EMG), electrooculography (EOG), electroencephalography (EEG), and electrocardiography (ECG), is a promising approach to mobile health (mHealth) due to its non-invasive and user-friendly nature. By providing a convenient and comfortable means of physiological signal monitoring, in-ear [...] Read more.
In-ear acquisition of physiological signals, such as electromyography (EMG), electrooculography (EOG), electroencephalography (EEG), and electrocardiography (ECG), is a promising approach to mobile health (mHealth) due to its non-invasive and user-friendly nature. By providing a convenient and comfortable means of physiological signal monitoring, in-ear signal acquisition could potentially increase patient compliance and engagement with mHealth applications. The development of reliable and comfortable soft dry in-ear electrode systems could, therefore, have significant implications for both mHealth and human–machine interface (HMI) applications. This research evaluates the quality of the ECG signal obtained with soft dry electrodes inserted in the ear canal. An earplug with six soft dry electrodes distributed around its perimeter was designed for this study, allowing for the analysis of the signal coming from each electrode independently with respect to a common reference placed at different positions on the body of the participants. An analysis of the signals in comparison with a reference signal measured on the upper right chest (RA) and lower left chest (LL) was performed. The results show three typical behaviors for the in-ear electrodes. Some electrodes have a high correlation with the reference signal directly after inserting the earplug, other electrodes need a settling time of typically 1–3 min, and finally, others never have a high correlation. The SoftPulseTM electrodes used in this research have been proven to be perfectly capable of measuring physiological signals, paving the way for their use in mHealth or HMI applications. The use of multiple electrodes distributed in the ear canal has the advantage of allowing a more reliable acquisition by intelligently selecting the signal acquisition locations or allowing a better spatial resolution for certain applications by processing these signals independently. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

14 pages, 4140 KiB  
Article
Fabrication and Evaluation of Embroidery-Based Electrode for EMG Smart Wear Using Moss Stitch Technique
by Soohyeon Rho, Hyelim Kim, Daeyoung Lim and Wonyoung Jeong
Sensors 2023, 23(21), 9012; https://doi.org/10.3390/s23219012 - 6 Nov 2023
Cited by 3 | Viewed by 2140
Abstract
Wearable 2.0 research has been conducted on the manufacture of smart fitness wear that collects bio-signals through the wearing of a textile-based electrode. Among them, the electromyography (EMG) suit measures the electrical signals generated by the muscles to check their activity, such as [...] Read more.
Wearable 2.0 research has been conducted on the manufacture of smart fitness wear that collects bio-signals through the wearing of a textile-based electrode. Among them, the electromyography (EMG) suit measures the electrical signals generated by the muscles to check their activity, such as contraction and relaxation. General gel-type electrodes have been reported to cause skin diseases due to an uncomfortable feel and skin irritation when attached to the skin for a long time. Dry electrodes of various materials are being developed to solve this problem. Previous research has reported EMG detectio performance and conducted economic comparisons according to the size and shape of the embroidery electrode. On the other hand, these embroidery electrodes still have foreign body sensations. In this study, a moss sEMG electrode was produced with various shapes (W3 and WF) and loop lengths (1–5 mm). The optimized conditions of the embroidery-based electrodes were derived and analyzed with the tactile comfort factors and sensing performances. As the loop length of the electrode increased, MIU and Qmax increased, but the SMD decreased due to the free movement of the threads constituting the loop. Impedance and sEMG detection performance showed different trends depending on the electrode type. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

16 pages, 4485 KiB  
Article
Enhancing the Longevity and Functionality of Ti-Ag Dry Electrodes for Remote Biomedical Applications: A Comprehensive Study
by Daniel Carvalho, Sandra Marques, Giorgia Siqueira, Armando Ferreira, João Santos, Dulce Geraldo, Cidália R. Castro, Ana V. Machado, Filipe Vaz and Cláudia Lopes
Sensors 2023, 23(19), 8321; https://doi.org/10.3390/s23198321 - 8 Oct 2023
Cited by 4 | Viewed by 2186
Abstract
This study aims to evaluate the lifespan of Ti-Ag dry electrodes prepared using flexible polytetrafluoroethylene (PTFE) substrates. Following previous studies, the electrodes were designed to be integrated into wearables for remote electromyography (EMG) monitoring and electrical stimulation (FES) therapy. Four types of Ti-Ag [...] Read more.
This study aims to evaluate the lifespan of Ti-Ag dry electrodes prepared using flexible polytetrafluoroethylene (PTFE) substrates. Following previous studies, the electrodes were designed to be integrated into wearables for remote electromyography (EMG) monitoring and electrical stimulation (FES) therapy. Four types of Ti-Ag electrodes were prepared by DC magnetron sputtering, using a pure-Ti target doped with a growing number of Ag pellets. After extensive characterization of their chemical composition and (micro)structural evolution, the Ti-Ag electrodes were immersed in an artificial sweat solution (standard ISO-3160-2) at 37 °C with constant stirring. Results revealed that all the Ti-Ag electrodes maintained their integrity and functionality for 24 h. Although there was a notable increase in electrical resistivity beyond this timeframe, the acquisition and transmission of (bio)signals remained viable for electrodes with Ag/Ti ratios below 0.23. However, electrodes with higher Ag content (Ag/Ti = 0.31) became insulators after 7 days of immersion due to excessive Ag release into the sweat solution. This study concludes that higher Ag/Ti atomic ratios result in heightened corrosion processes on the electrode’s surface, consequently diminishing their lifespan despite the advantages of incorporating Ag into their composition. This research highlights the critical importance of evaluating electrode longevity, especially in remote biomedical applications like smart wearables, where electrode performance over time is crucial for reliable and sustained monitoring and stimulation. Full article
(This article belongs to the Special Issue Nanomaterials-Based Sensors for Biomedical Monitoring)
Show Figures

Figure 1

18 pages, 5100 KiB  
Article
Electrospun Rubber Nanofiber Web-Based Dry Electrodes for Biopotential Monitoring
by Mohammad Shamim Reza, Lu Jin, You Jeong Jeong, Tong In Oh, Hongdoo Kim and Kap Jin Kim
Sensors 2023, 23(17), 7377; https://doi.org/10.3390/s23177377 - 24 Aug 2023
Cited by 5 | Viewed by 1926
Abstract
This study aims to find base materials for dry electrode fabrication with high accuracy and without reducing electrode performance for long-term bioelectric potential monitoring after electroless silver plating. Most applications of dry electrodes that have been developed in the past few decades are [...] Read more.
This study aims to find base materials for dry electrode fabrication with high accuracy and without reducing electrode performance for long-term bioelectric potential monitoring after electroless silver plating. Most applications of dry electrodes that have been developed in the past few decades are restricted by low accuracy compared to commercial Ag/AgCl gel electrodes, as in our previous study of PVDF-based dry electrodes. In a recent study, however, nanoweb-based chlorinated polyisoprene (CPI) and poly(styrene-b-butadiene-b-styrene) (SBS) rubber were selected as promising candidates due to their excellent elastic properties, as well as their nanofibril nature, which may improve electrode durability and skin contact. The electroless silver plating technique was employed to coat the nanofiber web with silver, and silver nanoweb(AgNW)-based dry electrodes were fabricated. The key electrode properties (contact impedance, step response, and noise characteristics) for AgNW dry electrodes were investigated thoroughly using agar phantoms. The dry electrodes were subsequently tested on human subjects to establish their realistic performance in terms of ECG, EMG monitoring, and electrical impedance tomography (EIT) measurements. The experimental results demonstrated that the AgNW dry electrodes, particularly the SBS-AgNW dry electrodes, performed similarly to commercial Ag/AgCl gel electrodes and were outperformed in terms of long-term stability. Full article
(This article belongs to the Special Issue Sensors for Biomedical Signal Acquisition and Processing)
Show Figures

Graphical abstract

19 pages, 12624 KiB  
Article
Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration
by Vignesh Ravichandran, Izabela Ciesielska-Wrobel, Md Abdullah al Rumon, Dhaval Solanki and Kunal Mankodiya
Biosensors 2023, 13(7), 728; https://doi.org/10.3390/bios13070728 - 13 Jul 2023
Cited by 13 | Viewed by 4626
Abstract
Biopotential electrodes play an integral role within smart wearables and clothing in capturing vital signals like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). This study focuses on dry e-textile electrodes (E1–E6) and a laser-cut knit electrode (E7), to assess their impedance characteristics under [...] Read more.
Biopotential electrodes play an integral role within smart wearables and clothing in capturing vital signals like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). This study focuses on dry e-textile electrodes (E1–E6) and a laser-cut knit electrode (E7), to assess their impedance characteristics under varying contact forces and moisture conditions. Synthetic perspiration was applied using a moisture management tester and impedance was measured before and after exposure, followed by a 24 h controlled drying period. Concurrently, the signal-to-noise ratio (SNR) of the dry electrode was evaluated during ECG data collection on a healthy participant. Our findings revealed that, prior to moisture exposure, the impedance of electrodes E7, E5, and E2 was below 200 ohm, dropping to below 120 ohm post-exposure. Embroidered electrodes E6 and E4 exhibited an over 25% decrease in mean impedance after moisture exposure, indicating the impact of stitch design and moisture on impedance. Following the controlled drying, certain electrodes (E1, E2, E3, and E4) experienced an over 30% increase in mean impedance. Overall, knit electrode E7, and embroidered electrodes E2 and E6, demonstrated superior performance in terms of impedance, moisture retention, and ECG signal quality, revealing promising avenues for future biopotential electrode designs. Full article
(This article belongs to the Special Issue Devices and Wearable Devices toward Innovative Applications)
Show Figures

Figure 1

12 pages, 3497 KiB  
Proceeding Paper
Types of EMG Textile Electrodes: A Comparative Study Using PCA
by Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy and Lieva Van Langenhove
Eng. Proc. 2023, 35(1), 6; https://doi.org/10.3390/IECB2023-14560 - 8 May 2023
Cited by 2 | Viewed by 2906
Abstract
Identifying a suitable textile electrode that would be durable and assist in recording high-quality bio-signal quality is crucial in the production of medical devices. Therefore, this study is aimed at comparing the time domain characteristics of silver-plated-polyamide-embroidered cotton (SPEC), copper-nickel-plated polyester (CNP), and [...] Read more.
Identifying a suitable textile electrode that would be durable and assist in recording high-quality bio-signal quality is crucial in the production of medical devices. Therefore, this study is aimed at comparing the time domain characteristics of silver-plated-polyamide-embroidered cotton (SPEC), copper-nickel-plated polyester (CNP), and stainless-steel-fabric (SSF) dry textile electromyography (EMG) electrodes through principal component analysis (PCA). The standard silver/silver chloride (Ag/AgCl) gel electrode was considered as the reference for all the test textile electrodes mentioned above. The EMG signal was measured by activation of the bicep and tibialis anterior muscles, and the time domain features such as root mean square (RMS) voltage, average rectified value (ARV) voltage, signal to noise ratio (SNR), kurtosis, and skewness were extracted from the EMG signal. The SSF electrode outperformed CNP and SPEC electrodes. Each textile electrode exhibited signal-to-noise ratio (SNR) values comparable to that of the standard electrode. The SNR values were 24.38 dB, 17.72 dB, 15.55 dB, and 13.30 dB for Ag/AgCl, SSF, CNP and SPEC electrodes, respectively. The performance of all the conductive textile electrodes was comparable to that of Ag/AgCl. However, the gel electrode required skin preparation and exhibited short-term stability, whereas, textile electrode materials were long-lasting and could be used for biological signal monitoring at home without the assistance of medical professionals. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

Back to TopTop