Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex
Abstract
:1. Introduction
2. Materials and Method
2.1. Off-Line System
2.1.1. System Configuration
2.1.2. Experimental Environment and Design
2.1.3. Participants
2.1.4. Data Acquisition and Analysis
Wet-Type EEG-Based SSVEP Experiment
Eyewear-Type Infrared Camera-Based PLR Experiment
Hybrid Experiment: Dry-Type EEG-Based FVEP and Eyewear-Type Infrared Camera-Based PLR
2.2. Real-Time System with Meal-Assist Robot
2.2.1. System Configuration
2.2.2. Proposed Triggers for Hybrid BCI System: PLR and Electromyogram (EMG)
2.3. Statistical Analysis
3. Results
3.1. Experimental Result for Off-Line System
3.2. Simulation of the Real-Time System with Meal-Assist Robot
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Disability and Health. Available online: https://www.who.int/health-topics/disability#tab=tab_1 (accessed on 22 December 2024).
- Kim, H.K.; Jeong, H.; Park, J.; Park, J.; Kim, W.S.; Kim, N.; Park, S.; Paik, N.J. Development of a comprehensive design guideline to evaluate the user experiences of meal-assistance robots considering human–machine social interactions. Int. J. Hum. Comput. Interact. 2022, 38, 1687–1700. [Google Scholar] [CrossRef]
- Rashid, M.; Sulaiman, N.; P P Abdul Majeed, A.; Musa, R.M.; Ab Nasir, A.F.; Bari, B.S.; Khatun, S. Current status, challenges, and possible solutions of EEG-based brain–computer interface: A comprehensive review. Front. Neurorobot. 2020, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.P.; Lin, C.-T. EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. IEEE/ACM Trans. Comput. Biol. Bioinf. 2021, 18, 1645–1666. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Cao, T.; Wang, Q.; Liu, D.; Bai, O.; Sun, J. Application of self-adaptive multiple-kernel extreme learning machine to improve MI-BCI performance of subjects with BCI illiteracy. Biomed. Signal Process. Control 2023, 79, 104183. [Google Scholar] [CrossRef]
- Park, S.; Ha, J.; Kim, L. Improving performance of motor imagery-based brain–computer interface in poorly performing subjects using a hybrid-imagery method utilizing combined motor and somatosensory activity. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Li, M.; Qi, S.; Ng, A.C.M.; Ng, T.; Qian, W. A hybrid P300-SSVEP brain–computer interface speller with a frequency enhanced row and column paradigm. Front. Neurosci. 2023, 17, 1133933. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Q.; Wang, B.; Yang, Y.; Yuan, Z.; Li, S.; Zhao, Y.; Zhu, Y.; Gao, Z.; Zhou, J.; et al. RSVP-based BCI for inconspicuous targets: Detection, localization, and modulation of attention. J. Neural Eng. 2024, 21, 046046. [Google Scholar] [CrossRef] [PubMed]
- Mai, X.; Ai, J.; Ji, M.; Zhu, X.; Meng, J. A hybrid BCI combining SSVEP and EOG and its application for continuous wheelchair control. Biomed. Signal Process. Control 2024, 88, 105530. [Google Scholar] [CrossRef]
- Park, S.; Ha, J.; Park, J.; Lee, K.; Im, C.H. Brain-controlled, AR-based Home automation system using SSVEP-based brain–computer interface and EOG-based eye tracker: A feasibility study for the elderly end User. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 31, 544–553. [Google Scholar] [CrossRef]
- Lee, P.L.; Hsieh, J.C.; Wu, C.H.; Shyu, K.K.; Wu, Y.T. Brain computer interface using flash onset and offset visual evoked potentials. Clin. Neurophysiol. 2008, 119, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Park, S.; Im, C.-H.; Kim, L. A hybrid brain–computer interface for real-life meal-assist robot control. Sensors 2021, 21, 4578. [Google Scholar] [CrossRef]
- Mounesi Rad, S.; Danishvar, S. Emotion recognition using EEG signals through the design of a dry electrode based on the combination of Type 2 fuzzy sets and deep convolutional graph networks. Biomimetics 2024, 9, 562. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Chen, Y.; Li, M.; Song, J.; Li, K.; Zhang, Y.; Hu, L.; Qi, X.; Wan, X.; et al. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain–computer interfaces. J. Neural Eng. 2023, 20, 026017. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, S.; Ren, M.; Zhai, H.J. Dispersed carbon nanotube paper tape loaded poly (3,4-ethylenedioxythiophene) for flexible supercapacitors with significantly enhanced energy storage performance and deformation durability. J. Power Sources 2025, 625, 235684. [Google Scholar] [CrossRef]
- Mannan, M.M.; Kamran, M.A.; Kang, S.; Choi, H.S.; Jeong, M.Y. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface. Sensors 2020, 20, 891. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, S.; Fujioka, N.; Sato, A. Designing light stimulation for a pupillary–computer interface using binary code. IFAC J. Syst. Control 2024, 27, 100246. [Google Scholar] [CrossRef]
- Muto, Y.; Miyoshi, H.; Kaneko, H. Eye-gaze information input based on pupillary response to visual stimulus with luminance modulation. PLoS ONE 2020, 15, e0226991. [Google Scholar] [CrossRef] [PubMed]
- Kothe, C.; Medine, D.; Grivich, M. Lab Streaming Layer 2014. 2024. Available online: https://github.com/labstreaminglayer/pylsl (accessed on 23 December 2024).
- Zhang, Y.; Guo, D.; Yao, D.; Xu, P. The extension of multivariate synchronization index method for SSVEP-based BCI. Neurocomputing 2017, 269, 226–231. [Google Scholar] [CrossRef]
- Kassner, M.; Patera, W.; Bulling, A. Pupil: An open source platform for pervasive eye tracking and mobile gaze-based interaction. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; ACM: New York, NY, USA, 2014; pp. 1151–1160. [Google Scholar] [CrossRef]
- Swirski, L.; Bulling, A.; Dodgson, N. Robust real-time pupil tracking in highly off-axis images. In Proceedings of the Symposium on Eye Tracking Research and Applications, ACM 2012, Santa Barbara, CA, USA, 28–30 March 2012; pp. 173–176. [Google Scholar] [CrossRef]
- Martinez-Ríos, E.A.; Bustamante-Bello, R.; Navarro-Tuch, S.; Perez-Meana, H. Applications of the generalized Morse wavelets: A review. IEEE Access 2023, 11, 667–688. [Google Scholar] [CrossRef]
- Ismail, A.R.; Jovanovic, S.; Ramzan, N.; Rabah, H. Ecg classification using an optimal temporal convolutional network for remote health monitoring. Sensors 2023, 23, 1697. [Google Scholar] [CrossRef]
- Abe, M.; Miyao, J.; Kurita, T. Adaptive neuron-wise discriminant criterion and adaptive center loss at hidden layer for deep convolutional neural network. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar] [CrossRef]
- Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM parameter optimization using grid search and genetic algorithm to improve classification performance. Telecommun. Comput. Electron. Control 2016, 14, 1502–1509. [Google Scholar] [CrossRef]
- Tanner, E.M.; Bornehag, C.G.; Gennings, C. Repeated holdout validation for weighted quantile sum regression. MethodsX 2019, 6, 2855–2860. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 2009, 53, 3735–3745. [Google Scholar] [CrossRef]
- Chevallier, S.; Kalunga, E.K.; Barthélemy, Q.; Monacelli, E. Review of Riemannian distances and divergences, applied to SSVEP-based BCI. Neuroinformatics 2021, 19, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Esser, S.K.; Huber, R.; Massimini, M.; Peterson, M.J.; Ferrarelli, F.; Tononi, G. A direct demonstration of cortical LTP in humans: A combined TMS/EEG study. Brain Res. Bull. 2006, 69, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Creaser, J.; Ashwin, P.; Postlethwaite, C.; Britz, J. Noisy network attractor models for transitions between EEG microstates. J. Math. Neurosci. 2021, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Barthélemy, Q.; Mayaud, L.; Ojeda, D.; Congedo, M. The Riemannian potato field: A tool for online signal quality index of EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Moakher, M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 2005, 26, 735–747. [Google Scholar] [CrossRef]
- NT Robot. Available online: http://www.ntrobot.net/shop_contents/myboard_read.htm?load_type=&page_idx=0&tag_on=&h_search_c=0&h_search_v=&me_popup=&myboard_code=product&page_limit=12&idx=46206&page=1&category_idx= (accessed on 24 December 2024).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational multivariate analysis of variance (PERMANOVA). In Wiley Statsref: Statistics Reference Online; Wiley Online Library: Minneapolis, MN, USA, 2014; pp. 1–15. [Google Scholar] [CrossRef]
- Congedo, M.; Barachant, A.; Bhatia, R. Riemannian geometry for EEG-based brain–computer interfaces; A primer and a review. Brain Comput. Interfaces 2017, 4, 155–174. [Google Scholar] [CrossRef]
- Kim, B.H.; Choi, J.W.; Lee, H.; Jo, S. A discriminative SPD feature learning approach on Riemannian manifolds for EEG classification. Pattern Recognit. 2023, 143, 109751. [Google Scholar] [CrossRef]
- Zanesco, A.P. EEG electric field topography is stable during moments of high field strength. Brain Topogr. 2020, 33, 450–460. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass brain–computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 2012, 59, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Saifutdinova, E.; Congedo, M.; Dudysova, D.; Lhotska, L.; Koprivova, J.; Gerla, V. An unsupervised multichannel artifact detection method for sleep EEG based on Riemannian geometry. Sensors 2019, 19, 602. [Google Scholar] [CrossRef]
- Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G. A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst. Appl. 2018, 95, 201–211. [Google Scholar] [CrossRef]
- Zhu, Y.; Bayin, C.; Li, H.; Shu, X.; Deng, J.; Yuan, H.; Shen, H.; Liang, Z.; Li, Y. A flexible, stable, semi-dry electrode with low impedance for electroencephalography recording. RSC Adv. 2024, 14, 34415–34427. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, Y.; Li, H.; Xuan, X.; Li, P.; Li, M. Wearable gold–graphene dry electrode-based headband for effective brain–computer interface applications. J. Mater. Chem. C 2024, 12, 12862–12873. [Google Scholar] [CrossRef]
- Sheeraz, M.; Saadeh, W.; Altaf, M.A.B. A wearable EEG acquisition device with flexible silver ink screen printed dry sensors. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023. [Google Scholar] [CrossRef]
- Hossain, K.M.; Islam, M.A.; Hossain, S.; Nijholt, A.; Ahad, M.A.R. Status of deep learning for EEG-based brain–computer interface applications. Front. Comput. Neurosci. 2022, 16, 1006763. [Google Scholar] [CrossRef]
- van Stigt, M.N.; Groenendijk, E.A.; Marquering, H.A.; Coutinho, J.M.; Potters, W.V. High performance clean versus artifact dry electrode EEG data classification using Convolutional Neural Network transfer learning. Clin. Neurophysiol. Pract. 2023, 8, 88–91. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Ahn, M. Evaluation of consumer-grade wireless EEG systems for brain–computer interface applications. Biomed. Eng. Lett. 2024, 14, 1433–1443. [Google Scholar] [CrossRef]
- Perera, C.J.; Naotunna, I.; Sadaruwan, C.; Gopura, R.A.R.C.; Lalitharatne, T.D. SSVEP based BMI for a meal assistance robot. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016. [Google Scholar] [CrossRef]
- Perera, C.J.; Lalitharatne, T.D.; Kiguchi, K. EEG-controlled meal assistance robot with camera-based automatic mouth position tracking and mouth open detection. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [PubMed]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef]
- Park, S.; Whang, M. Infrared camera-based non-contact measurement of brain activity from pupillary rhythms. Front. Physiol. 2018, 9, 1400. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P. Riemannian Geometry; Springer: New York, NY, USA, 2006. [Google Scholar]
- Xu, J.; Markham, A.; Meunier, A.; Raggam, P.; Grosse-Wentrup, M. Distance covariance: A nonlinear extension of Riemannian geometry for EEG-based brain-computer interfacing. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 2000–2005. [Google Scholar] [CrossRef]
- Cichocki, A.; Cruces, S.; Amari, S.I. Log-determinant divergences revisited: Alpha-beta and gamma log-det divergences. Entropy 2015, 17, 2988–3034. [Google Scholar] [CrossRef]
- Kalaganis, F.P.; Laskaris, N.A.; Oikonomou, V.P.; Nikopolopoulos, S.; Kompatsiaris, I. Revisiting Riemannian geome-try-based EEG decoding through approximate joint diagonalization. J. Neural Eng. 2022, 19, 066030. [Google Scholar] [CrossRef] [PubMed]
- Samar, V.J.; Bopardikar, A.; Rao, R.; Swartz, K. Wavelet analysis of neuroelectric waveforms: A conceptual tutorial. Brain Lang. 1999, 66, 7–60. [Google Scholar] [CrossRef] [PubMed]
Layer | Type | Shape (B, F, T) 1 | Filter Size | Kernel Size | Dilations |
---|---|---|---|---|---|
Input | PLR-CWT | (32, 122, 139) | |||
0 | DepthwiseConv2D | (32, 122, 139) | (3, 1) | ||
1 | TCN-1 | (32, 139, 512) | 512 | 2 | [1, 2, 4, 8] |
2 | TCN-2 | (32, 139, 512) | 512 | ||
3 | TCN-3 | (32, 139, 64) | 64 | ||
4 | MaxPool1D | (32, 4416) | |||
5 | Dropout 2 | (32, 4416) | |||
6 | FC 3 | (32, 4) | |||
7 | Softmax | (32, 4) | |||
Optimizer | Adam | ||||
Learning rate | 0.001 | ||||
Loss function | Sparse categorical crossentropy + 0.7 × Center loss |
Experiment | Performance | S1 | S2 | S3 | S4 | S5 | Average |
---|---|---|---|---|---|---|---|
SSVEP | Accuracy (%) | 88.33 | 85.00 | 98.33 | 100 | 95.00 | 93.33 |
ITR (bit/min) | 17.27 | 15.37 | 24.68 | 26.67 | 21.79 | 21.16 | |
PLR | Accuracy (%) | 66.75 | 84.98 | 95 | 92.75 | 84.85 | 84.87 |
ITR (bit/min) | 7.41 | 15.35 | 21.79 | 20.13 | 15.28 | 15.99 | |
FVEP | Accuracy (%) | 71.67 | 77.41 | 71.67 | 80.93 | 86.30 | 77.59 |
ITR (bit/min) | 8.29 | 10.45 | 8.29 | 11.94 | 14.48 | 10.57 | |
Hybrid | Accuracy (%) | 74.00 | 84.09 | 97.78 | 97.72 | 89.36 | 88.59 |
ITR (bit/min) | 10.15 | 14.88 | 24.15 | 24.09 | 17.90 | 18.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, J.; Park, S.; Han, Y.; Kim, L. Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex. Biomimetics 2025, 10, 118. https://doi.org/10.3390/biomimetics10020118
Ha J, Park S, Han Y, Kim L. Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex. Biomimetics. 2025; 10(2):118. https://doi.org/10.3390/biomimetics10020118
Chicago/Turabian StyleHa, Jihyeon, Sangin Park, Yaeeun Han, and Laehyun Kim. 2025. "Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex" Biomimetics 10, no. 2: 118. https://doi.org/10.3390/biomimetics10020118
APA StyleHa, J., Park, S., Han, Y., & Kim, L. (2025). Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex. Biomimetics, 10(2), 118. https://doi.org/10.3390/biomimetics10020118