Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,204)

Search Parameters:
Keywords = EGFR mutations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5748 KB  
Case Report
Targeting the Uncommon: A Case Report of Osimertinib Response in Advanced NSCLC Patient with Dual EGFR (E701fs and L702fs) Frameshift Deletions
by Angel Kwan Qi Wong, Saqib Raza Khan, Danial Khan Hadi, Daniel Breadner and Mark David Vincent
Curr. Oncol. 2026, 33(1), 55; https://doi.org/10.3390/curroncol33010055 - 18 Jan 2026
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers with adenocarcinoma being the most common subtype. Patients with stage IV NSCLC typically have poor prognosis. In these patients, identification of actionable genomic alterations allows for the selection of targeted therapy [...] Read more.
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers with adenocarcinoma being the most common subtype. Patients with stage IV NSCLC typically have poor prognosis. In these patients, identification of actionable genomic alterations allows for the selection of targeted therapy rather than chemotherapy or chemo-immunotherapy. EGFR mutations are a common oncogenic driver in NSCLC and are targetable by tyrosine kinase inhibitors (TKIs). However, most of the studies primarily focus on common mutations, which are exon 19 deletions (Ex19del) and exon 21 (L858R) point mutations, and there is inconsistent data on efficacy in the treatment of patients with uncommon EGFR mutations. Currently, the first-line treatment for patients with common EGFR mutations involves a third-generation TKI, typically osimertinib. This case describes a 66-year-old gentleman with two uncommon EGFR frameshift deletions (E701fs and L702fs). His tumor staging was denoted as cT3N2M1b, stage IVA. The patient demonstrated a radiological and biochemical response to osimertinib as part of the OCELOT clinical trial (supported by a grant from AstraZeneca), with evidence of tumor marker decline and radiographic improvement within two months of osimertinib treatment initiation. This response has been durable with continued radiological stability and biochemical improvement at 11 months and ongoing. This case will help guide management for patients with this uncommon EGFR mutations and contribute to the scarce literature of EGFR frameshift deletions in advanced NSCLC patients. Full article
(This article belongs to the Section Thoracic Oncology)
38 pages, 10428 KB  
Article
Conversational AI-Enabled Precision Oncology Reveals Context-Dependent MAPK Pathway Alterations in Hispanic/Latino and Non-Hispanic White Colorectal Cancer Stratified by Age and FOLFOX Exposure
by Fernando C. Diaz, Brigette Waldrup, Francisco G. Carranza, Sophia Manjarrez and Enrique Velazquez-Villarreal
Cancers 2026, 18(2), 293; https://doi.org/10.3390/cancers18020293 - 17 Jan 2026
Viewed by 95
Abstract
Background: Colorectal cancer (CRC) demonstrates substantial clinical and biological diversity across age groups, ancestral backgrounds, and treatment settings, alongside a rising incidence of early-onset disease (EOCRC). The mitogen-activated protein kinase (MAPK) pathway is a major driver of CRC development and therapy response; however, [...] Read more.
Background: Colorectal cancer (CRC) demonstrates substantial clinical and biological diversity across age groups, ancestral backgrounds, and treatment settings, alongside a rising incidence of early-onset disease (EOCRC). The mitogen-activated protein kinase (MAPK) pathway is a major driver of CRC development and therapy response; however, the distribution and prognostic value of MAPK alterations across distinct patient subgroups remain unclear. Methods: We analyzed 2515 CRC tumors with harmonized demographic, clinical, genomic, and treatment metadata. Patients were stratified by ancestry (Hispanic/Latino [H/L] vs. non-Hispanic White [NHW]), age at diagnosis (early-onset [EO] vs. late-onset [LO]), and FOLFOX chemotherapy exposure. MAPK pathway alterations were identified using a curated gene set encompassing canonical EGFR-RAS-RAF-MEK-ERK signaling components and regulatory nodes. Conversational artificial intelligence (AI-HOPE and AI-HOPE-MAPK) enabled natural language-driven cohort construction and exploratory analytics; findings were validated using Fisher’s exact testing, chi-square analyses, and Kaplan–Meier survival estimates. Results: MAPK pathway disruption demonstrated marked heterogeneity across ancestry and treatment contexts. Among EO H/L patients, FGFR3, NF1, and RPS6KA6 mutations were significantly enriched in tumors not receiving FOLFOX, whereas PDGFRB alterations were more frequent in FOLFOX-treated EO H/L tumors relative to EO NHW counterparts. In late-onset H/L disease, NTRK2 and PDGFRB mutations were more common in non-FOLFOX tumors. Distinct MAPK-associated alterations were also observed among NHW patients, particularly in non-FOLFOX settings, including AKT3, FGF4, RRAS2, CRKL, DUSP4, JUN, MAPK1, RRAS, and SOS1. Survival analyses provided borderline evidence that MAPK alterations may be linked to improved overall survival in treated EO NHW patients. Conversational AI markedly accelerated analytic throughput and multi-parameter discovery. Conclusions: Although MAPK alterations are pervasive in CRC, their distribution varies meaningfully by ancestry, age, and treatment exposure. These findings highlight NF1, MAPK3, RPS6KA4, and PDGFRB as potential biomarkers in EOCRC and H/L patients, supporting the need for ancestry-aware precision oncology approaches. Full article
(This article belongs to the Special Issue Innovations in Addressing Disparities in Cancer)
Show Figures

Figure 1

16 pages, 1352 KB  
Article
Clinical Impact of EGFR Mutation Subtypes on Treatment Outcomes in Advanced Non-Small Cell Lung Cancer: An Austrian Real-World Study
by Caroline Braschel, Hannah Fabikan, Vania Mikaela Rodriguez, Maximilian J. Hochmair, Oliver Illini, Leyla Ay, Christoph Weinlinger, Julie Krainer-Jacobs, Nino Müser, Arschang Valipour and Dagmar Krenbek
Cancers 2026, 18(2), 278; https://doi.org/10.3390/cancers18020278 - 16 Jan 2026
Viewed by 102
Abstract
Background: Non-small cell lung cancer (NSCLC), particularly in advanced stages, has poor prognosis. The main objective of the study is to evaluate real-world treatment outcomes in advanced NSCLC patients harboring an EGFR mutation and being treated with TKIs. Methods: The EGFR [...] Read more.
Background: Non-small cell lung cancer (NSCLC), particularly in advanced stages, has poor prognosis. The main objective of the study is to evaluate real-world treatment outcomes in advanced NSCLC patients harboring an EGFR mutation and being treated with TKIs. Methods: The EGFR mutation status was ascertained by next-generation sequencing. The observational cohort study used prospectively maintained registry data. Patient data were collected at two high-volume institutions in Austria between November 2020 and February 2025. The prevalence of EGFR mutations was 11% (145 out of 1267 patients). Results: Among 53 patients (stage IIIB or higher) with an EGFR mutation, median overall survival (OS) and median progression-free survival (PFS) were 17.7 months (95% CI: 10.4–24.9) and 14.2 months (95% CI: 7.4–20.9), respectively. A total of 36 patients harbored common EGFR mutations (exon 19 deletion or L858R point mutation) and exhibited a significantly better OS than those with an uncommon EGFR genotype (p < 0.005). Patients with exon 19 deletion (n = 25) showed the longest mOS, followed by those with L858R mutation (32.5 vs. 17 months). In multivariable analysis, the EGFR common mutation subtype (HR = 3.71 95%CI: 1.23–11.2) was associated with better OS. Patients with common EGFR genotypes, especially exon 19 deletion obtained longer OS and PFS compared with those with uncommon mutations in exon 18–21. Conclusions: The results underscore the prognostic role of distinct EGFR genotypes and the urgency of determining the mutation status in non-small cell lung cancer patients to ensure the best treatment decision. The study also highlights the challenges regarding to EGFR uncommon mutations and the resulting need for further research to investigate alternative treatment options. Full article
Show Figures

Figure 1

22 pages, 6253 KB  
Review
Lung Cancer in Never-Smokers: Risk Factors, Driver Mutations, and Therapeutic Advances
by Po-Ming Chen, Yu-Han Huang and Chia-Ying Li
Diagnostics 2026, 16(2), 245; https://doi.org/10.3390/diagnostics16020245 - 12 Jan 2026
Viewed by 288
Abstract
Background and Objectives: Lung cancer in never-smokers (LCINS) has become a major global health concern, ranking as the fifth leading cause of cancer-related mortality. Unlike smoking-related lung cancer, LCINS arises from complex interactions between environmental carcinogens and distinct genomic alterations. This review [...] Read more.
Background and Objectives: Lung cancer in never-smokers (LCINS) has become a major global health concern, ranking as the fifth leading cause of cancer-related mortality. Unlike smoking-related lung cancer, LCINS arises from complex interactions between environmental carcinogens and distinct genomic alterations. This review summarizes current evidence on environmental risks, molecular features, and therapeutic progress shaping lung cancer management. Methods: A narrative review was conducted to examine risk factors for lung cancer in non-smokers. Studies reporting driver mutations in never-smokers and smokers were identified across major lung cancer histological subtypes, including small-cell lung cancer (SCLC), lung adenocarcinoma (LUAD), squamous cell carcinoma (SCC), and large-cell carcinoma (LCC). In addition, PubMed was searched for phase III trials and studies on targeted therapies related to driver mutations published between 2016 and 2025. Results: Environmental factors such as cooking oil fumes, radon, asbestos, arsenic, and fine particulate matter (PM2.5) are strongly associated with LCINS through oxidative stress, DNA damage, and chronic inflammation. EGFR, PIK3CA, OS9, MET, and STK11 mutations are characteristic of never-smokers, in contrast to TP53 mutations, which are more common in smokers. Recent advances in targeted therapy and immunotherapy have improved survival and quality of life, emphasizing the importance of molecular profiling for treatment selection. Conclusions: LCINS represents a distinct clinical and molecular entity shaped by complex interactions between environmental exposures and genetic susceptibility. Genetic alterations promote tumor immune evasion, facilitating cancer development and progression. Continued advances in air quality control, molecular diagnostics, and precision therapies are essential for prevention, early detection, and reduction of the global disease burden. Full article
(This article belongs to the Special Issue Lung Cancer: Screening, Diagnosis and Management: 2nd Edition)
Show Figures

Figure 1

8 pages, 982 KB  
Article
Detecting EGFR Gene Mutations on a Nanobioarray Chip
by Fang Xu, Montek Boparai, Christopher Oberc and Paul C. H. Li
Biomedicines 2026, 14(1), 142; https://doi.org/10.3390/biomedicines14010142 - 10 Jan 2026
Viewed by 152
Abstract
In this study, three point mutations of EGFR relevant to lung cancer therapy are detected. Mutated EGFR is the target of a therapy for non-small cell lung cancer (NSCLC) using tyrosine kinase inhibitors (TKIs) as treatment drugs. Background/Objectives: Point mutations in exon 21 [...] Read more.
In this study, three point mutations of EGFR relevant to lung cancer therapy are detected. Mutated EGFR is the target of a therapy for non-small cell lung cancer (NSCLC) using tyrosine kinase inhibitors (TKIs) as treatment drugs. Background/Objectives: Point mutations in exon 21 (L858R and L861Q) of the EGFR gene are TKI-sensitive; however, mutations in exon 20 (T790M) are TKI-resistant. Therefore, a fast detection method that classifies an NSCLC patient to be drug sensitive or drug resistant is highly clinically relevant. Methods: Probes were designed to detect three point mutations in genomic samples based on DNA hybridization on a solid surface. A method has been developed to detect single nucleotide polymorphism (SNP) for these mutation detections in the 16-channel nanobioarray chip. The wash by gold-nanoparticles (AuNP) was used to assist the differentiation detection. Results: The gold nanoparticle-assisted wash method has enhanced differentiation between WT and mutated sequences relevant to the EGFR sensitivity to tyrosine kinase inhibitors. Conclusions: The WT and mutated sequences (T790M, L858R and L861Q) in genomic samples were successfully differentiated from each other. Full article
(This article belongs to the Section Nanomedicine and Nanobiology)
Show Figures

Figure 1

17 pages, 1561 KB  
Review
From Molecular Alterations to the Targeted Therapy: Treatment of Thalamic Glioma in Pediatric Patients
by Yasin Yilmaz
Int. J. Mol. Sci. 2026, 27(2), 695; https://doi.org/10.3390/ijms27020695 - 9 Jan 2026
Viewed by 223
Abstract
Thalamic gliomas are among the most challenging pediatric brain tumors due to the delicate functions of the thalamus. Limited surgical intervention leads to the use of adjuvant therapies, including targeted therapy. Thalamic gliomas can be divided into two distinct groups: diffuse midline glioma [...] Read more.
Thalamic gliomas are among the most challenging pediatric brain tumors due to the delicate functions of the thalamus. Limited surgical intervention leads to the use of adjuvant therapies, including targeted therapy. Thalamic gliomas can be divided into two distinct groups: diffuse midline glioma (DMG) and low-grade glioma (LGG). The most common mutations that can be targeted for treatment are the KIAA1549-BRAF fusion; BRAF V600E mutation; EGFR, FGFR, PDGFR, NTRK, and CDK4/6 mutations; other MAP kinase pathway alterations; and PI3K/AKT/mTOR activation. The bithalamic high-grade glioma especially demonstrates EGFR mutations which makes it a distinct entity. Targeted therapy, including tyrosine kinas inhibitors has been shown to improve the overall survival compared to conventional therapy in certain situations. Demonstrating the mutation carried by the tumor is very critical in this regard. The purpose of this article is to focus on the treatment of thalamic glioma in pediatric patients in light of molecular information. Full article
Show Figures

Figure 1

22 pages, 2568 KB  
Article
Molecular Pathology of Advanced NSCLC: Biomarkers and Therapeutic Decisions
by Melanie Winter, Jan Jeroch, Maximilian Wetz, Marc-Alexander Rauschendorf and Peter J. Wild
Cancers 2026, 18(2), 216; https://doi.org/10.3390/cancers18020216 - 9 Jan 2026
Viewed by 196
Abstract
Background: Advances in molecular pathology have transformed NSCLC (Non-Small Cell Lung Cancer) diagnosis, prognosis, and treatment by enabling precise tumor characterization and targeted therapeutic strategies. We review key genomic alterations in NSCLC, including EGFR (epidermal growth factor receptor) mutations, ALK (anaplastic lymphoma kinase) [...] Read more.
Background: Advances in molecular pathology have transformed NSCLC (Non-Small Cell Lung Cancer) diagnosis, prognosis, and treatment by enabling precise tumor characterization and targeted therapeutic strategies. We review key genomic alterations in NSCLC, including EGFR (epidermal growth factor receptor) mutations, ALK (anaplastic lymphoma kinase) and ROS1 (ROS proto-oncogene 1) rearrangements, BRAF (B-Raf proto-oncogene serine/threonine kinase) mutations, MET (mesenchymal–epithelial transition factor) alterations, KRAS (Kirsten rat sarcoma) mutations, HER2 (human epidermal growth factor receptor 2) alterations and emerging NTRK (neurotrophic receptor tyrosine kinase) fusions and AXL-related pathways. Methods: A total of 48 patients with NSCLC was analyzed, including 22 women and 26 men (mean age 70 years, range 44–86). Tumor specimens were classified histologically as adenocarcinomas (n = 81%) or squamous cell carcinomas (n = 19%). Smoking history, PD-L1 (programmed death-ligand 1) expression, and genetic alterations were assessed. NGS (Next-generation sequencing) identified genomic variants, which were classified according to ACMG (American College of Medical Genetics and Genomics) guidelines. Results: The cohort consisted of 29 former smokers, 13 current smokers, and 5 non-smokers (12%), with a mean smoking burden of 33 pack years. PD-L1 TPS (tumor proportion score) was ≥50% in 10 patients, ≥1–<50% in 22, and <1% in 15 patients. In total, 120 genomic variants were detected (allele frequency ≥ 5%). Of these, 52 (43%) were classified as likely pathogenic or pathogenic, 48 (40%) as variants of unknown significance, and 20 (17%) as benign or likely benign. The most frequently altered genes were TP53 (tumor protein p53) (31%), KRAS and EGFR (15% each), and STK11 (serine/threonine kinase 11) (12%). Adenocarcinomas accounted for 89% of all alterations, with TP53 (21%) and KRAS (15%) being most common, while squamous cell carcinomas predominantly harbored TP53 (38%) and MET (15%) mutations. In patients with PD-L1 TPS ≥ 50%, KRAS mutations were enriched (50%), particularly KRAS G12C and G12D, with frequent co-occurrence of TP53 mutations (20%). No pathogenic EGFR mutations were detected in this subgroup. Conclusions: Comprehensive genomic profiling in NSCLC revealed a high prevalence of clinically relevant mutations, with TP53, KRAS and EGFR as the dominant drivers. The strong association of KRAS mutations with high PD-L1 expression, irrespective of smoking history, highlights the interplay between genetic and immunological pathways in NSCLC. These findings support the routine implementation of broad molecular testing to guide precision oncology approaches in both adenocarcinoma and squamous cell carcinoma patients. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

29 pages, 4039 KB  
Review
Targeting Mesenchymal-Epidermal Transition (MET) Aberrations in Non-Small Cell Lung Cancer: Current Challenges and Therapeutic Advances
by Fahua Deng, Weijie Ma and Sixi Wei
Cancers 2026, 18(2), 207; https://doi.org/10.3390/cancers18020207 - 8 Jan 2026
Viewed by 408
Abstract
The mesenchymal–epithelial transition (MET) receptor is a tyrosine kinase activated by its sole known ligand, hepatocyte growth factor (HGF). MET signaling regulates key cellular processes, including proliferation, survival, migration, motility, and angiogenesis. Dysregulation and hyperactivation of this pathway are implicated in multiple malignancies, [...] Read more.
The mesenchymal–epithelial transition (MET) receptor is a tyrosine kinase activated by its sole known ligand, hepatocyte growth factor (HGF). MET signaling regulates key cellular processes, including proliferation, survival, migration, motility, and angiogenesis. Dysregulation and hyperactivation of this pathway are implicated in multiple malignancies, including lung, breast, colorectal, and gastrointestinal cancers. In non–small cell lung cancer (NSCLC), aberrant activation of the MET proto-oncogene contributes to 1% of known oncogenic drivers and is associated with poor clinical outcomes. Several mechanisms can induce MET hyperactivation, including MET gene amplification, transcriptional upregulation of MET or HGF, MET fusion genes, and MET exon 14 skipping mutations. Furthermore, MET pathway activation represents a frequent mechanism of acquired resistance to EGFR- and ALK-targeted tyrosine kinase inhibitors (TKIs) in EGFR- and ALK-driven NSCLCs. Although MET has long been recognized as a promising therapeutic target in NSCLC, the clinical efficacy of MET-targeted therapies has historically lagged behind that of EGFR and ALK inhibitors. Encouragingly, several MET TKIs such as capmatinib, tepotinib, and savolitinib have been approved for the treatment of MET exon 14 skipping mutations. They have also demonstrated potential in overcoming MET-driven resistance to EGFR TKIs or ALK TKIs. On 14 May 2025, the U.S. Food and Drug Administration granted accelerated approval to telisotuzumab vedotin-tllv for adult patients with locally advanced or metastatic non-squamous NSCLC whose tumors exhibit high c-Met protein overexpression and who have already received prior systemic therapy. In this review, we summarize the structure and physiological role of the MET receptor, the molecular mechanisms underlying aberrant MET activation, its contribution to acquired resistance against targeted therapies, and emerging strategies for effectively targeting MET alterations in NSCLC. Full article
Show Figures

Figure 1

17 pages, 681 KB  
Article
Inflammatory–Molecular Clusters as Predictors of Immunotherapy Response in Advanced Non-Small-Cell Lung Cancer
by Vlad Vornicu, Alina-Gabriela Negru, Razvan Constantin Vonica, Andrei Alexandru Cosma, Mihaela Maria Pasca-Fenesan and Anca Maria Cimpean
J. Clin. Med. 2026, 15(1), 349; https://doi.org/10.3390/jcm15010349 - 2 Jan 2026
Viewed by 337
Abstract
Background/Objectives: Immunotherapy has improved outcomes for selected patients with advanced non-small-cell lung cancer (NSCLC), yet the predictive value of individual biomarkers such as PD-L1 remains limited. Systemic inflammatory indices derived from routine blood tests may complement molecular and immunohistochemical features, offering a [...] Read more.
Background/Objectives: Immunotherapy has improved outcomes for selected patients with advanced non-small-cell lung cancer (NSCLC), yet the predictive value of individual biomarkers such as PD-L1 remains limited. Systemic inflammatory indices derived from routine blood tests may complement molecular and immunohistochemical features, offering a broader view of host–tumor immunobiology. Methods: We conducted a retrospective study of 298 patients with stage IIIB–IV NSCLC treated with immune checkpoint inhibitors (ICIs) at a tertiary oncology center between 2022 and 2024. Baseline neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and systemic immune–inflammation index (SII) were collected alongside PD-L1 expression and molecular alterations (EGFR, KRAS, ALK, TP53). Patients were stratified into inflammatory–molecular clusters integrating these parameters. Associations with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were evaluated using Kaplan–Meier and multivariate Cox analyses. Results: Four distinct inflammatory–molecular clusters demonstrated significantly different outcomes (p < 0.001). Patients with low NLR and high PD-L1 expression (Cluster A) showed the highest ORR (41%), longest median PFS (13.0 months), and OS (22.5 months). The EGFR/ALK-driven, inflammation-dominant cluster (Cluster C) exhibited poor response (ORR 7%) and shortest survival (PFS 4.3 months). High NLR (HR 2.12), PD-L1 < 1% (HR 1.91), and EGFR mutation (HR 2.36) independently predicted shorter PFS. A combined model incorporating NLR, PD-L1, and molecular status outperformed individual biomarkers (AUC 0.82). Conclusions: Integrating systemic inflammatory indices with PD-L1 expression and molecular alterations identifies clinically meaningful NSCLC subgroups with distinct immunotherapy outcomes. This multidimensional approach improves prediction of ICI response and may enhance real-world patient stratification, particularly in settings with limited access to extended molecular profiling. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

10 pages, 1058 KB  
Brief Report
Retrospective Analysis of Regorafenib Efficiency in Treatment of Metastatic Colorectal Cancer—Experience of Two Polish Comprehensive Cancer Centers
by Magdalena Grabiec, Dominika Raźniewska, Tadeusz Kałużewski, Magdalena Krakowska, Barbara Radecka and Piotr Potemski
J. Clin. Med. 2026, 15(1), 332; https://doi.org/10.3390/jcm15010332 - 1 Jan 2026
Viewed by 281
Abstract
Objectives: Colorectal cancer is a major public health concern, ranking third in incidence among all malignant tumors both in Poland and globally. We conducted a retrospective study to evaluate the effectiveness of regorafenib in patients with metastatic colorectal cancer ineligible for local therapy [...] Read more.
Objectives: Colorectal cancer is a major public health concern, ranking third in incidence among all malignant tumors both in Poland and globally. We conducted a retrospective study to evaluate the effectiveness of regorafenib in patients with metastatic colorectal cancer ineligible for local therapy treated at two Polish comprehensive cancer centers between 2021 and 2024. Methods: The analysis included 29 patients who had previously received all standard therapies: fluoropyrimidines, oxaliplatin, and irinotecan (in a multi-agent regimen or sequentially) and bevacizumab (anti-VEGF therapy). In patients with tumors negative for KRAS, NRAS and BRAF mutations, cetuximab or panitumumab (anti-EGFR therapy) were also used. Results: The median progression-free survival (PFS) was 2.5 months, and the median overall survival (OS) was 5.8 months. Disease stabilization was observed in five patients, with a median duration of 5.6 months, and no partial or complete remission were recorded. Conclusions: Our results were similar to those of the phase III CORRECT trial, which established the clinical utility of regorafenib. Only minor differences in survival outcomes were noted—likely due to real-world variability in patient characteristics and timing of treatment assessments. However, continued investigation of personalized and sequential treatment strategies that contain anti-angiogenic drugs is warranted to optimize outcomes. Full article
(This article belongs to the Special Issue Advances and Challenges in Colorectal Cancer)
Show Figures

Figure 1

21 pages, 1834 KB  
Review
Lineage Plasticity and Histologic Transformation in EGFR-TKI Resistant Lung Cancer
by Li Yieng Eunice Lau, Anders Jacobsen Skanderup and Aaron C. Tan
Int. J. Mol. Sci. 2026, 27(1), 445; https://doi.org/10.3390/ijms27010445 - 31 Dec 2025
Viewed by 336
Abstract
Lineage plasticity, the ability of cancer cells to alter their differentiated state through transcriptional and epigenetic reprogramming, has emerged as a key mechanism of therapeutic resistance across cancers. This adaptive process can manifest in multiple ways, including epithelial–mesenchymal transition, acquisition of stem-like features, [...] Read more.
Lineage plasticity, the ability of cancer cells to alter their differentiated state through transcriptional and epigenetic reprogramming, has emerged as a key mechanism of therapeutic resistance across cancers. This adaptive process can manifest in multiple ways, including epithelial–mesenchymal transition, acquisition of stem-like features, and histological transformation, the most striking and clinically apparent example. In EGFR-mutant lung adenocarcinoma (LUAD), lineage plasticity is increasingly recognized as a prevalent mechanism of acquired resistance to tyrosine kinase inhibitors (TKIs). Among its visible manifestations, histologic transformation into small-cell lung cancer (SCLC) is the most frequent, while squamous transformation and other phenotypic shifts also occur. Transformed tumors typically retain the initiating EGFR mutation but lose EGFR dependence, acquire neuroendocrine features, and display aggressive clinical behavior with poor clinical outcomes compared with both de novo SCLC and non-transformed LUAD. Recent studies show that plasticity arises through combined genomic, transcriptomic, and epigenetic reprogramming, often foreshadowed by molecular alterations before overt histological change. Spatial and single-cell profiling reveal heterogeneous trajectories and intermediate states, while functional models and multi-omics approaches have begun to identify therapeutic vulnerabilities distinct from both de novo EGFR-mutated SCLC and classical EGFR-mutated LUAD. Thus, lineage plasticity, whether manifested as histologic transformation or through more subtle epigenetic reprogramming, represents a formidable resistance mechanism in NSCLC. Defining its molecular basis and temporal dynamics will be essential for early detection, prognostication, and the development of tailored therapies. Full article
Show Figures

Figure 1

21 pages, 1616 KB  
Review
The TRiC/CCT Complex at the Crossroads of Metabolism and Hypoxia in GBM: Implications for IDH-Dependent Therapeutic Targeting
by Giusi Alberti, Giuseppa D’Amico, Maria Antonella Augello, Francesco Cappello, Marta Anna Szychlinska, Celeste Caruso Bavisotto and Federica Scalia
Int. J. Mol. Sci. 2026, 27(1), 373; https://doi.org/10.3390/ijms27010373 - 29 Dec 2025
Viewed by 316
Abstract
Glioblastoma (GBM) is characterized by its unique molecular features, such as self-renewal and tumorigenicity of glioma stem cells that promote resistance, largely resulting in treatment failure. Among the molecular alterations significant to GBM biology and treatment, mutations in isocitrate dehydrogenase (IDH) have assumed [...] Read more.
Glioblastoma (GBM) is characterized by its unique molecular features, such as self-renewal and tumorigenicity of glioma stem cells that promote resistance, largely resulting in treatment failure. Among the molecular alterations significant to GBM biology and treatment, mutations in isocitrate dehydrogenase (IDH) have assumed particular relevance. IDH-mutant and IDH-wild-type tumors exhibit significantly different metabolic characteristics, clinical behavior, and therapeutic sensitivities, making IDH status a critical determinant in determining prognosis and treatment strategies for GBM. In the context of cancer, chaperones were shown to promote tumor progression by supporting malignant cells over healthy ones. While heat shock proteins (HSPs) have long been implicated in the molecular mechanisms of tumor phenotype progression, recent attention has turned to CCT (chaperonin containing TCP1), orchestrating proteostasis. The chaperonin CCT is being explored as a diagnostic and therapeutic target in many cancers, including GBM, owing to its involvement in key oncogenic signaling pathways such as Wnt, VEGF, EGFR, and PI3K/AKT/mTOR. However, its role in the GBM-tricarboxylic acid (TCA) cycle cascade is still not well understood. Therefore, the present review highlights the potential role of the CCT complex in regulating hypoxia-inducible factor (HIF) activation by modulating enzymes responsive to metabolites derived from glucose metabolism and the TCA cycle in a manner dependent on oxygen availability and IDH mutation status. Full article
(This article belongs to the Special Issue Targeting Glioblastoma Metabolism)
Show Figures

Figure 1

14 pages, 1783 KB  
Article
A Multikinase Inhibitor AX-0085 Blocks FGFR1 Activation to Overcomes Osimertinib Resistance in Non-Small Cell Lung Cancer
by Byung-Ho Rhie, Janardhan Keshav Karapurkar, Hyun-Yi Kim, Sang Hyeon Woo, D. A. Ayush Gowda, Dong Ha Kim, Myeong Jun Choi, Young Jun Park, Viswanathaiah Matam, Yoonki Hong, Seok-Ho Hong, Suresh Ramakrishna and Kye-Seong Kim
Biomedicines 2026, 14(1), 66; https://doi.org/10.3390/biomedicines14010066 - 28 Dec 2025
Viewed by 355
Abstract
Background: Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with high efficacy in treating patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. Although osimertinib is a frontline anticancer agent for NSCLC, several patients inevitably develop [...] Read more.
Background: Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with high efficacy in treating patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. Although osimertinib is a frontline anticancer agent for NSCLC, several patients inevitably develop tumor recurrence caused by osimertinib resistance. The activation of anexelekto (AXL) or fibroblast growth factor receptor 1 (FGFR1) is reported as a major factor driving osimertinib resistance in NSCLC. Thus, targeting AXL and FGFR1 offers the potential to overcome osimertinib resistance. Methods: In this study, we generated osimertinib-resistant cell lines from EGFR-mutant NSCLC cell lines in vitro and investigated the biological significance of AX-0085 on these cell lines by conducting transcriptomic analyses. Results: The expression of several genes associated with MAPK, ERK, and FGF receptor signaling pathways, including AXL, was altered upon AX-0085 treatment of osimertinib-resistant cells. Furthermore, AX-0085 treatment effectively blocked AXL and FGFR1 activation and sensitized osimertinib-resistant cells. Additionally, AX-0085 inhibited AXL and FGFR1-dependent oncogenic events, including cell proliferation, clonogenicity, and migration. Conclusions: The dual inhibition of AXL and FGFR1 by AX-0085 can overcome acquired osimertinib resistance, supporting its potential as a therapeutic strategy for treating patients with osimertinib-resistant tumors. Full article
Show Figures

Figure 1

17 pages, 4500 KB  
Article
Molecular Characterization and Functional Insights into Goose IGF2BP2 During Skeletal Muscle Development
by Cui Wang, Yi Liu, Jiuli Dai, Shufang Chen and Daqian He
Animals 2026, 16(1), 58; https://doi.org/10.3390/ani16010058 - 24 Dec 2025
Viewed by 355
Abstract
Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is an RNA-binding protein known to play critical roles in metabolism, cell proliferation, and tumorigenesis. Although its involvement in muscle development has been documented in several species, the function of goose IGF2BP2 remains largely unexplored. [...] Read more.
Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is an RNA-binding protein known to play critical roles in metabolism, cell proliferation, and tumorigenesis. Although its involvement in muscle development has been documented in several species, the function of goose IGF2BP2 remains largely unexplored. In this study, we cloned and characterized the full-length cDNA and genomic DNA sequences of goose IGF2BP2. The cDNA is 2957 bp in length and contains a 1662 bp open reading frame encoding a 553-amino acid protein with five conserved RNA-binding domains. The genomic sequence spans 12,183 bp and consists of 12 exons and 11 introns. A total of 60 genetic variants were identified, including a deletion of a G base at position 2299 (g.2299delG) that results in a frameshift mutation. Expression analysis revealed high levels of IGF2BP2 mRNA in the liver, heart, and muscle tissues of female geese across embryonic (E25d), growing (A70d), and laying (L270d) stages, consistent with a potential role in muscle development (p < 0.05). Functionally, overexpression of IGF2BP2 in skeletal muscle satellite cells (SMSCs) was associated with significant changes in the expression of several genes linked to muscle development and signaling pathways, including upregulation of IGF1, EGFR, FGF19, BMP6, BMP2, ACVR1C and WNT5A and downregulation of MYBPC3, NODAL, HOXD13, TNXB, and ADD2 (Padj < 0.01). Furthermore, protein–protein interaction (PPI) network analysis of these genes suggests that IGF2BP2 may coordinate key genes, contributing to its potential role in skeletal muscle development in geese. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Graphical abstract

15 pages, 1943 KB  
Article
Molecular Characterization of Adult-Type Lower-Grade Glioma (WHO Grade 1–3) with Targeted Next-Generation Sequencing: A Retrospective, Single-Institution Experience
by Maurizio Pinamonti, Maurizio Polano, Giacomo Cester, Federico Saturno Spurio, Erik Roman-Pognuz, Maja Ukmar, Michele Dal Bo, Fabrizio Zanconati, Leonello Tacconi and Antonio Meola
J. Clin. Med. 2026, 15(1), 53; https://doi.org/10.3390/jcm15010053 - 21 Dec 2025
Viewed by 383
Abstract
Background/Objectives: The 2021 WHO Classification of Central Nervous System (CNS) tumors emphasizes the integration of molecular data with histopathological features. Lower-grade gliomas (LGGs) represent a heterogeneous group of neoplasms with variable clinical behavior. This study aimed to explore the molecular landscape of [...] Read more.
Background/Objectives: The 2021 WHO Classification of Central Nervous System (CNS) tumors emphasizes the integration of molecular data with histopathological features. Lower-grade gliomas (LGGs) represent a heterogeneous group of neoplasms with variable clinical behavior. This study aimed to explore the molecular landscape of a single-institution series of LGGs using targeted next-generation sequencing (NGS). Methods: Eleven adult patients diagnosed with LGG between 2015 and 2024 at Cattinara University Hospital (Trieste, Italy) were retrospectively analyzed. DNA and RNA were extracted from formalin-fixed, paraffin-embedded (FFPE) tissue and analyzed using the TruSight Oncology 500 panel (Illumina). Mutational, amplification, and transcriptomic profiles were evaluated. Results: IDH1 mutations were the most frequent alteration (75%), commonly co-occurring with TP53 and ATRX mutations, consistent with the canonical IDH-mutant astrocytoma profile. CDK4 amplification was found in four cases, while MYCN amplification and MET amplification were each identified in isolated cases. Two diffuse IDH-wild-type gliomas displayed aggressive clinical courses and shorter survival, and one was reclassified as glioblastoma (grade 4) based on EGFR amplification. The transcriptome analysis revealed heterogeneous expression signatures and distinct clustering of IDH1/ATRX-mutant tumors. Conclusions: Targeted NGS confirmed the key molecular features of diffuse gliomas and enabled precise WHO 2021 classification even in archival FFPE samples. Despite the exploratory nature of the analysis on a small population, the study underscores the biological and transcriptional heterogeneity of LGGs and highlights the limitations of tumor-only sequencing approaches. Broader genomic profiling and matched normal controls are warranted to refine the interpretation of rare or non-canonical variants. Full article
Show Figures

Figure 1

Back to TopTop