Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = ECHA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3203 KiB  
Systematic Review
Disempowered Warriors: Insights on Psychological Responses of ICU Patients Through a Meta-Ethnography
by Elizabeth Kusi-Appiah, Maria Karanikola, Usha Pant, Shaista Meghani, Megan Kennedy and Elizabeth Papathanassoglou
Healthcare 2025, 13(8), 894; https://doi.org/10.3390/healthcare13080894 - 13 Apr 2025
Viewed by 593
Abstract
Objectives: to systematically examine and synthesize qualitative evidence on adult patients’ psychological distress during an intensive care unit stay to inform development of interventions tailored to their needs. Method: We conducted systematic literature searches in CINAHL, MEDLINE, EMBASE, PsycINFO, Scopus, Dissertations and Theses [...] Read more.
Objectives: to systematically examine and synthesize qualitative evidence on adult patients’ psychological distress during an intensive care unit stay to inform development of interventions tailored to their needs. Method: We conducted systematic literature searches in CINAHL, MEDLINE, EMBASE, PsycINFO, Scopus, Dissertations and Theses Global, and Google Scholar databases using predefined eligibility criteria. We synthesized primary qualitative research evidence using Noblit and Hare’s meta-ethnographic approach. Reporting was based on the eMERGe framework. The quality of included articles was assessed by the Critical Appraisal Skills Program tool. Findings: We identified 31 primary studies from 19 countries. The studies were of moderate to high quality. Data analysis revealed five themes: “disempowerment”, “altered self-identity” “fighting”, “torment”, and “hostile environment”. One overarching theme, “the disempowered warrior”, captured the perpetual tension between the need to fight for their lives and the need to succumb to the care process. Our synthesis discloses that critically ill patients perceive themselves to be in a battle for their lives; while at the same time they may feel helpless and disempowered. Conclusions: Our review revealed the tension between the need to fight for one’s life and the sense of powerlessness in the intensive care unit environment. Although participants recognize the important role of healthcare workers, they desired more involvement, collaboration, control, empathy, and empowerment in the care process. These findings can inform approaches to empowering critically ill patients and managing their psychological responses. Care standards must include distress assessment and management that maximize patients’ empowerment and emotional safety with the care process. Full article
(This article belongs to the Special Issue Enhancing Patient Safety in Critical Care Settings)
Show Figures

Figure 1

20 pages, 8769 KiB  
Article
Spatio-Temporal Variation Trends of Mangrove Canopy Cover in Urban Areas Using Landsat 8 Imagery and Implications of Management Policies: A Case Study of the Benoa Bay Mangrove Area, Bali, Indonesia
by Abd. Rahman As-syakur, Martiwi Diah Setiawati, I Gede Agus Novanda, Herlambang Aulia Rachman, I Kade Alfian Kusuma Wirayuda, Putu Echa Priyaning Aryunisha, Moh. Saifulloh and Rinaldy Terra Pratama
Wild 2025, 2(1), 8; https://doi.org/10.3390/wild2010008 - 20 Mar 2025
Cited by 1 | Viewed by 1890
Abstract
(1) Background: Mangroves are critical ecosystems that provide essential services, including coastal protection, biodiversity support, and carbon storage. However, urbanization and infrastructure development increasingly threaten their sustainability. This study investigates the spatio-temporal trends of mangrove canopy cover in Benoa Bay, Bali, Indonesia, which [...] Read more.
(1) Background: Mangroves are critical ecosystems that provide essential services, including coastal protection, biodiversity support, and carbon storage. However, urbanization and infrastructure development increasingly threaten their sustainability. This study investigates the spatio-temporal trends of mangrove canopy cover in Benoa Bay, Bali, Indonesia, which is an urban area and a center of tourism activities with various supporting facilities. The analysis was conducted from 2013 to 2023, using Landsat 8 satellite imagery and Normalized Difference Vegetation Index (NDVI) analysis. In addition, the analysis was also linked to mangrove area management policies. (2) Methods: The annual NDVI time series based on Landsat 8 imagery, obtained through the Google Earth Engine (GEE), was used to characterize the vegetation canopy cover in the study area. Statistical analysis of the annual linear trend of the NDVI was conducted to examine the spatio-temporal variation in canopy cover. Additionally, policies related to regional spatial planning and area protection were analyzed to assess their role in preserving mangrove forests in urban areas. (3) Results: There was a net decrease in mangrove area in Benoa Bay of 3.97 hectares, mainly due to infrastructure development and tourism facilities. The NDVI trend shows an overall increase in canopy cover due to reforestation and natural regeneration efforts, although there was a local decrease in some areas. Conservation policies, such as the establishment of the Ngurah Rai Forest Park, have supported mangrove protection. (4) Conclusions: The analysis demonstrated that mangroves surrounded by urban areas and tourism activity centers can still be maintained quite well with the right policies. Full article
Show Figures

Figure 1

28 pages, 2295 KiB  
Review
ImmunoMet Oncogenesis: A New Concept to Understand the Molecular Drivers of Cancer
by Reshma Sirajee, Sami El Khatib, Levinus A. Dieleman, Mohamed Salla and Shairaz Baksh
J. Clin. Med. 2025, 14(5), 1620; https://doi.org/10.3390/jcm14051620 - 27 Feb 2025
Cited by 1 | Viewed by 1183
Abstract
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy [...] Read more.
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy depends on the severity of these “disturbances”. The molecular mechanisms driving abnormal inflammation and metabolism are beginning to be identified and, in some cases, are quite prominent in pre-condition states of cancer and are significant drivers of the malignant phenotype. As such, utilizing signaling pathways linked to inflammation and metabolism as biomarkers of cancer is an emerging method and includes pathways beyond those well characterized to drive metabolism or inflammation. In this review, we will discuss several emerging elements influencing proliferation, inflammation and metabolism that may play a part as drivers of the cancer phenotype. These include AMPK and leptin (linked to metabolism), NOD2/RIPK2, TAK1 (linked to inflammation), lactate and pyruvate transporters (monocarboxylate transporter [MCT], linked to mitochondrial biogenesis and metabolism) and RASSF1A (linked to proliferation, cell death, cell cycle control, inflammation and epigenetics). We speculate that the aforementioned elements are important drivers of carcinogenesis that should be collectively referenced as being involved in “ImmunoMET Oncogenesis”, a new tripartite description of the role of elements in driving cancer. This term would suggest that for a better understanding of cancer, we need to understand how proliferation, inflammation and metabolic pathways are impacted and how they influence classical drivers of malignant transformation in order to drive ImmunoMET oncogenesis and the malignant state. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

16 pages, 1477 KiB  
Article
Effect of Drying Temperature on Sensory Quality, Flavor Components, and Bioactivity of Lichuan Black Tea Processed by Echa No. 10
by Dan Su, Junyu Zhu, Yuchuan Li, Muxue Qin, Zhendong Lei, Jingtao Zhou, Zhi Yu, Yuqiong Chen, De Zhang and Dejiang Ni
Molecules 2025, 30(2), 361; https://doi.org/10.3390/molecules30020361 - 17 Jan 2025
Viewed by 1041
Abstract
Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT. This study investigated the sensory quality, flavor components, and [...] Read more.
Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT. This study investigated the sensory quality, flavor components, and bioactivity of Echa No. 10 Lichuan black tea (LBT) at different drying temperatures (70, 80, 90, 100, 110, 120, and 130 °C). During 80–120 °C, increasing the drying temperature enabled a higher sweet aroma concentration and enhanced the sweetness in the taste, in contrast to reducing the floral, fruity, and sweet aromas, and increasing the bitterness and astringency, at >120 °C. Additionally, with an increasing drying temperature, the contents of tea polyphenols and total catechins significantly decreased, with the theaflavins decreasing first and then increasing, and the alcohols, aldehydes, esters, and hydrocarbons increasing first and then decreasing. Meanwhile, compounds (including linalool, (Z)-linalool oxide (furanoid), (E)-linalool oxide (furanoid), cis-β-Ocimene, and methyl salicylate) contribute more to the floral and fruity aromas at <110 °C. Furthermore, low-temperature drying favors the antioxidant and inhibitory effects of the α-amylase, α-glucosidase, and glucose absorption activity. Both the tea quality and bioactivity results revealed 80–110 °C as the optimal drying temperature range for LBT. Full article
(This article belongs to the Special Issue Effects of Functional Foods and Dietary Bioactives on Human Health)
Show Figures

Figure 1

20 pages, 1512 KiB  
Article
Ambient Levels of Carbonyl Compounds and Ozone in a Golf Course in Ciudad Real, Spain: A ProtoPRED QSAR (Eco) Toxicity Evaluation
by Alberto Moreno, Yoana Rabanal-Ruiz, Andrés Moreno-Cabañas, Carlos Sánchez Jiménez and Beatriz Cabañas
Air 2025, 3(1), 2; https://doi.org/10.3390/air3010002 - 6 Jan 2025
Viewed by 1172
Abstract
It is well known that carbonyl compounds play an important role in air pollution and the formation of secondary pollutants, such as peroxyacetyl nitrates (PAN). Additionally, airborne carbonyls have been described as cytotoxic, mutagenic and carcinogenic. In this research, several carbonyl compounds, including [...] Read more.
It is well known that carbonyl compounds play an important role in air pollution and the formation of secondary pollutants, such as peroxyacetyl nitrates (PAN). Additionally, airborne carbonyls have been described as cytotoxic, mutagenic and carcinogenic. In this research, several carbonyl compounds, including aldehydes and ketones, as well as ozone, were monitored during a campaign conducted in July and September-October 2023 at Golf Ciudad Real, a golf course located in a non-industrial area of a south-central province in Spain. Extraction and analysis were carried out following procedures outlined by Radiello®. Analyses were performed using HPLC-DAD and UV-Visible spectrophotometry. Ozone shows seasonal variation (temperature-dependent) concentrations displaying lower values in September/October. Among all the identified carbonyls, butanal was the most abundant, accounting for 40% of the total concentration. The C1/C2 and C2/C3 ratios were also calculated to provide information about the main emissions sources of the analyzed carbonyl compounds, indicating that mainly anthropogenic sources contribute to air quality in the area. The data were further supported by Quantitative Structure-Activity Relationship (QSAR) models using the ProtoPRED online server, which employs in silico methods based on European Chemicals Agency (ECHA) regulations to assess the (eco)toxicity of the measured carbonyl compounds. Full article
Show Figures

Figure 1

16 pages, 2492 KiB  
Article
Miniaturizing Nanotoxicity Assays in Daphnids
by Dimitrios Kakavas, Konstantinos Panagiotidis, Keith D. Rochfort and Konstantinos Grintzalis
Animals 2024, 14(14), 2046; https://doi.org/10.3390/ani14142046 - 12 Jul 2024
Cited by 2 | Viewed by 1161
Abstract
The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the [...] Read more.
The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the commonly used bioindicators species used for pollution assessment is Daphnid magna. The Organization for Economic Co-operation and Development (OECD), and other organizations such as the European Chemicals Agency (ECHA) and Environmental Protection Agency (EPA), have set guidelines for acute toxicity testing in daphnids that are severely lacking in terms of information on the characteristics of the exposure vessel when studying the adverse effects of nanoparticles (NPs). Understanding the toxicity mechanisms of nanomaterials is imperative given the scarcity of information on their adverse effects. Furthermore, miniaturization of nanotoxicity assays can reduce the number of daphnids used, as well as the cost and nanomaterial waste, and provide results even at the individual animal level with enhanced reproducibility of testing. In this study, the impact of the exposure vessel on the observed physiological changes of daphnids was investigated for a silver nano ink. Exposures in eleven commercially available vessels; nine made of plastic and two made of glass were compared for 24 h. The effect of surface to volume ratio of the exposure vessel and the animal number or “crowding” during exposure was investigated in the context of miniaturizing biomarker assays as alternatives to traditional experimental setups in Daphnid magna. Toxicity curves showed differences depending on the vessel used, while a novel feeding rate assay and the activity of key enzymes were assessed as physiology endpoints. Full article
(This article belongs to the Special Issue Ecotoxicology in Aquatic Animals)
Show Figures

Figure 1

14 pages, 653 KiB  
Article
More Than 30 Years of PVC Recycling—Need for Regulation
by Uwe Lahl and Barbara Zeschmar-Lahl
Sustainability 2024, 16(12), 4891; https://doi.org/10.3390/su16124891 - 7 Jun 2024
Cited by 3 | Viewed by 2315
Abstract
Building on our “Critical Inventory”, we analyse the need for the regulation of PVC plastics in the EU and its member states. To this end, we checked the three phases of the life cycle of PVC plastics: production, use and end-of-life. In the [...] Read more.
Building on our “Critical Inventory”, we analyse the need for the regulation of PVC plastics in the EU and its member states. To this end, we checked the three phases of the life cycle of PVC plastics: production, use and end-of-life. In the production phase, we focus on the economic relationships between PVC and chlor-alkali electrolysis, in particular, the dependence on the chlorine market and PVC sales. For the use phase, the health and environmental risks posed by many PVC additives are particularly relevant. The European Chemicals Agency (ECHA) has submitted well-founded proposals for the regulation of individual or defined groups of substances (e.g., ortho-phthalates), which we support. Problems that put a ban on the agenda stem in particular from the end-of-life phase of PVC plastics (PVC compounds), especially in the construction sector. Due to their long service life, a stock of around 160 million tonnes of PVC products in the EU has built up, increasingly finding its way into the waste management sector. Currently, there are no waste management infrastructures or facilities capable of disposing of these amounts. Without a phasing-out the production of virgin PVC (“PVC ban”), these quantities will continue to increase. We, therefore, come to the conclusion that post-consumer PVC should be collected separately and canalized into a disposal infrastructure designed for chlorine recovery. The European PVC industry “would welcome to make this separate collection mandatory”. Including the associated costs, PVC will probably lose its status as a particularly economically favourable plastic. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
Show Figures

Figure 1

16 pages, 3374 KiB  
Article
Reference Genes for Expression Analyses by qRT-PCR in Enterobacter cancerogenus
by Yang Pan, Yue Zhao, Hua-Rui Zeng, Jia-Qi Wu, Ying-Ying Song, Ya-Hao Rao, Guo-Qing Li and Lin Jin
Microorganisms 2024, 12(5), 1024; https://doi.org/10.3390/microorganisms12051024 - 19 May 2024
Cited by 1 | Viewed by 1922
Abstract
The Enterobacter cancerogenus strain EcHa1 was isolated from the dead larvae of Helicoverpa armigera, and has the potential for biocontrol of some Lepidoptera insects. In order to screen insecticidal-related genes by qRT-PCR, stable endogenous reference genes used for normalizing qRT-PCR data were [...] Read more.
The Enterobacter cancerogenus strain EcHa1 was isolated from the dead larvae of Helicoverpa armigera, and has the potential for biocontrol of some Lepidoptera insects. In order to screen insecticidal-related genes by qRT-PCR, stable endogenous reference genes used for normalizing qRT-PCR data were selected and evaluated from 13 housekeeping genes (HKGs). The expression levels of the HKGs were determined using qRT-PCR under different experimental conditions, including two culture temperatures and three bacterial OD values. Five stability analysis methods (Ct, BestKeeper, NormFinder, geNorm, and RefFinder) were used to comprehensively rank the candidate genes. The results showed that the optimal reference genes varied under different experimental conditions. The combination of gyrA and gyrB was recommended as the best reference gene combination at 28 °C, while gyrA and rpoB was the best combination at 37 °C. When the OD values were 0.5, 1.0 and 2.0, the recommended reference gene combinations were ftsZ and gyrA, rpoB and gyrB, and gyrA and pyk, respectively. The most suitable reference genes were gyrA and gyrB under all experimental conditions. Using gyrA and gyrB as the reference genes for qRT-PCR, EcHa1 was found to invade all tissues of the H. armigera larvae, and expressed a candidate pathogenic factor Hcp at high levels in gut, Malpighian tubules, and epidermis tissues. This study not only establishes an accurate and reliable normalization for qRT-PCR in entomopathogenic bacteria but also lays a solid foundation for further study of functional genes in E. cancerogenus. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

17 pages, 2564 KiB  
Article
Effects of RNA Interference with Acetyl-CoA Carboxylase Gene on Expression of Fatty Acid Metabolism-Related Genes in Macrobrachium rosenbergii under Cold Stress
by Hua Zhong, Xinyi Yao, Haihui Tu, Zhenglong Xia, Miaoying Cai, Qiang Sheng, Shaokui Yi, Guoliang Yang and Qiongying Tang
Fishes 2024, 9(5), 170; https://doi.org/10.3390/fishes9050170 - 8 May 2024
Viewed by 1350
Abstract
Macrobrachium rosenbergii is a warm water species, and low temperature is a limiting factor for its growth and survival. In order to explore the role of the acetyl-CoA-carboxylase (ACC) gene in response to the cold stress of M. rosenbergii, we [...] Read more.
Macrobrachium rosenbergii is a warm water species, and low temperature is a limiting factor for its growth and survival. In order to explore the role of the acetyl-CoA-carboxylase (ACC) gene in response to the cold stress of M. rosenbergii, we investigated the effects of RNA interference (RNAi) with the ACC gene on the expression of fatty acid metabolism-related genes and the mortality of M. rosenbergii under cold stress. The results showed that different siRNA sequences and different injection concentrations had different inhibiting effects on ACC gene expression, and siRNA-III with an injection concentration of 2.0 μg/g (siRNA/prawn body weight) had the best interference effect. With the optimal siRNA and the optimal concentration under cold stress, the expressions of three fatty acid metabolism-related genes, FabD, echA, and ACOT, were generally significantly down-regulated. Compared to negative (scrambled-siRNA) and blank (PBS) control groups, the expression of FabD in the interference group was extremely significantly down-regulated at 12 h in the hepatopancreas and at 18 h in the muscles and gills; EchA was highly significantly down-regulated at 6 and 12 h in the muscles and gills; and ACOT was extremely significantly down-regulated and kept declining in the gills. Within 6–18 h after injection under cold stress, the mortality rate of the siRNA interference group (75%) was much lower than that of the negative (95%) or blank control group (97.5%), and all prawns died after 24 h. In conclusion, RNA interference with the ACC gene inhibited the expression of some fatty acid metabolism-related genes, and could partly improve the tolerance of M. rosenbergii to cold stress, indicating that the ACC gene might play an important role in the response of M. rosenbergii to cold stress. Full article
(This article belongs to the Special Issue Advances in Shrimp Aquaculture)
Show Figures

Figure 1

24 pages, 2118 KiB  
Article
More than 30 Years of PVC Recycling in Europe—A Critical Inventory
by Uwe Lahl and Barbara Zeschmar-Lahl
Sustainability 2024, 16(9), 3854; https://doi.org/10.3390/su16093854 - 4 May 2024
Cited by 6 | Viewed by 4731
Abstract
PVC has a special status, as chlorine is a component of the polymer molecule. The properties of chlorine are the reason why the polymer molecule needs additivation. PVC is the mass plastic to which the most diverse and quantitatively largest number of additives [...] Read more.
PVC has a special status, as chlorine is a component of the polymer molecule. The properties of chlorine are the reason why the polymer molecule needs additivation. PVC is the mass plastic to which the most diverse and quantitatively largest number of additives are added. This makes PVC difficult to recycle. More than three decades ago, the PVC industry announced its commitment to improve the sustainability of the material through material recycling. We analysed the latest figures from the European PVC industry, ensuring that the statistics included the quantities that enter the market as recyclate. We also analysed the significance of replacing virgin PVC with recyclates. We conclude from this that, after a good three decades, the recycling result is rather meagre. The lion’s share of PVC waste in Europe is still going to waste-to-energy plants, where it tends to be a nuisance. The many announcements to close the chlorine cycle via waste incineration have not got very far either. And the announcements to expand chemical recycling in parallel have not been successful. On the basis of this stocktaking, we have analysed, in a second separately published part, which conclusions can be drawn for regulatory measures, building on a current ECHA investigation report. Full article
(This article belongs to the Special Issue Sustainability: Resources and Waste Management)
Show Figures

Figure 1

21 pages, 2787 KiB  
Article
Development of a Standardised International Protocol for Evaluation of the Disinfection Efficacy of Healthcare Laundry Wash Processes
by Lucy Owen, Caroline Cayrou, Georgina Page, Martin Grootveld and Katie Laird
Appl. Microbiol. 2024, 4(1), 194-214; https://doi.org/10.3390/applmicrobiol4010014 - 18 Jan 2024
Cited by 2 | Viewed by 2948
Abstract
This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and [...] Read more.
This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and bioindicator testing for in-wash-process efficacy. Enterococcus faecium as an indicator species within industrial wash systems is preferable due to its high thermal and disinfectant tolerance. Methods for measuring laundry disinfection were compared; commercially available E. faecium bioindicators and contaminated cotton swatches (loose, in cloth bags or within nylon membranes) were laundered industrially at ambient temperature and microbial recovery determined. E. faecium was lost from cotton during laundering but retained by the bioindicator membrane, which allows disinfection efficacy to be measured without loss of microorganisms from the test swatch. Commercially available bioindicators were only permeable to disinfectants and detergents at ≥60 °C. Subsequently, polyethersulphone membranes for enclosing contaminated swatches were developed for low-temperature laundering, with permeability to industrial laundry chemistries at below ≤60 °C. This study demonstrates that bioindicators are the recommended methodology for laundry disinfection validation. The use of a universal healthcare laundry disinfection methodology will lead to standardised microbiological testing across the industry and improvements in infection control. Full article
Show Figures

Figure 1

16 pages, 3463 KiB  
Article
Genome-Wide Identification of Selenium-Responsive MicroRNAs in Tea Plant (Camellia sinensis L. O. Kuntze)
by Dan Cao, Juan Li, Linlong Ma, Yanli Liu, Jianan Huang and Xiaofang Jin
Horticulturae 2023, 9(12), 1278; https://doi.org/10.3390/horticulturae9121278 - 28 Nov 2023
Cited by 3 | Viewed by 1735
Abstract
Anadequate selenium (Se) intake can enhance human immunity and prevent diseases development. About one billion people in the world have varying degrees of Se deficiency in the world. Organic Se from tea infusion is the most easily absorbed and utilized Se form by [...] Read more.
Anadequate selenium (Se) intake can enhance human immunity and prevent diseases development. About one billion people in the world have varying degrees of Se deficiency in the world. Organic Se from tea infusion is the most easily absorbed and utilized Se form by the human body. Therefore the production of tea plants rich in Se is an effective way to increase Se dietary intake, but there are few studies on the involvement and functions of miRNAs in the responses of tea plants after Se treatment. MicroRNAs (miRNAs) are endogenous (non-coding) single-stranded RNAs that play crucial roles in regulating plant nutrient element acquisition and accumulation. Physiological analysis discovered that the total Se content in tea plant roots markedly increased under 0.05 mmol·L−1 selenite treatment, with no toxicity symptoms in the leaves and roots. To screen the miRNAs responsive to Se treatment in tea plants, miRNA libraries were constructed from the tea cultivar “Echa 1”. Using high-throughput sequencing, 455 known miRNAs and 203 novel miRNAs were identified in this study. In total, 13 miRNAs were selected that were differentially expressed in tea plants’ roots under 0.05 mmol·L−1 selenite treatments. Gene Ontology enrichment analysis revealed that the target genes of the differentially expressed miRNAs mainly belonged to the metabolic process, membrane, and catalytic activity ontologies. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggested that beta-alanine, taurine, hypotaurine, and sulfur metabolism were the most enriched pathways among the differentially expressed miRNAs, implying their involvement in Se accumulation and tolerance in tea plants. Further characterization of the data revealed that the number of novel miRNAs was comparable to that of known miRNAs, indicating that novel miRNAs significantly contributed to the regulation of Se accumulation in tea plant roots. Thisstudy lays the foundation for further research on the regulatory mechanisms underlying Se accumulation and tolerance in tea plants, providing targets to molecular breeding strategies for improving tea nutritional properties. Full article
(This article belongs to the Special Issue Tea Tree: Cultivation, Breeding and Their Processing Innovation)
Show Figures

Figure 1

29 pages, 3186 KiB  
Review
Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine
by Oleksii Danchuk, Anna Levchenko, Rochelly da Silva Mesquita, Vyacheslav Danchuk, Seyda Cengiz, Mehmet Cengiz and Andriy Grafov
Pharmaceutics 2023, 15(9), 2326; https://doi.org/10.3390/pharmaceutics15092326 - 15 Sep 2023
Cited by 16 | Viewed by 5950
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and [...] Read more.
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects. Full article
(This article belongs to the Special Issue Biodegradable Nanomaterials for Targeted Drug Delivery)
Show Figures

Figure 1

13 pages, 814 KiB  
Review
The EU’s Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science
by Francesca Spyrakis and Tommaso A. Dragani
Toxics 2023, 11(9), 721; https://doi.org/10.3390/toxics11090721 - 22 Aug 2023
Cited by 35 | Viewed by 7939
Abstract
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may [...] Read more.
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may lead to significant problems in attempting to replace PFAS-based materials for environmental transition, as well as in medical devices and everyday products. Alternative materials may potentially be less safe, as a rush to replace PFAS would reduce the time needed for toxicological analyses. Studies have shown that PFAS exhibit a diverse range of mechanisms of action, biopersistence, and bioaccumulation potential, and should thus not be treated as a single group. This is particularly true for the class of fluoropolymers. A targeted approach that considers the specific risks and benefits of each chemical may be more effective. Moreover, the proposed ban may also have unintended consequences for the environment as PFAS use is also associated with benefits such as reducing greenhouse-gas emissions and improving energy efficiency. Policymakers must carefully weigh up the potential consequences before making a final decision on the ban. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

15 pages, 5430 KiB  
Article
The Immunogenicity and Safety of Mycobacterium tuberculosis-mosR-Based Double Deletion Strain in Mice
by Rachel E. Hildebrand, Chungyi Hansen, Brock Kingstad-Bakke, Chia-Wei Wu, Marulasiddappa Suresh and Adel Talaat
Microorganisms 2023, 11(8), 2105; https://doi.org/10.3390/microorganisms11082105 - 18 Aug 2023
Viewed by 2373
Abstract
Mycobacterium tuberculosis (M. tuberculosis) remains a significant global health threat, accounting for ~1.7 million deaths annually. The efficacy of the current vaccine, M. bovis BCG, ranges from 0 to 80% in children and does not prevent adulthood tuberculosis. We explored the [...] Read more.
Mycobacterium tuberculosis (M. tuberculosis) remains a significant global health threat, accounting for ~1.7 million deaths annually. The efficacy of the current vaccine, M. bovis BCG, ranges from 0 to 80% in children and does not prevent adulthood tuberculosis. We explored the immune profile and safety of a live-attenuated M. tuberculosis construct with double deletions of the mosR and echA7 genes, where previously, single mutations were protective against an M. tuberculosis aerosol challenge. Over 32 weeks post-vaccination (WPV), immunized mice with M. tuberculosisΔmosRΔechA7 (double mutant) were sacrificed to evaluate the vaccine persistence, histopathology, and immune responses. Interestingly, despite similar tissue colonization between the vaccine double mutant and wild-type M. tuberculosis, the vaccine construct showed a greater reaction to the ESAT-6, TB.10, and Ag85B antigens with peptide stimulation. Additionally, there was a greater number of antigen-specific CD4 T cells in the vaccine group, accompanied by significant polyfunctional T-cell responses not observed in the other groups. Histologically, mild but widely distributed inflammatory responses were recorded in the livers and lungs of the immunized animals at early timepoints, which turned into organized inflammatory foci via 32WPV, a pathology not observed in BCG-immunized mice. A lower double-mutant dose resulted in significantly less tissue colonization and less tissue inflammation. Overall, the double-mutant vaccine elicited robust immune responses dominated by antigen-specific CD4 T cells, but also triggered tissue damage and vaccine persistence. The findings highlight key features associated with the immunogenicity and safety of the examined vaccine construct that can benefit the future evaluation of other live vaccines. Full article
(This article belongs to the Special Issue Mycobacterial Tuberculosis Pathogenesis and Vaccine Development)
Show Figures

Figure 1

Back to TopTop