Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = EA.hy926

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2381 KB  
Article
Oscillatory Disturbed Flow Enhances Inflammatory and Oxidative Stress Markers in Endothelial Cells
by Maram Hasan, Onur Mutlu, Munshi Sajidul Islam, Samar Shurbaji, Ruba Sulaiman, Yasmin Elsharabassi, Abdelali Agouni and Huseyin C. Yalcin
Methods Protoc. 2025, 8(6), 130; https://doi.org/10.3390/mps8060130 - 1 Nov 2025
Viewed by 362
Abstract
Hemodynamics significantly impact the biology of endothelial cells (ECs) lining the blood vessels. ECs are exposed to various hemodynamic forces, particularly frictional shear stress from flowing blood. While physiological flows are critical for the normal functioning of ECs, abnormal flow dynamics, known as [...] Read more.
Hemodynamics significantly impact the biology of endothelial cells (ECs) lining the blood vessels. ECs are exposed to various hemodynamic forces, particularly frictional shear stress from flowing blood. While physiological flows are critical for the normal functioning of ECs, abnormal flow dynamics, known as disturbed flows, may trigger endothelial dysfunction leading to atherosclerosis and other vascular conditions. Such flows can occur due to sudden geometrical variations and vascular abnormalities in the cardiovascular system. In the current study, a microfluidic system was used to investigate the impact of different flow conditions (i.e, normal vs. disturbed) on ECs in vitro. We particularly explored the relationship between specific flow patterns and cellular pathways linked to oxidative stress and inflammation related to atherosclerosis. Here, we utilized a 2D cell culture perfusion system featuring an immortalized human vascular endothelial cell line (EA.hy926) connected to a modified peristaltic pump system to generate either steady laminar flows, representing healthy conditions, or disturbed oscillatory flows, representing diseased conditions. EA.hy926 were exposed to an oscillatory flow shear stress of 0.5 dynes/cm2 or a laminar flow shear stress of 2 dynes/cm2 up to 24 h. Following flow exposure, cells were harvested from the perfusion chamber for quantitative PCR analysis of gene expression. Reactive oxygen species (ROS) generation under various shear stress conditions was also measured using DCFDA/H2DCFDA fluorescent assays. Under oscillatory shear stress flow conditions (0.5 dynes/cm2), EA.hy926 ECs showed a 3.5-fold increase in the transcription factor nuclear factor (NFκ-B) and a remarkable 28.6-fold increase in cyclooxygenase-2 (COX-2) mRNA expression, which are both proinflammatory markers, compared to static culture. Transforming growth factor-beta (TGFβ) mRNA expression was downregulated in oscillatory and laminar flow conditions compared to the static culture. Apoptosis marker transcription factor Jun (C-Jun) mRNA expression increased in both flow conditions. Apoptosis marker C/EBP homologous protein (CHOP) mRNA levels increased significantly in oscillatory flow, with no difference in laminar flow. Endothelial nitric oxide synthase (eNOS) mRNA expression was significantly decreased in cells exposed to oscillatory flow, whereas there was no change in laminar flow. Endothelin-1 (ET-1) mRNA expression levels dropped significantly by 0.5- and 0.8-fold in cells exposed to oscillatory and laminar flow, respectively. ECs subjected to oscillatory flow exhibited a significant increase in ROS at both 4 and 24 h compared to the control and laminar flow. Laminar flow-treated cells exhibited a ROS generation pattern similar to that of static culture, but at a significantly lower level. Overall, by exposing ECs to disturbed and normal flows with varying shear stresses, significant changes in gene expression related to inflammation, endothelial function, and oxidative stress were observed. In this study, we present a practical, optimized system as an in vitro model that can be employed to investigate flow-associated diseases, such as atherosclerosis and aortic aneurysm, thereby supporting the understanding of the underlying molecular mechanisms. Full article
(This article belongs to the Section Synthetic and Systems Biology)
Show Figures

Graphical abstract

11 pages, 2275 KB  
Article
Two-Step Air/Water Oxidation Process for the Long-Lasting Photoluminescence and Biological Viability (MTT Assay) of Porous Silicon Particles
by Claudia Castillo Calvente, María F. Gilsanz-Muñoz, Javier Pérez-Piñeiro, Arisbel Cerpa-Naranjo, Rodrigo Blasco, Elvira Bragado-García, María S. Fernández-Alfonso and Darío Gallach-Pérez
J. Xenobiot. 2025, 15(5), 168; https://doi.org/10.3390/jox15050168 - 17 Oct 2025
Viewed by 339
Abstract
Due to their visible photoluminescence (PL) at room temperature, porous silicon particles (PSps) have gained interest for their potential biomedical applications, making them promising biological markers for in vivo or in vitro use. This study explores the PL evolution and stabilization of PSps [...] Read more.
Due to their visible photoluminescence (PL) at room temperature, porous silicon particles (PSps) have gained interest for their potential biomedical applications, making them promising biological markers for in vivo or in vitro use. This study explores the PL evolution and stabilization of PSps following a two-step oxidation process involving air annealing and chemical oxidation in deionized water. PS layers were fabricated by electrochemical etching of p+-Si wafers and then annealed in air at 300 °C and 600 °C for five minutes. The layers were then stored in deionized water and sonicated to produce PSps. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to analyze the morphology and composition of the particles, and spectrofluorimetry was used to monitor the PL over several weeks. Samples annealed at 300 °C exhibited a transition from nearly complete PL quenching to strong yellow–red emission. In contrast, the 600 °C sample showed no PL emission. The cytotoxicity of the PSps was evaluated using an MTT assay on human endothelial cells (EA.Hy926) with PSps and polyethylene glycol (PEG)-coated PSps at concentrations of (3.5–125 µg/mL) in both serum-free and fetal bovine serum (FBS)-containing media over 24, 48, and 72 h. Cell viability was significantly affected by both exposure time and particle concentration; however, this effect was prevented under conditions mimicking the physiological plasma environment. Full article
(This article belongs to the Section Nanotoxicology and Nanopharmacology)
Show Figures

Graphical abstract

22 pages, 4332 KB  
Article
Vasorelaxant and Hypotensive Mechanisms of Nelumbo nucifera Seed Extract: Roles of Nitric Oxide, Calcium Channel Blockade and eNOS Interaction with Active Compounds
by Usana Chatturong, Nitra Nuengchamnong, Anjaree Inchan, Kittiwoot To-On, Tippaporn Bualeong, Wiriyaporn Sumsakul, Anyapat Atipimonpat, Kittiphum Meekarn, Yasuteru Shigeta, Kowit Hengphasatporn, Sarawut Kumphune and Krongkarn Chootip
Pharmaceuticals 2025, 18(10), 1500; https://doi.org/10.3390/ph18101500 - 6 Oct 2025
Viewed by 763
Abstract
Background/Objectives: Enhancing endothelial nitric oxide (NO) bioavailability through natural products may provide a promising strategy for the prevention and management of hypertension. This study investigated the phytochemical composition of ethanolic lotus (Nelumbo nucifera) seed extract (LSE), its vasorelaxant mechanisms, effects on [...] Read more.
Background/Objectives: Enhancing endothelial nitric oxide (NO) bioavailability through natural products may provide a promising strategy for the prevention and management of hypertension. This study investigated the phytochemical composition of ethanolic lotus (Nelumbo nucifera) seed extract (LSE), its vasorelaxant mechanisms, effects on endothelial NO production, and antihypertensive activity. Methods: LSE was characterized via LC-ESI-QTOF-MS using accurate mass data and fragmentation patterns. Vasorelaxant effects were evaluated in isolated rat aortas, and the underlying mechanisms were explored using pharmacological inhibitors. NO production was assessed in human endothelial EA.hy926 cells. Hypotensive activity was examined in normotensive rats following intravenous administration of LSE (10, 30, and 100 mg/kg). Molecular docking was performed to analyze interactions between LSE bioactive compounds and endothelial nitric oxide synthase (eNOS). Results: LC-ESI-QTOF-MS analysis identified 114 compounds, including primary and secondary metabolites. LSE induced vasorelaxation in endothelium-intact aortas, which was reduced by endothelium removal (p < 0.001) and by L-NAME (p < 0.001). LSE also inhibited receptor-operated, Ca2+ channel-mediated vasoconstriction (p < 0.05). In vivo, LSE decreased blood pressure in a dose-dependent manner. In EA.hy926 cells, LSE (750 and 1000 µg/mL) increased NO production, an effect attenuated by L-NAME. Molecular docking showed that LSE alkaloids, including nelumborine, nelumboferine, neferine, and isoliensinine had strong affinities for binding with eNOS at the tetrahydrobiopterin (BH4) binding site. Nelumborine exhibited the highest affinity, suggesting its potential as an eNOS modulator. Conclusions: LSE promotes vasorelaxation through the stimulation of endothelium-derived NO release and Ca2+ influx inhibition, contributing to blood pressure reduction. These findings support LSE as a potential natural antihypertensive supplement. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

15 pages, 3484 KB  
Article
Stefin A Regulation of Cathepsin B Expression and Localization in Cancerous and Non-Cancerous Cells
by Anastasiia O. Syrocheva, Ekaterina P. Kolesova, Alessandro Parodi and Andrey A. Zamyatnin
Int. J. Mol. Sci. 2025, 26(19), 9321; https://doi.org/10.3390/ijms26199321 - 24 Sep 2025
Viewed by 496
Abstract
Cathepsin B (CTSB), a lysosomal cysteine protease, plays pivotal roles in cellular homeostasis and pathology, including cancer progression. This study investigates the regulatory interplay between CTSB and Stefin A (STFA), an endogenous inhibitor of cysteine proteases, in renal and prostate cancer cells. Using [...] Read more.
Cathepsin B (CTSB), a lysosomal cysteine protease, plays pivotal roles in cellular homeostasis and pathology, including cancer progression. This study investigates the regulatory interplay between CTSB and Stefin A (STFA), an endogenous inhibitor of cysteine proteases, in renal and prostate cancer cells. Using plasmid-based overexpression and silencing systems, we demonstrated that overexpressing STFA significantly reduces CTSB activity and protein levels, while silencing STFA leads to elevated CTSB activity and expression in cancer cells but not in non-cancerous cells (embryonic kidney cells—Hek293T and endothelial cells—EA.hy926). Furthermore, STFA modulates the subcellular distribution of CTSB, with STFA overexpression reducing nuclear CTSB levels and silencing inducing cytoplasmic accumulation in cancer cells. Colocalization analysis confirms a direct interaction between STFA and CTSB, highlighting the spatial coordination necessary for effective protease inhibition. These findings underscore the critical role of the CTSB-STFA axis in maintaining proteolytic balance and suggest potential therapeutic strategies targeting this interaction in renal carcinoma and other cancers. Full article
(This article belongs to the Special Issue Molecular Mechanisms and New Markers of Cancer)
Show Figures

Figure 1

30 pages, 58453 KB  
Article
Time- and Dose-Dependent Effects of Irradiation on Endothelial and Tumor Endothelial Cells: Transcriptional, Molecular, and Functional Changes Driving Activation In Vitro and In Vivo
by Iva Santek, Gregor Sersa and Bostjan Markelc
Cancers 2025, 17(17), 2842; https://doi.org/10.3390/cancers17172842 - 29 Aug 2025
Viewed by 1095
Abstract
Background: Irradiation (IR) targets cancer cells, but also the tumor microenvironment, including the tumor’s blood vessels. In addition to tumor endothelial cell (TEC) apoptosis, IR can lead to TEC activation, potentially increasing immune cell infiltration. However, the changes underlying the IR-induced activation of [...] Read more.
Background: Irradiation (IR) targets cancer cells, but also the tumor microenvironment, including the tumor’s blood vessels. In addition to tumor endothelial cell (TEC) apoptosis, IR can lead to TEC activation, potentially increasing immune cell infiltration. However, the changes underlying the IR-induced activation of endothelial cells (ECs) are poorly understood. This study investigated dose- and time-dependent molecular and functional responses of murine and human EC lines to IR in vitro and TECs in vivo in murine tumor models of colorectal carcinoma. Methods: HUVEC, EA.hy926, and Hulec5a, as well as murine bEND.3, 2H11, and SVEC4-10 EC lines, were irradiated with single doses of 2–10 Gy. EC proliferation and survival after IR were assessed by staining all nuclei (Hoechst 33342) and dead cells (propidium iodide) every 24 h for 5 days using the Cytation 1 Cell Imaging Multi-Mode Reader. RNA sequencing analysis of HUVECs irradiated with 2 Gy and 5 Gy at 24 h and 72 h after IR was conducted, focusing on processes related to EC activation. To validate the RNA sequencing results, immunofluorescence staining for proteins related to EC activation, including Stimulator of Interferon Response cGAMP Interactor 1 (STING), Nuclear factor kappa B (NF-κβ), and Vascular cell adhesion molecule 1 (VCAM-1), was performed. To validate the in vitro results, the response of TEC in vivo was analyzed using publicly available RNA sequencing data of TECs isolated from MC38 colon carcinoma irradiated with a single dose of 15 Gy. Finally, murine CT26 colon carcinoma tumors were immunofluorescently stained for STING and NF-κβ 24 and 48 h after IR with a clinically relevant fractionated regimen of 5 × 5 Gy. Results: Doses of 2, 4, 6, 8, and 10 Gy led to a dose-dependent decrease in proliferation and increased death of ECs. RNA sequencing analysis showed that the effects on the transcriptome of HUVECs were most pronounced 72 h after IR with 5 Gy, with 1014 genes (661 down-regulated and 353 up-regulated) being significantly differentially expressed. Irradiation with 5 Gy resulted in HUVEC activation, with up-regulation of the immune system and extracellular matrix genes, such as STING1 (log2FC = 0.81) and SELE (log2FC = 1.09), respectively; and down-regulation of cell cycle markers. Furthermore, IR led to the up-regulation of immune response- and extracellular matrix (ECM)-associated signaling pathways, including NF-κβ signaling and ECM–receptor interaction, which was also observed in the transcriptome of irradiated murine TECs in vivo. This was confirmed at the protein level with higher expressions of the EC activation-associated proteins STING, NF-κβ, and VCAM-1 in irradiated HUVECs and irradiated TECs in vivo. Conclusions: IR induces changes in ECs and TECs, supporting their activation in dose- and time-dependent manners, potentially contributing to the anti-tumor immune response, which may potentially increase the infiltration of immune cells into the tumor and thus, improve the overall efficacy of RT, especially in combination with immune checkpoint inhibitors. Full article
(This article belongs to the Special Issue Radiosensitivity and Radiotoxicity in Cancer)
Show Figures

Graphical abstract

16 pages, 4948 KB  
Article
CYP1A1/20-HETE/GPR75 Axis-Mediated Arachidonic Acid Metabolism Dysregulation in H-Type Hypertension Pathogenesis
by Hangyu Lv, Lingyun Liu, Baoling Bai, Kexin Zhang and Qin Zhang
Int. J. Mol. Sci. 2025, 26(13), 5947; https://doi.org/10.3390/ijms26135947 - 20 Jun 2025
Viewed by 1022
Abstract
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the [...] Read more.
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the methionine-enriched group, which were effectively normalized following folic acid supplementation. Transcriptomic analysis revealed methionine-induced upregulation of AA pathway-associated genes Cyp1a1 and Gpr75. In contrast, after the intervention with folic acid, a downregulation of these genes was observed. These findings were corroborated through Western blotting and RT-qPCR validation. In vitro studies using EA.hy926 endothelial cells demonstrated that methionine exposure significantly elevated CYP1A1 expression. Furthermore, methionine stimulation induced marked upregulation of GPR75 and its downstream signaling components (NRAS, MEK1, and ERK1). Population-level evidence from the U.S. NHANES database substantiated significant correlations between essential fatty acids (AA, LA, and GLA) and H-type hypertension prevalence. Our research findings suggest that the CYP1A1/20-HETE/GPR75 axis-mediated dysregulation of AA metabolism may be one of the key pathological mechanisms of H-type hypertension. The research results provide clues for the discovery of new therapeutic targets for H-type hypertension. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

17 pages, 3944 KB  
Article
Rutaecarpine Protects Human Endothelial Cells from Oxidative-Stress-Induced Apoptosis via TRPV1- and AhR-Mediated Nrf2 Activation
by Chae Yeon Kim, Gi Ho Lee, Seung Yeon Lee, Anh Thi Ngoc Bui and Hye Gwang Jeong
Antioxidants 2025, 14(5), 616; https://doi.org/10.3390/antiox14050616 - 21 May 2025
Viewed by 1217
Abstract
Endothelial cells play a crucial role in cardiovascular health by maintaining vascular homeostasis, regulating blood flow and vascular wall permeability, and protecting against external stressors. Oxidative stress, particularly excessive reactive oxygen species (ROS), disrupts cellular homeostasis and contributes to endothelial cell dysfunction. Rutaecarpine [...] Read more.
Endothelial cells play a crucial role in cardiovascular health by maintaining vascular homeostasis, regulating blood flow and vascular wall permeability, and protecting against external stressors. Oxidative stress, particularly excessive reactive oxygen species (ROS), disrupts cellular homeostasis and contributes to endothelial cell dysfunction. Rutaecarpine (RUT), an indolopyridoquinazolinone alkaloid isolated from Evodia rutaecarpa, has cytoprotective potential. However, the molecular mechanism underlying its cytoprotective activity in endothelial cells remains unclear. In this study, we investigated the protective effects of RUT against H2O2-induced apoptosis in human EA.hy926 endothelial cells and explored its underlying mechanism of action. RUT enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) activation by increasing its expression and phosphorylation, resulting in the upregulation of antioxidant enzymes (GCLC, NQO1, and HO-1). RUT increased the level of the anti-apoptotic marker (Bcl-2) while inhibiting apoptotic markers (cleaved caspase-3 and Bax) in H2O2-induced apoptotic cells. Mechanistic analysis revealed that RUT activates Nrf2 through two pathways: TRPV1-mediated PKCδ/Akt phosphorylation and aryl hydrocarbon receptor (AhR)-dependent Nrf2 expression. These findings suggest that RUT exerts protective effects against oxidative-stress-induced apoptosis by controlling the Nrf2 signaling pathway in endothelial cells. Full article
(This article belongs to the Special Issue Antioxidant Capacity of Natural Products—2nd Edition)
Show Figures

Figure 1

19 pages, 17036 KB  
Article
The Uremic Toxins Inorganic Phosphate, Indoxylsulphate, p-Cresylsulphate, and TMAO Induce the Generation of Sulphated Glycosaminoglycans in Aortic Tissue and Vascular Cells via pAKT Signaling: A Missing Link in the “Gut–Matrix Axis”
by Christian Freise, Susanne Metzkow, Andreas Zappe, Monika Ebert, Nicola Stolzenburg, Julia Hahndorf, Jörg Schnorr, Kevin Pagel and Matthias Taupitz
Toxins 2025, 17(5), 217; https://doi.org/10.3390/toxins17050217 - 25 Apr 2025
Cited by 2 | Viewed by 1287
Abstract
Gut-derived uremic toxins (UTs) contribute to cardiovascular disorders like atherosclerosis and cardiomyopathy in patients with chronic kidney disease (CKD), causing increased cardiovascular morbidity and mortality. The intermediate steps between higher concentrations of gut-derived UTs and organ damage caused by UTs are still insufficiently [...] Read more.
Gut-derived uremic toxins (UTs) contribute to cardiovascular disorders like atherosclerosis and cardiomyopathy in patients with chronic kidney disease (CKD), causing increased cardiovascular morbidity and mortality. The intermediate steps between higher concentrations of gut-derived UTs and organ damage caused by UTs are still insufficiently understood. Glycosaminoglycans (GAGs) as components of the extracellular matrix are known to interact with various ligands such as growth factors or receptors, thereby influencing (patho)physiological processes. We previously found that the UT inorganic phosphate (Pi) induces the synthesis and sulphation of the GAGs heparan sulphate and chondroitin sulphate in the rat vascular smooth muscle cell (VSMC) line A7r5 and in the human endothelial cell (EC) line EA.Hy926. The aim of this study was to investigate if other organic UTs modulate GAGs in vascular cells as well. We treated ex vivo cultures of rat aortic rings as well as primary rat VSMCs and human ECs with the UTs Pi, indoxylsulphate (IS), p-cresylsulphate (pCS), trimethylamine N-oxide (TMAO), and urea, and analyzed the samples by histological staining, qPCR, western blot, HPLC, and colorimetric assays. The UT treatment of aortic rings and cells increased contents of sulphated GAGs and hyaluronic acid. UT-treated cells contained higher amounts of 4S- and 6S-sulphated GAGs compared to controls. This was accompanied by altered expressions of genes and proteins relevant for GAG metabolism. Mechanistically, the effects of the UTs on GAGs involve the activation of the PI3K/Akt pathway and of the transcription factor NF-κB. In conclusion, the UT-induced remodeling of the cardiovascular matrix by upregulation of sulphated GAGs and hyaluronic acid in aortic tissue and vascular cells might be a missing link between gut-derived UT and pathophysiological alterations in the cardiovascular system in the sense of a gut–matrix axis. Full article
Show Figures

Figure 1

15 pages, 5734 KB  
Article
Trp31 Residue of Trx-1 Is Essential for Maintaining Antioxidant Activity and Cellular Redox Defense Against Oxidative Stress
by Zongmao He, Yi Yan, Xijun Guo, Tong Wang, Xinqiao Liu, Ren-Bo Ding, Yuanfeng Fu, Jiaolin Bao and Xingzhu Qi
Antioxidants 2025, 14(3), 257; https://doi.org/10.3390/antiox14030257 - 24 Feb 2025
Viewed by 853
Abstract
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 [...] Read more.
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 by replacing Trp31 with Ala31 (31Ala) or deleting Trp31 residue (31Del). We introduced 31Ala and 31Del mutations into prokaryotic cells for hTrx-1 protein expression, protein purification and evaluation of antioxidant activity. The results showed that neither the replacing mutation to Ala31 nor the deletion of Trp31 residue affected the efficient expression of hTrx-1 protein in prokaryotic cells, indicating that neither form of Trp31 mutation would disrupt the folded structure of the Trx-1 protein. Comparison of the antioxidant activity of purified hTrx-1 proteins of wild-type, 31Ala and 31Del forms revealed that both mutant forms significantly decreased the antioxidant capacity of hTrx-1. Further investigations on eukaryotic cells showed that H2O2 treatment caused massive cell death in EA.Hy926 human endothelial cells with 31Ala and 31Del mutations compared to wild-type cells, which was associated with increased ROS production and downregulation of antioxidant Nrf2 and HO-1 expression in the mutant cells. These results suggested that mutations in the Trp31 residue of hTrx-1 remarkably disrupted cellular redox defense against oxidative stress. The antioxidant activity of hTrx-1 relies on the thiol–disulfide exchange reaction, in which the content of thiol groups forming disulfide bonds in hTrx-1 is critical. We found that the content of free thiol groups specifically participating in disulfide bond formation was significantly lower in Trp31 mutant hTrx-1 than in wild-type hTrx-1; that was speculated to affect the formation of disulfide bonds between Cys32 and Cys35 by virtual analysis, thus abolishing the antioxidant activity of hTrx-1 in cleaving oxidized groups and defending against oxidative stress. The present study provided valuable insights towards understanding the importance of Trp31 residue of hTrx-1 in maintaining the correct conformation of the Trx fold structure, the antioxidant functionality of hTrx-1 and the cellular redox defense capability against oxidative stress. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

20 pages, 4162 KB  
Article
Anti-Angiogenic Potential of Marine Streptomyces-Derived Lucknolide A on VEGF/VEGFR2 Signaling in Human Endothelial Cells
by Byeoung-Kyu Choi, Min-Hee Jo, Hee Jae Shin and Sun Joo Park
Molecules 2025, 30(5), 987; https://doi.org/10.3390/molecules30050987 - 20 Feb 2025
Cited by 3 | Viewed by 1403
Abstract
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and [...] Read more.
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and evaluated its potential as a VEGFR2 inhibitor. LA selectively inhibited the proliferation of human endothelial cells EA.hy926 and HUVEC while exhibiting minimal effects on normal fibroblasts and various tumor cells. LA induced S-phase cell cycle arrest and apoptosis in EA.hy926 cells, increasing apoptotic markers p53, Bax, and p21 and decreasing the anti-apoptotic protein Bcl-2, with these effects being further enhanced under VEGF stimulation. Additionally, LA suppressed VEGFR2 phosphorylation and its downstream signaling pathways, including Akt/mTOR/p70S6K, MEK/ERK, Src, FAK, and p38 MAPK, which are crucial for endothelial survival and angiogenesis. Molecular docking studies revealed that LA binds to both inactive (DFG-out, PDB: 4ASD) and active (DFG-in, PDB: 3B8R) VEGFR2 conformations, with a significantly stronger affinity for the active state (−107.96 kcal/mol) than the inactive state (−33.56 kcal/mol), suggesting its potential as a VEGFR2 kinase inhibitor. Functionally, LA significantly inhibited VEGF-induced endothelial migration, tube formation, and microvessel sprouting in both in vitro and ex vivo rat aortic ring assays. Additionally, LA reduced tumor-associated tube formation induced by human breast tumor cells (MDA-MB-231), indicating its potential to suppress VEGF-dependent tumor angiogenesis. These findings suggest that LA is a promising selective anti-angiogenic agent with potential therapeutic applications in angiogenesis-related diseases such as cancer. Full article
(This article belongs to the Special Issue Bioactive Compounds: Applications and Benefits for Human Health)
Show Figures

Graphical abstract

13 pages, 1229 KB  
Article
Selection of Reference Genes for Normalization of Gene Expression After Exposure of Human Endothelial and Epithelial Cells to Hypoxia
by Juliane Hannemann, Lena Schmidt-Hutten, Jannik Hannemann, Fiona Kleinsang and Rainer Böger
Int. J. Mol. Sci. 2025, 26(4), 1763; https://doi.org/10.3390/ijms26041763 - 19 Feb 2025
Cited by 2 | Viewed by 1810
Abstract
The selection of a stably expressed reference gene is a critical step for the quantitation of gene expression by qRT-PCR. We tested the stability of expression of nine putative reference genes in normoxia and hypoxia in four different human cell types: coronary (HCAECs) [...] Read more.
The selection of a stably expressed reference gene is a critical step for the quantitation of gene expression by qRT-PCR. We tested the stability of expression of nine putative reference genes in normoxia and hypoxia in four different human cell types: coronary (HCAECs) and pulmonary endothelial cells (HPAECs), EA.hy926 endothelial cells, and A549 alveolar epithelial cells. Cells were cultured in normoxic and hypoxic conditions for up to 72 h. Total RNA was isolated and used for qRT-PCR. Stability of expression was assessed by calculating the coefficient of variation of the cycle threshold (Ct CV) by pairwise comparison of ΔCt values, and by the NormFinder algorithm. A final rank was calculated for each gene. Finally, we analyzed VEGFA expression by using GAPDH or the optimal candidate reference gene found in this study. Gene expression was variable between cell lines and experimental conditions. The most stable reference gene across all cell lines was TBP, followed by RPLP1 and RPL13A. VEGFA expression was significantly upregulated by 4-fold in hypoxia when using TBP as reference, whilst this result was insignificant when GAPDH was used. The selection of a stably expressed reference gene is a critical step for the generation of reliable and reproducible data in gene expression studies. The most appropriate reference gene may vary in different cell lines and experimental conditions; it should be chosen individually for each experimental set-up. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1683 KB  
Article
Natural Polyamine Spermidine Inhibits the In Vitro Oxidation of LDL
by Christine Rossmann, Azra Darko, Gerd Kager, Gerhard Ledinski, Willibald Wonisch, Thomas Wagner, Seth Hallström, Gilbert Reibnegger, Margret Paar and Gerhard Cvirn
Molecules 2025, 30(4), 955; https://doi.org/10.3390/molecules30040955 - 19 Feb 2025
Cited by 1 | Viewed by 2485
Abstract
Spermidine is a natural autophagy-inducer and anti-aging compound. Herein, we investigated a potential autophagy-independent mechanism of spermidine, namely its capability to directly impede LDL oxidation, an early step in atherogenesis. In our in vitro-model, LDL oxidation was induced by the addition of CuCl [...] Read more.
Spermidine is a natural autophagy-inducer and anti-aging compound. Herein, we investigated a potential autophagy-independent mechanism of spermidine, namely its capability to directly impede LDL oxidation, an early step in atherogenesis. In our in vitro-model, LDL oxidation was induced by the addition of CuCl2 in the presence of increasing concentrations of spermidine, and the degree of oxidation of the lipid, as well as of the protein part of LDL, was measured. We found that spermidine concentration-dependently inhibited the production of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes in the LDL particle, associated with decreased relative electrophoretic mobilities, respectively. For example, the LPO content was significantly lower when LDL was oxidized in the presence of 500 µg/mL spermidine (26.9 ± 1.6 nmol/mg LDL) than in the absence of spermidine (180.6 ± 7.7 nmol/mg LDL, p < 0.0001). When oxLDL was obtained under increasing spermidine concentrations, its cytotoxicity in EA.hy926 cells concentration-dependently decreased. Quantum chemical calculations show that the reaction between spermidine and hydroxyl radicals is exergonic. We conclude that spermidine is a direct inhibitor of LDL oxidation due to its capability to scavenge hydroxyl radicals. Thus, spermidine supplementation might be a suitable tool to impede atherogenesis and associated (cardio)vascular diseases. Further prospective clinical studies are needed to evaluate the potential atheroprotective/health-promoting effects of spermidine-rich diets. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

32 pages, 7722 KB  
Article
Rational Design and Synthesis of a Novel Series of Thiosemicarbazone-Containing Quinazoline Derivatives as Potential VEGFR2 Inhibitors
by Alexandru Șandor, Ovidiu Crișan, Gabriel Marc, Ionel Fizeșan, Ioana Ionuț, Cristina Moldovan, Anca Stana, Ilioara Oniga, Adrian Pîrnău, Laurian Vlase, Andreea-Elena Petru, Ionuț-Valentin Creștin, Alex-Robert Jîjie, Brîndușa Tiperciuc and Ovidiu Oniga
Pharmaceutics 2025, 17(2), 260; https://doi.org/10.3390/pharmaceutics17020260 - 15 Feb 2025
Cited by 1 | Viewed by 1910
Abstract
Background/Objectives: Angiogenesis plays a crucial role in tumor development and is a driving force for the aggressiveness of several types of cancer. Our team developed a novel series of thiosemicarbazone-containing quinazoline derivatives, TSC1-TSC10, as potential VEGFR2 inhibitors with proven anti-angiogenic and antiproliferative [...] Read more.
Background/Objectives: Angiogenesis plays a crucial role in tumor development and is a driving force for the aggressiveness of several types of cancer. Our team developed a novel series of thiosemicarbazone-containing quinazoline derivatives, TSC1-TSC10, as potential VEGFR2 inhibitors with proven anti-angiogenic and antiproliferative potential. Methods: The TSC1-TSC10 series was synthesized and characterized by spectral data. Extensive methodology was applied both in vitro (Alamar Blue assay, Scratch assay, CAM assay, and VEGFR2 kinase assay) and in silico (docking studies, MDs, and MM-PBSA) for the confirmation of the biological potential. Results: TSC10 emerged as the most promising compound, with a favorable cytotoxic potential across the cell panel (Ea.Hy296, HaCaT, and A375) in agreement with the in vitro VEGFR2 kinase assay (IC50 = 119 nM). A comparable motility reduction in the vascular endothelial cells to that of the reference drug sorafenib was provided by TSC10, with a similar anti-angiogenic potential in the more complex in ovo model of the CAM assay. The in silico experiments confirmed the successful accommodation of the active site of the kinase domain similar to sorafenib for the entire TSC1-TSC10 series, providing valuable key insight into the complex stability driving force for the evaluated compounds. Conclusions: The in vitro evaluations of the biological potential correlated with the in silico predictions by computer-aided complex simulations provided a solid confirmation of the initial hypothesis for the TSC1-TSC10 series. Full article
(This article belongs to the Special Issue Small-Molecule Inhibitors for Novel Therapeutics)
Show Figures

Graphical abstract

20 pages, 2942 KB  
Article
Endothelial-Protective Actions of Diethylether Extract from Gentiana kochiana and Xanthone Gentiacaulein Against Oxidized LDL-Induced Injury—In Vitro Evaluation
by Gordana Tovilović-Kovačević, Nevena Zogović, Đurđica Ignjatović, Mirko Tomić, Jelena Penjišević, Jelena Kukić-Marković and Dijana Krstić-Milošević
Int. J. Mol. Sci. 2025, 26(3), 1351; https://doi.org/10.3390/ijms26031351 - 5 Feb 2025
Viewed by 1328
Abstract
Endothelial dysfunction is an early pathophysiological event in atherosclerosis. The endothelial-protective abilities of diethylether extract (EE) from the Gentiana kochiana (Gentianaceae) herb and its main component, xanthone aglycone gentiacaulein (GC), were evaluated in an oxidized low-density lipoprotein (oxLDL)-treated EA.hy926 endothelial cell line. The [...] Read more.
Endothelial dysfunction is an early pathophysiological event in atherosclerosis. The endothelial-protective abilities of diethylether extract (EE) from the Gentiana kochiana (Gentianaceae) herb and its main component, xanthone aglycone gentiacaulein (GC), were evaluated in an oxidized low-density lipoprotein (oxLDL)-treated EA.hy926 endothelial cell line. The EE and GC actions were assessed using cell viability assays, flow cytometry, immunoblot, DPPH, NBT, TBARS, conjugated diene formation, and Griess tests. Both EE and GC prevented oxLDL-induced apoptosis by reducing intracellular reactive oxygen species levels, mitochondrial depolarization, and caspase activation in EA.hy926 cells. EE and GC dose-dependently diminished oxLDL-induced cellular lipid peroxidation. In cell-free conditions, EE moderately scavenged superoxide anions and had no affinity toward DPPH radicals, GC did not interact with either of investigated free radicals, while both EE and GC effectively delayed Cu²⁺-induced LDL oxidation. EE and GC upregulated oxLDL-suppressed protective Akt/CREB/eNOS and ERK signals and restored oxLDL-reduced nitric oxide levels. Therefore, EE and GC effectively counteract oxLDL-induced endothelial apoptosis by reducing oxidative stress, promoting mitochondrial recovery, and enhancing the prosurvival Akt/CREB/eNOS axis and ERK activity. Our study is the first to demonstrate that xanthone-rich EE from aerial parts of G. kochiana and xanthone GC alleviate oxLDL-induced endothelial cell injury, underscoring their potential for cardiovascular protection. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

27 pages, 2977 KB  
Article
Evaluation of the Antioxidant Properties and Bioactivity of Koroneiki and Athinolia Olive Varieties Using In Vitro Cell-Free and Cell-Based Assays
by Maria Gkasdrogka, Fotios Tekos, Zoi Skaperda, Periklis Vardakas and Demetrios Kouretas
Int. J. Mol. Sci. 2025, 26(2), 743; https://doi.org/10.3390/ijms26020743 - 16 Jan 2025
Viewed by 2611
Abstract
Olive oil and table olives are considered staples of the Mediterranean diet and have been associated with various health benefits. Literature reports that the final composition of the olive drupe is greatly affected by varietal and agronomic factors, each contributing to a different [...] Read more.
Olive oil and table olives are considered staples of the Mediterranean diet and have been associated with various health benefits. Literature reports that the final composition of the olive drupe is greatly affected by varietal and agronomic factors, each contributing to a different degree. To that end, the objective of the study was the evaluation of the contribution of different agronomic conditions applied to two Greek olive varieties (Koroneiki, Mastoidis) using a holistic approach of in vitro methods. The findings highlight the importance of the application of a combination of agronomic techniques for each variety, as marked by the differences found in the antioxidant radical-scavenging and reducing power assays. Furthermore, the results obtained from the measurement of redox biomarkers (GSH, ROS, TBARS) in cell lines (EA.hy926, HepG2, MKN45) treated with olive samples demonstrate the capacity of the samples to induce redox imbalance, either by protecting normal cells from damage, or by inducing oxidative damage in cancer cell lines, with the Athinolia samples exhibiting greater antioxidant potential at lower concentrations. This particular finding could have further applications in possible chemo-preventive approaches facilitated by antioxidant compounds of natural origins. Full article
(This article belongs to the Special Issue Insights into Redox Homeostasis and Oxidative Stress)
Show Figures

Figure 1

Back to TopTop