Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = DWT features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 248
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

17 pages, 3856 KiB  
Article
Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection
by Minghui Zhang, Jingkui Zhang, Jugang Luo, Jiakun Hu, Xiaoping Zhang and Juncai Xu
Appl. Sci. 2025, 15(14), 8037; https://doi.org/10.3390/app15148037 - 18 Jul 2025
Viewed by 297
Abstract
Underwater inspection images of hydraulic structures often suffer from haze, severe color distortion, low contrast, and blurred textures, impairing the accuracy of automated crack, spalling, and corrosion detection. However, many existing enhancement methods fail to preserve structural details and suppress noise in turbid [...] Read more.
Underwater inspection images of hydraulic structures often suffer from haze, severe color distortion, low contrast, and blurred textures, impairing the accuracy of automated crack, spalling, and corrosion detection. However, many existing enhancement methods fail to preserve structural details and suppress noise in turbid environments. To address these limitations, we propose a compact image enhancement framework called Wavelet Fusion with Sobel-based Weighting (WWSF). This method first corrects global color and luminance distributions using multiscale Retinex and gamma mapping, followed by local contrast enhancement via CLAHE in the L channel of the CIELAB color space. Two preliminarily corrected images are decomposed using discrete wavelet transform (DWT); low-frequency bands are fused based on maximum energy, while high-frequency bands are adaptively weighted by Sobel edge energy to highlight structural features and suppress background noise. The enhanced image is reconstructed via inverse DWT. Experiments on real-world sluice gate datasets demonstrate that WWSF outperforms six state-of-the-art methods, achieving the highest scores on UIQM and AG while remaining competitive on entropy (EN). Moreover, the method retains strong robustness under high turbidity conditions (T ≥ 35 NTU), producing sharper edges, more faithful color representation, and improved texture clarity. These results indicate that WWSF is an effective preprocessing tool for downstream tasks such as segmentation, defect classification, and condition assessment of hydraulic infrastructure in complex underwater environments. Full article
Show Figures

Figure 1

17 pages, 7786 KiB  
Article
Video Coding Based on Ladder Subband Recovery and ResGroup Module
by Libo Wei, Aolin Zhang, Lei Liu, Jun Wang and Shuai Wang
Entropy 2025, 27(7), 734; https://doi.org/10.3390/e27070734 - 8 Jul 2025
Viewed by 328
Abstract
With the rapid development of video encoding technology in the field of computer vision, the demand for tasks such as video frame reconstruction, denoising, and super-resolution has been continuously increasing. However, traditional video encoding methods typically focus on extracting spatial or temporal domain [...] Read more.
With the rapid development of video encoding technology in the field of computer vision, the demand for tasks such as video frame reconstruction, denoising, and super-resolution has been continuously increasing. However, traditional video encoding methods typically focus on extracting spatial or temporal domain information, often facing challenges of insufficient accuracy and information loss when reconstructing high-frequency details, edges, and textures of images. To address this issue, this paper proposes an innovative LadderConv framework, which combines discrete wavelet transform (DWT) with spatial and channel attention mechanisms. By progressively recovering wavelet subbands, it effectively enhances the video frame encoding quality. Specifically, the LadderConv framework adopts a stepwise recovery approach for wavelet subbands, first processing high-frequency detail subbands with relatively less information, then enhancing the interaction between these subbands, and ultimately synthesizing a high-quality reconstructed image through inverse wavelet transform. Moreover, the framework introduces spatial and channel attention mechanisms, which further strengthen the focus on key regions and channel features, leading to notable improvements in detail restoration and image reconstruction accuracy. To optimize the performance of the LadderConv framework, particularly in detail recovery and high-frequency information extraction tasks, this paper designs an innovative ResGroup module. By using multi-layer convolution operations along with feature map compression and recovery, the ResGroup module enhances the network’s expressive capability and effectively reduces computational complexity. The ResGroup module captures multi-level features from low level to high level and retains rich feature information through residual connections, thus improving the overall reconstruction performance of the model. In experiments, the combination of the LadderConv framework and the ResGroup module demonstrates superior performance in video frame reconstruction tasks, particularly in recovering high-frequency information, image clarity, and detail representation. Full article
(This article belongs to the Special Issue Rethinking Representation Learning in the Age of Large Models)
Show Figures

Figure 1

23 pages, 3418 KiB  
Article
Fog-Enabled Machine Learning Approaches for Weather Prediction in IoT Systems: A Case Study
by Buket İşler, Şükrü Mustafa Kaya and Fahreddin Raşit Kılıç
Sensors 2025, 25(13), 4070; https://doi.org/10.3390/s25134070 - 30 Jun 2025
Viewed by 434
Abstract
Temperature forecasting is critical for public safety, environmental risk management, and energy conservation. However, reliable forecasting becomes challenging in regions where governmental institutions lack adequate measurement infrastructure. To address this limitation, the present study aims to improve temperature forecasting by collecting temperature, pressure, [...] Read more.
Temperature forecasting is critical for public safety, environmental risk management, and energy conservation. However, reliable forecasting becomes challenging in regions where governmental institutions lack adequate measurement infrastructure. To address this limitation, the present study aims to improve temperature forecasting by collecting temperature, pressure, and humidity data through IoT sensor networks. The study further seeks to identify the most effective method for the real-time processing of large-scale datasets generated by sensor measurements and to ensure data reliability. The collected data were pre-processed using Discrete Wavelet Transform (DWT) to extract essential features and reduce noise. Subsequently, three wavelet-processed deep-learning models were employed: Wavelet-processed Artificial Neural Networks (W-ANN), Wavelet-processed Long Short-Term Memory Networks (W-LSTM), and Wavelet-processed Bidirectional Long Short-Term Memory Networks (W-BiLSTM). Among these, the W-BiLSTM model yielded the highest performance, achieving a test accuracy of 97% and a Mean Absolute Percentage Error (MAPE) of 2%. It significantly outperformed the W-LSTM and W-ANN models in predictive accuracy. Forecasts were validated using data obtained from the Turkish State Meteorological Service (TSMS), yielding a 94% concordance, thereby confirming the robustness of the proposed approach. The findings demonstrate that the W-BiLSTM-based model enables reliable temperature forecasting, even in regions with insufficient governmental measurement infrastructure. Accordingly, this approach holds considerable potential for supporting data-driven decision-making in environmental risk management and energy conservation. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

39 pages, 2612 KiB  
Article
A Deep Learning-Driven CAD for Breast Cancer Detection via Thermograms: A Compact Multi-Architecture Feature Strategy
by Omneya Attallah
Appl. Sci. 2025, 15(13), 7181; https://doi.org/10.3390/app15137181 - 26 Jun 2025
Viewed by 471
Abstract
Breast cancer continues to be the most common malignancy among women worldwide, presenting a considerable public health issue. Mammography, though the gold standard for screening, has limitations that catalyzed the advancement of non-invasive, radiation-free alternatives, such as thermal imaging (thermography). This research introduces [...] Read more.
Breast cancer continues to be the most common malignancy among women worldwide, presenting a considerable public health issue. Mammography, though the gold standard for screening, has limitations that catalyzed the advancement of non-invasive, radiation-free alternatives, such as thermal imaging (thermography). This research introduces a novel computer-aided diagnosis (CAD) framework aimed at improving breast cancer detection via thermal imaging. The suggested framework mitigates the limitations of current CAD systems, which frequently utilize intricate convolutional neural network (CNN) structures and resource-intensive preprocessing, by incorporating streamlined CNN designs, transfer learning strategies, and multi-architecture ensemble methods. Features are primarily obtained from various layers of MobileNet, EfficientNetB0, and ShuffleNet architectures to assess the impact of individual layers on classification performance. Following that, feature transformation methods, such as discrete wavelet transform (DWT) and non-negative matrix factorization (NNMF), are employed to diminish feature dimensionality and enhance computational efficiency. Features from all layers of the three CNNs are subsequently incorporated, and the Minimum Redundancy Maximum Relevance (MRMR) algorithm is utilized to determine the most prominent features. Ultimately, support vector machine (SVM) classifiers are employed for classification purposes. The results indicate that integrating features from various CNNs and layers markedly improves performance, attaining a maximum accuracy of 99.4%. Furthermore, the combination of attributes from all three layers of the CNNs, in conjunction with NNMF, attained a maximum accuracy of 99.9% with merely 350 features. This CAD system demonstrates the efficacy of thermal imaging and multi-layer feature amalgamation to enhance non-invasive breast cancer diagnosis by reducing computational requirements through multi-layer feature integration and dimensionality reduction techniques. Full article
(This article belongs to the Special Issue Application of Decision Support Systems in Biomedical Engineering)
Show Figures

Figure 1

25 pages, 14188 KiB  
Article
WDARFNet: A Wavelet-Domain Adaptive Receptive Field Network for Improved Oriented Object Detection in Remote Sensing
by Jie Yang, Li Zhou and Yongfeng Ju
Appl. Sci. 2025, 15(13), 7035; https://doi.org/10.3390/app15137035 - 22 Jun 2025
Viewed by 595
Abstract
Oriented object detection in remote sensing images is a particularly challenging task, especially when it involves detecting tiny, densely arranged, or occluded objects. Moreover, such remote sensing images are often susceptible to noise, which significantly increases the difficulty of the task. To address [...] Read more.
Oriented object detection in remote sensing images is a particularly challenging task, especially when it involves detecting tiny, densely arranged, or occluded objects. Moreover, such remote sensing images are often susceptible to noise, which significantly increases the difficulty of the task. To address these challenges, we introduce the Wavelet-Domain Adaptive Receptive Field Network (WDARFNet), a novel architecture that combines Convolutional Neural Networks (CNNs) with Discrete Wavelet Transform (DWT) to enhance feature extraction and noise robustness. WDARFNet employs DWT to decompose feature maps into four distinct frequency components. Through ablation experiments, we demonstrate that selectively combining specific high-frequency and low-frequency features enhances the network’s representational capacity. Discarding diagonal high-frequency features, which contain significant noise, further enhances the model’s noise robustness. In addition, to capture long-range contextual information and adapt to varying object sizes and occlusions, WDARFNet incorporates a selective kernel mechanism. This strategy dynamically adjusts the receptive field based on the varying shapes of objects, ensuring optimal feature extraction for diverse objects. The streamlined and efficient WDARFNet achieves state-of-the-art performance on three challenging remote sensing object detection benchmarks: DOTA-v1.0, DIOR-R, and HRSC2016. Full article
(This article belongs to the Special Issue Advances in Image Recognition and Processing Technologies)
Show Figures

Figure 1

21 pages, 1062 KiB  
Article
Red-KPLS Feature Reduction with 1D-ResNet50: Deep Learning Approach for Multiclass Alzheimer’s Staging
by Syrine Neffati, Ameni Filali, Kawther Mekki and Kais Bouzrara
Technologies 2025, 13(6), 258; https://doi.org/10.3390/technologies13060258 - 19 Jun 2025
Viewed by 734
Abstract
The early detection of Alzheimer’s disease (AD) is essential for improving patient outcomes, enabling timely intervention, and slowing disease progression. However, the complexity of neuroimaging data presents significant obstacles to accurate classification. This study introduces a computationally efficient AI framework designed to enhance [...] Read more.
The early detection of Alzheimer’s disease (AD) is essential for improving patient outcomes, enabling timely intervention, and slowing disease progression. However, the complexity of neuroimaging data presents significant obstacles to accurate classification. This study introduces a computationally efficient AI framework designed to enhance AD staging using structural MRI. The proposed method integrates discrete wavelet transform (DWT) for multi-scale feature extraction, a novel reduced kernel partial least squares (Red-KPLS) algorithm for feature reduction, and ResNet-50 for classification. The proposed technique, referred to as Red-KPLS-CNN, refines MRI features into discriminative biomarkers while minimizing redundancy. As a result, the framework achieves 96.9% accuracy and an F1-score of 97.8% in the multiclass classification of AD cases using the Kaggle dataset. The dataset was strategically partitioned into 60% training, 20% validation, and 20% testing sets, preserving class balance throughout all splits. The integration of Red–KPLS enhances feature selection, reducing dimensionality without compromising diagnostic sensitivity. Compared to conventional models, our approach improves classification robustness and generalization, reinforcing its potential for scalable and interpretable AD diagnostics. These findings emphasize the importance of hybrid wavelet–kernel–deep learning architectures, offering a promising direction for advancing computer-aided diagnosis (CAD) in clinical applications. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Medical Image Analysis)
Show Figures

Graphical abstract

14 pages, 2575 KiB  
Article
Speckle Noise Removal in OCT Images via Wavelet Transform and DnCNN
by Fangfang Li, Qizhou Wu, Bei Jia and Zhicheng Yang
Appl. Sci. 2025, 15(12), 6557; https://doi.org/10.3390/app15126557 - 11 Jun 2025
Viewed by 506
Abstract
(1) Background: Due to its imaging principle, OCT generates images laden with significant speckle noise. The quality of OCT images is a crucial factor influencing diagnostic effectiveness, highlighting the importance of OCT image denoising. (2) Methods: The OCT image undergoes a Discrete Wavelet [...] Read more.
(1) Background: Due to its imaging principle, OCT generates images laden with significant speckle noise. The quality of OCT images is a crucial factor influencing diagnostic effectiveness, highlighting the importance of OCT image denoising. (2) Methods: The OCT image undergoes a Discrete Wavelet Transform (DWT) to decompose it into multiple scales, isolating high-frequency wavelet coefficients that encapsulate fine texture details. These high-frequency coefficients are further processed using a Shift-Invariant Wavelet Transform (SWT) to generate an additional set of coefficients, ensuring an enhanced feature preservation and reduced artifacts. Both the original DWT high-frequency coefficients and their SWT-transformed counterparts are independently denoised using a Deep Neural Convolutional Network (DnCNN). This dual-pathway approach leverages the complementary strengths of both transform domains to suppress noise effectively. The denoised outputs from the two pathways are fused using a correlation-based strategy. This step ensures the optimal integration of texture features by weighting the contributions of each pathway according to their correlation with the original image, preserving critical diagnostic information. Finally, the Inverse Wavelet Transform is applied to the fused coefficients to reconstruct the denoised OCT image in the spatial domain. This reconstruction step maintains structural integrity and enhances diagnostic clarity by preserving essential spatial features. (3) Results: The MSE, PSNR, and SSIM indices of the proposed algorithm in this paper were 4.9052, 44.8603, and 0.9514, respectively, achieving commendable results compared to other algorithms. The Sobel, Prewitt, and Canny operators were utilized for edge detection on images, which validated the enhancement effect of the proposed algorithm on image edges. (4) Conclusions: The proposed algorithm in this paper exhibits an exceptional performance in noise suppression and detail preservation, demonstrating its potential application in OCT image denoising. Future research can further explore the adaptability and optimization directions of this algorithm in complex noise environments, aiming to provide more theoretical support and practical evidence for enhancing OCT image quality. Full article
Show Figures

Figure 1

29 pages, 20113 KiB  
Article
Optimized Hydrothermal Alteration Mapping in Porphyry Copper Systems Using a Hybrid DWT-2D/MAD Algorithm on ASTER Satellite Remote Sensing Imagery
by Samane Esmaelzade Kalkhoran, Seyyed Saeed Ghannadpour and Amin Beiranvand Pour
Minerals 2025, 15(6), 626; https://doi.org/10.3390/min15060626 - 9 Jun 2025
Viewed by 578
Abstract
Copper is typically acknowledged as a critical mineral and one of the vital components of various of today’s fast-growing green technologies. Porphyry copper systems, which are an important source of copper and molybdenum, typically consist of large volumes of hydrothermally altered rocks, mainly [...] Read more.
Copper is typically acknowledged as a critical mineral and one of the vital components of various of today’s fast-growing green technologies. Porphyry copper systems, which are an important source of copper and molybdenum, typically consist of large volumes of hydrothermally altered rocks, mainly around porphyry copper intrusions. Mapping hydrothermal alteration zones associated with porphyry copper systems is one of the most important indicators for copper exploration, especially using advanced satellite remote sensing technology. This paper presents a sophisticated remote sensing-based method that uses ASTER satellite imagery (SWIR bands 4 to 9) to identify hydrothermal alteration zones by combining the discrete wavelet transform (DWT) and the median absolute deviation (MAD) algorithms. All six SWIR bands (bands 4–9) were analyzed independently, and band 9, which showed the most consistent spatial patterns and highest validation accuracy, was selected for final visualization and interpretation. The MAD algorithm is effective in identifying spectral anomalies, and the DWT enables the extraction of features at different scales. The Urmia–Dokhtar magmatic arc in central Iran, which hosts the Zafarghand porphyry copper deposit, was selected as a case study. It is a hydrothermal porphyry copper system with complex alteration patterns that make it a challenging target for copper exploration. After applying atmospheric corrections and normalizing the data, a hybrid algorithm was implemented to classify the alteration zones. The developed classification framework achieved an accuracy of 94.96% for phyllic alteration and 89.65% for propylitic alteration. The combination of MAD and DWT reduced the number of false positives while maintaining high sensitivity. This study demonstrates the high potential of the proposed method as an accurate and generalizable tool for copper exploration, especially in complex and inaccessible geological areas. The proposed framework is also transferable to other porphyry systems worldwide. Full article
Show Figures

Figure 1

38 pages, 34614 KiB  
Article
Improvement of Lithological Identification Under the Impact of Sparse Vegetation Cover with 1D Discrete Wavelet Transform for Gaofen-5 Hyperspectral Data
by Senmiao Guo and Qigang Jiang
Remote Sens. 2025, 17(12), 1974; https://doi.org/10.3390/rs17121974 - 6 Jun 2025
Viewed by 426
Abstract
Vegetation is a critical factor influencing the identification of rock outcrops using hyperspectral remote sensing data. When mixed pixels containing both vegetation and rock are formed, the spectral signatures of vegetation can partially or fully obscure the diagnostic absorption features of rocks. Based [...] Read more.
Vegetation is a critical factor influencing the identification of rock outcrops using hyperspectral remote sensing data. When mixed pixels containing both vegetation and rock are formed, the spectral signatures of vegetation can partially or fully obscure the diagnostic absorption features of rocks. Based on GaoFen-5 (GF-5) Advanced Hyperspectral Imager (AHSI) data, this study employs a linear spectral mixture model to simulate sparse vegetation–rock mixed pixels. The potential of high-frequency components derived from discrete wavelet transform (DWT) to enhance lithological discrimination within sparse vegetation–rock mixed spectra was analyzed, and the findings were validated using image spectra. The results show that andesite spectra are the most susceptible to vegetation interference. Absorption features in the 2.0–2.4 μm wavelength range were identified as critical indicators for distinguishing lithologies from mixed spectra. High-frequency components extracted through the DWT of the simulated mixed spectra using the Daubechies 8 wavelet function were found to significantly improve classification performance. As vegetation content (including green grass, golden grass, bushes, and lichens) increased from 5% to 60%, the average overall accuracy improved by 15% (from 0.51 to 0.66) after using high-frequency features. The average F1-scores for granite and sandstone increased by 0.12 (from 0.68 to 0.80) and 0.20 (from 0.48 to 0.68), respectively. For AHSI image spectra, the use of high-frequency features resulted in F1-score improvements of 0.48, 0.11, and 0.09 for tuff, granite, and limestone, respectively. Although the identification of andesite remains challenging, this study provides a promising approach for improving lithological mapping accuracy using GF-5 hyperspectral data, particularly in humid and semi-humid regions. Full article
Show Figures

Figure 1

28 pages, 4771 KiB  
Article
Discrimination of High Impedance Fault in Microgrids: A Rule-Based Ensemble Approach with Supervised Data Discretisation
by Arangarajan Vinayagam, Suganthi Saravana Balaji, Mohandas R, Soumya Mishra, Ahmad Alshamayleh and Bharatiraja C
Processes 2025, 13(6), 1751; https://doi.org/10.3390/pr13061751 - 2 Jun 2025
Viewed by 629
Abstract
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a [...] Read more.
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a conventional protective system. A machine learning (ML)-based ensemble classifier is used in this work to classify HIF more accurately. The ensemble classifier improves overall accuracy by combining the strengths of many rule-based models; this decreases the likelihood of overfitting and increases the robustness of classification. The ensemble classifier includes a classification process into two steps. The first phase extracts features from HIFs and other transient signals using the discrete wavelet transform (DWT) technique. A supervised discretisation approach is then used to discretise these attributes. Using discretised features, the rule-based classifiers like decision tree (DT), Java repeated incremental pruning (JRIP), and partial decision tree (PART) are trained in the second phase. In the classification step, the voting ensemble technique applies the rule of an average probability over the output predictions of rule-based classifiers to obtain the final target of classes. Under standard test conditions (STCs) and real-time weather circumstances, the ensemble technique surpasses individual classifiers in accuracy (95%), HIF detection success rate (93.3%), and overall performance metrics. Feature discretisation boosts classification accuracy to 98.75% and HIF detection to 95%. Additionally, the ensemble model’s efficacy is confirmed by classifying HIF from other transients in the IEEE 13-bus standard network. Furthermore, the ensemble model performs well, even with noisy event data. The proposed model provides higher classification accuracy in both PV-connected MG and IEEE 13 bus networks, allowing power systems to have effective protection against faults with improved reliability. Full article
Show Figures

Figure 1

19 pages, 7025 KiB  
Article
CDWMamba: Cloud Detection with Wavelet-Enhanced Mamba for Optical Satellite Imagery
by Shiyao Meng, Wei Gong, Siwei Li, Ge Song, Jie Yang and Yu Ding
Remote Sens. 2025, 17(11), 1874; https://doi.org/10.3390/rs17111874 - 28 May 2025
Viewed by 527
Abstract
Accurate cloud detection is a critical preprocessing step in remote sensing applications, as cloud and cloud shadow contamination can significantly degrade the quality of optical satellite imagery. In this paper, we propose CDWMamba, a novel dual-domain neural network that integrates the Mamba-based state [...] Read more.
Accurate cloud detection is a critical preprocessing step in remote sensing applications, as cloud and cloud shadow contamination can significantly degrade the quality of optical satellite imagery. In this paper, we propose CDWMamba, a novel dual-domain neural network that integrates the Mamba-based state space model with discrete wavelet transform (DWT) for effective cloud detection. CDWMamba adopts a four-direction Mamba module to capture long-range dependencies, while the wavelet decomposition enables multi-scale global context modeling in the frequency domain. To further enhance fine-grained spatial features, we incorporate a multi-scale depth-wise separable convolution (MDC) module for spatial detail refinement. Additionally, a spectral–spatial bottleneck (SSN) with channel-wise attention is introduced to promote inter-band information interaction across multi-spectral inputs. We evaluate our method on two benchmark datasets, L8 Biome and S2_CMC, covering diverse land cover types and environmental conditions. Experimental results demonstrate that CDWMamba achieves state-of-the-art performance across multiple metrics, significantly outperforming deep-learning-based baselines in terms of overall accuracy, mIoU, precision, and recall. Moreover, the model exhibits satisfactory performance under challenging conditions such as snow/ice and shrubland surfaces. These results verify the effectiveness of combining a state space model, frequency-domain representation, and spectral–spatial attention for cloud detection in multi-spectral remote sensing imagery. Full article
Show Figures

Graphical abstract

24 pages, 6314 KiB  
Article
CDFAN: Cross-Domain Fusion Attention Network for Pansharpening
by Jinting Ding, Honghui Xu and Shengjun Zhou
Entropy 2025, 27(6), 567; https://doi.org/10.3390/e27060567 - 27 May 2025
Viewed by 480
Abstract
Pansharpening provides a computational solution to the resolution limitations of imaging hardware by enhancing the spatial quality of low-resolution hyperspectral (LRMS) images using high-resolution panchromatic (PAN) guidance. From an information-theoretic perspective, the task involves maximizing the mutual information between PAN and LRMS inputs [...] Read more.
Pansharpening provides a computational solution to the resolution limitations of imaging hardware by enhancing the spatial quality of low-resolution hyperspectral (LRMS) images using high-resolution panchromatic (PAN) guidance. From an information-theoretic perspective, the task involves maximizing the mutual information between PAN and LRMS inputs while minimizing spectral distortion and redundancy in the fused output. However, traditional spatial-domain methods often fail to preserve high-frequency texture details, leading to entropy degradation in the resulting images. On the other hand, frequency-based approaches struggle to effectively integrate spatial and spectral cues, often neglecting the underlying information content distributions across domains. To address these shortcomings, we introduce a novel architecture, termed the Cross-Domain Fusion Attention Network (CDFAN), specifically designed for the pansharpening task. CDFAN is composed of two core modules: the Multi-Domain Interactive Attention (MDIA) module and the Spatial Multi-Scale Enhancement (SMCE) module. The MDIA module utilizes discrete wavelet transform (DWT) to decompose the PAN image into frequency sub-bands, which are then employed to construct attention mechanisms across both wavelet and spatial domains. Specifically, wavelet-domain features are used to formulate query vectors, while key features are derived from the spatial domain, allowing attention weights to be computed over multi-domain representations. This design facilitates more effective fusion of spectral and spatial cues, contributing to superior reconstruction of high-resolution multispectral (HRMS) images. Complementing this, the SMCE module integrates multi-scale convolutional pathways to reinforce spatial detail extraction at varying receptive fields. Additionally, an Expert Feature Compensator is introduced to adaptively balance contributions from different scales, thereby optimizing the trade-off between local detail preservation and global contextual understanding. Comprehensive experiments conducted on standard benchmark datasets demonstrate that CDFAN achieves notable improvements over existing state-of-the-art pansharpening methods, delivering enhanced spectral–spatial fidelity and producing images with higher perceptual quality. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

23 pages, 11186 KiB  
Article
MixRformer: Dual-Branch Network for Underwater Image Enhancement in Wavelet Domain
by Jie Li, Lei Zhao, Heng Li, Xiaojun Xue and Hui Liu
Sensors 2025, 25(11), 3302; https://doi.org/10.3390/s25113302 - 24 May 2025
Viewed by 398
Abstract
This paper proposes an underwater image enhancement model MixRformer that combines the wavelet transform and a hybrid architecture. To address the problems of insufficient global modeling in existing CNN models, weak local feature extraction of Transformer and high computational complexity, multi-resolution feature decomposition [...] Read more.
This paper proposes an underwater image enhancement model MixRformer that combines the wavelet transform and a hybrid architecture. To address the problems of insufficient global modeling in existing CNN models, weak local feature extraction of Transformer and high computational complexity, multi-resolution feature decomposition is performed through a discrete wavelet transform (IWT/DWT) in which low-frequency components retain structure and texture, and high-frequency components capture detail features. An innovative dual-branch feature capture module (DFCB) is designed as follows: (1) the surface information extraction block combines convolution and position encoding to enhance local modeling; (2) the rectangular window gated Transformer expands the receptive field through the convolution gating mechanism to achieve efficient global relationship modeling. Experiments show that the model outperforms mainstream methods in color restoration and detail enhancement, while optimizing computational efficiency. Full article
Show Figures

Figure 1

34 pages, 2495 KiB  
Systematic Review
Neurophysiological Approaches to Lie Detection: A Systematic Review
by Bewar Neamat Taha, Muhammet Baykara and Talha Burak Alakuş
Brain Sci. 2025, 15(5), 519; https://doi.org/10.3390/brainsci15050519 - 18 May 2025
Viewed by 1089
Abstract
Background and Objectives: Lie detection is crucial in domains such as security, law enforcement, and clinical assessments. Traditional methods suffer from reliability issues and susceptibility to countermeasures. In recent years, electroencephalography (EEG) and particularly the Event-Related Potential (ERP) P300 component have gained prominence [...] Read more.
Background and Objectives: Lie detection is crucial in domains such as security, law enforcement, and clinical assessments. Traditional methods suffer from reliability issues and susceptibility to countermeasures. In recent years, electroencephalography (EEG) and particularly the Event-Related Potential (ERP) P300 component have gained prominence for identifying concealed information. This systematic review aims to evaluate recent studies (2017–2024) on EEG-based lie detection using ERP P300 responses, especially in relation to recognized and unrecognized face stimuli. The goal is to summarize commonly used EEG signal processing techniques, feature extraction methods, and classification algorithms, identifying those that yield the highest accuracy in lie detection tasks. Methods: This review followed PRISMA guidelines for systematic reviews. A comprehensive literature search was conducted using IEEE Xplore, Web of Science, Scopus, and Google Scholar, restricted to English-language articles from 2017 to 2024. Studies were included if they focused on EEG-based lie detection, utilized experimental protocols like Concealed Information Test (CIT), Guilty Knowledge Test (GKT), or Deceit Identification Test (DIT), and evaluated classification accuracy using ERP P300 components. Results: CIT with ERP P300 was the most frequently employed protocol. The most used preprocessing method was Bandpass Filtering (BPF), and the Discrete Wavelet Transform (DWT) emerged as the preferred feature extraction technique due to its suitability for non-stationary EEG signals. Among classification algorithms, Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Convolutional Neural Networks (CNN) were frequently utilized. These findings demonstrate the effectiveness of hybrid and deep learning-based models in enhancing classification performance. Conclusions: EEG-based lie detection, particularly using the ERP P300 response to face recognition tasks, shows promising accuracy and robustness compared to traditional polygraph methods. Combining advanced signal processing methods with machine learning and deep learning classifiers significantly improves performance. This review identifies the most effective methodologies and suggests that future research should focus on real-time applications, cross-individual generalization, and reducing system complexity to facilitate broader adoption. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

Back to TopTop