Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = DNA-SCARS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2095 KB  
Article
CF10 Displayed Improved Activity Relative to 5-FU in a Mouse CRLM Model Under Conditions of Physiological Folate
by Charles Chidi Okechukwu, Xue Ma, Wencheng Li, Ralph D’Agostino, Matthew G. Rees, Melissa M. Ronan, Jennifer A. Roth and William H. Gmeiner
Cancers 2025, 17(17), 2739; https://doi.org/10.3390/cancers17172739 - 23 Aug 2025
Viewed by 592
Abstract
Background/Objective: At least 25% of colorectal cancer (CRC) patients develop liver metastases (CRLM), and chemotherapeutic regimens based on the fluoropyrimidine (FP) drug 5-fluorouracil (5-FU) provide a survival advantage, but long-term survival is uncommon. The primary molecular target of FP drugs is thymidylate synthase [...] Read more.
Background/Objective: At least 25% of colorectal cancer (CRC) patients develop liver metastases (CRLM), and chemotherapeutic regimens based on the fluoropyrimidine (FP) drug 5-fluorouracil (5-FU) provide a survival advantage, but long-term survival is uncommon. The primary molecular target of FP drugs is thymidylate synthase (TS). Methods: A TS/Top1 dual-targeting cytotoxic mechanism for CF10/LV was confirmed by TS ternary complex detection by Western blot and by immunofluorescence detection of Top1 cleavage complexes. CF10/LV activated the ATR/Chk1 pathway consistent with enhanced replication stress and induced apoptosis. In vivo studies showed CF10 and CF10/LV eradicated liver metastasis in a CRLM model without scarring or weight loss, displaying therapeutic advantages relative to legacy FPs. Results: We demonstrated that a nanoscale FP polymer, CF10, displayed greater potency than expected based on FP content in part through more direct conversion to the TS-inhibitory metabolite, FdUMP. In this study, we tested CF10 for potency advantages relative to 5-FU and trifluorothymidine (TFT, the FP component of TAS-102) and confirmed a general potency advantage for CF10 in CRC cell lines in the Broad Institute PRISM screen. We demonstrated that this potency advantage is retained in CRC cells cultured with human-like folate levels and is enhanced by LV co-treatment to a similar extent as that by 5-FU. Our results confirm CF10 development proceeding as a CF10/LV combination. Mechanistically, CF10 cytotoxicity closely correlates with poisons of DNA topoisomerase 1 (Top1) in the PRISM screen relative to 5-FU and TFT. Conclusions: Our pre-clinical data support an early-phase clinical trial for CF10 for treating liver-metastatic CRC. Full article
Show Figures

Figure 1

36 pages, 543 KB  
Review
Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment
by Bhaumik Shah, Muhammad Hussain and Anjali Seth
Curr. Issues Mol. Biol. 2025, 47(8), 638; https://doi.org/10.3390/cimb47080638 - 8 Aug 2025
Viewed by 3071
Abstract
Homologous recombination deficiency (HRD) is a pivotal biomarker in precision oncology, driving therapeutic strategies for ovarian and breast cancers through impaired DNA double-strand break repair. This narrative review synthesizes recent advances (2021–2025) in HRD’s biological basis, prevalence, detection methods, and clinical implications, focusing [...] Read more.
Homologous recombination deficiency (HRD) is a pivotal biomarker in precision oncology, driving therapeutic strategies for ovarian and breast cancers through impaired DNA double-strand break repair. This narrative review synthesizes recent advances (2021–2025) in HRD’s biological basis, prevalence, detection methods, and clinical implications, focusing on high-grade serous ovarian carcinoma (HGSOC; ~50% HRD prevalence) and triple-negative breast cancer (TNBC; 50–70% prevalence). HRD arises from genetic (BRCA1/2, RAD51C/D, PALB2) and epigenetic alterations (e.g., BRCA1 methylation), leading to genomic instability detectable via scars (LOH, TAI, LST) and mutational signatures (e.g., COSMIC SBS3). Advanced detection integrates genomic assays (Myriad myChoice CDx, Caris HRD, FoundationOne CDx), functional assays (RAD51 foci), and epigenetic profiling, with tools like HRProfiler and GIScar achieving >90% sensitivity. HRD predicts robust responses to PARP inhibitors (PARPi) and platinum therapies, extending progression-free survival by 12–36 months in HGSOC. However, resistance mechanisms (BRCA reversion, SETD1A/EME1, SOX5) and assay variability (60–70% non-BRCA concordance) pose challenges. We propose a conceptual framework in Section 10, integrating multi-omics, methylation analysis, and biallelic reporting to enhance detection and therapeutic stratification. Regional variations (e.g., Asian cohorts) and disparities in access underscore the need for standardized, cost-effective diagnostics. Future priorities include validating novel biomarkers (SBS39, miR-622) and combination therapies (PARPi with ATR inhibitors) to overcome resistance and broaden HRD’s applicability across cancers. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Health and Diseases)
26 pages, 6136 KB  
Review
Exosomes as Future Therapeutic Tools and Targets for Corneal Diseases
by Joshua Gamez, Daxian Zha, Shaghaiegh M. Ebrahimi, Seok White, Alexander V. Ljubimov and Mehrnoosh Saghizadeh
Cells 2025, 14(13), 959; https://doi.org/10.3390/cells14130959 - 23 Jun 2025
Viewed by 1561
Abstract
The therapeutic potential of exosomes (Exos), a subpopulation of extracellular vesicles (EVs) secreted by various cell types, has been broadly emphasized. Exos are endosome-derived membrane-bound vesicles 50–150 nm in size. Exos can be general or cell type-specific. Their contents enable them to function [...] Read more.
The therapeutic potential of exosomes (Exos), a subpopulation of extracellular vesicles (EVs) secreted by various cell types, has been broadly emphasized. Exos are endosome-derived membrane-bound vesicles 50–150 nm in size. Exos can be general or cell type-specific. Their contents enable them to function as multi-signaling and vectorized vehicles. Exos are important for maintaining cellular homeostasis. They are released into extracellular spaces, leading to uptake by neighboring or distant cells and delivering their contents to modulate cell signaling. Exos influence tissue responses to injury, infection, and disease by fusion with the target cells and transferring their cargo, including cytokines, growth and angiogenic factors, signaling molecules, lipids, DNA, mRNAs, and non-coding RNAs. They are implicated in various physiological and pathological conditions, including ocular surface events, such as corneal scarring, wound healing, and inflammation. Their biocompatibility, stability, low immunogenicity, and easy detectability in bodily fluids (blood, tears, saliva, and urine) make them promising tools for diagnosing and treating ocular diseases. The potential to engineer specific Exo cargos makes them outstanding therapeutic delivery vehicles. The objective of this review is to provide novel insights into the functions of Exo cargos and their applications as biomarkers and therapeutics, or targets in the cornea. Full article
Show Figures

Figure 1

15 pages, 526 KB  
Review
Advancements in Clinical Utilization of Recombinant Human Collagen: An Extensive Review
by Isaac Wong Kai Jie, Kar Wai Alvin Lee, Song Eun Yoon, Jong Keun Song, Lisa Kwin Wah Chan, Cheuk Hung Lee, Eunji Jeong, Jin-Hyun Kim and Kyu-Ho Yi
Life 2025, 15(4), 582; https://doi.org/10.3390/life15040582 - 1 Apr 2025
Cited by 6 | Viewed by 4132
Abstract
Introduction: Recombinant human collagen, developed through advanced recombinant DNA technology, has emerged as a cutting-edge biomaterial with diverse applications in medicine. It addresses significant limitations of animal-derived collagens, such as immunogenicity and the risk of zoonotic diseases. Objective: This review evaluates the clinical [...] Read more.
Introduction: Recombinant human collagen, developed through advanced recombinant DNA technology, has emerged as a cutting-edge biomaterial with diverse applications in medicine. It addresses significant limitations of animal-derived collagens, such as immunogenicity and the risk of zoonotic diseases. Objective: This review evaluates the clinical applications, benefits, and challenges associated with recombinant human collagen, focusing on its potential to transform medical and surgical practices. Methods: A comprehensive search was conducted in MEDLINE, PubMed, and Ovid databases using keywords such as “Recombinant Human Collagen”, “Collagen-Based Biomaterials”, “Clinical Applications”, “Tissue Repair”, and “Wound Healing”. Relevant studies, including clinical trials and diagnostic applications, were analyzed and classified according to the Oxford Centre for Evidence-Based Medicine evidence hierarchy. Findings: Recombinant human collagen demonstrates superior mechanical properties and controlled degradation rates compared to traditional collagen sources. Clinical studies highlight its effectiveness in accelerating wound closure, promoting dermal regeneration, and minimizing scarring, making it particularly valuable in chronic wound management and surgical interventions. In tissue engineering, recombinant human collagen scaffolds have shown potential for regenerating cartilage, bone, and cardiovascular tissues by supporting cell proliferation, differentiation, and matrix deposition. Additionally, its adaptability for forming hydrogels and matrices enhances its suitability for drug delivery systems, enabling controlled and sustained release of therapeutic agents. Conclusion: Recombinant human collagen represents a transformative advancement in clinical practice, providing a safer and more effective alternative to traditional collagen sources. Its demonstrated success in wound healing, tissue engineering, and drug delivery highlights its potential to significantly improve patient outcomes. However, challenges such as high production costs, regulatory complexities, and long-term biocompatibility remain barriers to widespread clinical adoption. Further research and collaboration between biotechnology developers and regulatory authorities are essential to fully realize its clinical potential. Full article
Show Figures

Figure 1

15 pages, 1602 KB  
Protocol
A Rapid and Reliable Test for BRCA1 Promoter Hypermethylation in Paraffin Tissue Using Pyrosequencing
by Ruben Bacares, Robert Soslow, Narciso Olvera, Douglas A. Levine and Liying Zhang
Diagnostics 2025, 15(5), 601; https://doi.org/10.3390/diagnostics15050601 - 1 Mar 2025
Viewed by 1197
Abstract
Background: Ovarian cancers harboring inactivating mutations in BRCA1 or BRCA2 demonstrate increased sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). BRCA1 promoter methylation could serve as a more precise biomarker for therapy response, as it reflects a dynamic mechanism, compared with genomic scarring, which [...] Read more.
Background: Ovarian cancers harboring inactivating mutations in BRCA1 or BRCA2 demonstrate increased sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). BRCA1 promoter methylation could serve as a more precise biomarker for therapy response, as it reflects a dynamic mechanism, compared with genomic scarring, which remains persistent and lacks real-time prediction of sensitivity after prior lines of treatment. Additionally, the BRCA1 promoter methylation may provide a more precise biomarker for identifying homologous recombination deficiency compared to genomic scars. In this study, we describe the validation of a pyrosequencing method to assess BRCA1 promoter methylation status. Methods: Tumor DNA from high-grade serous ovarian carcinoma was tested targeting 11 CpG sites adjacent to the BRCA1 transcription start site. All cases had concordant results compared with TCGA methylation data or real-time PCR results. To determine the sensitivity of this assay, we performed a dilution series experiment using seven mixtures of methylated DNA and unmethylated genomic DNA (100%, 50%, 25%, 12.5%, 6.25%, 3.125%, and 1.56%). Results: We observed a high degree of correlation (R2 = 0.9945) between predicted and observed results. Intra- and inter-run reproducibility was established by performing six cases in triplicate in the same run and in three different runs. Conclusions: By applying 10% as the cutoff for detection of methylation, the PyroMark Q24 pyrosequencing assay demonstrated 100% concordance across all the ovarian cancer cases included in this validation. This assay has been approved by the New York State Department of Health as a laboratory-specific assay for clinical use. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

19 pages, 2476 KB  
Review
From Polydeoxyribonucleotides (PDRNs) to Polynucleotides (PNs): Bridging the Gap Between Scientific Definitions, Molecular Insights, and Clinical Applications of Multifunctional Biomolecules
by Cíntia Marques, Alexandre Porcello, Marco Cerrano, Farid Hadjab, Michèle Chemali, Kelly Lourenço, Basste Hadjab, Wassim Raffoul, Lee Ann Applegate and Alexis E. Laurent
Biomolecules 2025, 15(1), 148; https://doi.org/10.3390/biom15010148 - 19 Jan 2025
Cited by 12 | Viewed by 15695
Abstract
Polydeoxyribonucleotides (PDRNs) and polynucleotides (PNs) are similar DNA-derived biopolymers that have garnered significant scientific attention since the 1990s for their potential applications in wound healing and skin rejuvenation. These biopolymers exhibit a broad molecular weight (MW) range, typically spanning from 50 to 1500 [...] Read more.
Polydeoxyribonucleotides (PDRNs) and polynucleotides (PNs) are similar DNA-derived biopolymers that have garnered significant scientific attention since the 1990s for their potential applications in wound healing and skin rejuvenation. These biopolymers exhibit a broad molecular weight (MW) range, typically spanning from 50 to 1500 kDa. However, recent studies have expanded this range to encompass fragments as small as 1 kDa and as large as 10,000 kDa. Clinically, PDRN/PN formulations, commercially available in various galenic forms (gels, creams, serums, masks, and injectables), have demonstrated promising effects in significantly promoting skin regeneration, reducing inflammation, improving skin texture, preventing scar formation, and mitigating wrinkles. Importantly, despite their widespread use in cosmetology and aesthetic dermatology, the interchangeable use of the terms “PDRN” and “PN” in the scientific literature (to describe polymers of varying lengths) has led to considerable confusion within the medical and scientific communities. To specifically address this PDRN/PN ambiguity, this narrative review proposes a standardized structure-based nomenclature for these DNA-derived polymers, the “Marques Polynucleotide Cutoff”, set at 1500 kDa. Thus, we propose that the term “PDRN” should be exclusively reserved for small- and medium-chain polymers (MW < 1500 kDa), while the term “PN” should specifically be used to denote longer-chain polymers (MW ≥ 1500 kDa). In a broader perspective, this classification is based on the distinct physicochemical properties and therapeutic effects of these DNA fragments of various MWs, which are comprehensively discussed in the present review. Full article
(This article belongs to the Special Issue Molecular Advances in Wound Healing and Skin Regeneration)
Show Figures

Figure 1

17 pages, 6285 KB  
Article
Instrument-Free Point-of-Care Diagnostic for Leishmania Parasites
by Taralyn J. Wiggins, Ruonan Peng, Ruth V. Bushnell, John K. Tobin, David A. MacLeod, Ke Du, Gregory J. Tobin and Stephen J. Dollery
Diagnostics 2024, 14(23), 2744; https://doi.org/10.3390/diagnostics14232744 - 5 Dec 2024
Cited by 1 | Viewed by 1418
Abstract
Background/Objective: Leishmaniasis is the second deadliest parasitic disease in the world, after malaria, with an estimated 1.6 million new cases each year. While cutaneous leishmaniasis can result in permanent scars from lesions after treatment, the mucocutaneous and visceral diseases can result in life-altering [...] Read more.
Background/Objective: Leishmaniasis is the second deadliest parasitic disease in the world, after malaria, with an estimated 1.6 million new cases each year. While cutaneous leishmaniasis can result in permanent scars from lesions after treatment, the mucocutaneous and visceral diseases can result in life-altering and life-threatening complications. Accurate species diagnosis is critical for treatment and follow-up, and while PCR-based diagnostics can provide sensitive parasite detection and species identification, they are slow, expensive, and not suitable for low-resource settings. In this publication, we describe our efforts to develop a simple, affordable, and instrument-free Leishmania DNA diagnostic that can be used in both high-tech settings and the field. Methods: Computational biology was utilized to design region-targeted RPA oligos and the corresponding CRISPR guides for the detection of all Leishmania species as well as the specific identification of L. (V.) panamensis as a predictor of mucocutaneous disease. Then, we executed systematic approaches for parasite lysis, RPA amplification of DNA, and fluorescent CRISPR crRNA detection. Results: We have demonstrated the ability to detect single-digit parasites without compromising the specificity in identifying single species as the proof of concept for a point-of-care diagnostic. Individual assays were carried out in succession, culminating in an unquenched fluorescent signal quantifiable over negative control. Conclusions: The described work is the foundation which will be implemented into a three-track [all Leishmania, mucocutaneous or visceral only, and a human positive control] assay that we plan to utilize in a Funnel Adapted Sensing Tube (FAST) single use, instrument-free, and affordable diagnostic. Full article
(This article belongs to the Section Point-of-Care Diagnostics and Devices)
Show Figures

Figure 1

34 pages, 3816 KB  
Review
The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases
by Mousumi Ghosh and Damien D. Pearse
Cells 2024, 13(22), 1834; https://doi.org/10.3390/cells13221834 - 6 Nov 2024
Cited by 10 | Viewed by 5676
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that [...] Read more.
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury—whether beneficial or harmful—largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma. Full article
Show Figures

Figure 1

18 pages, 26832 KB  
Review
Storytelling of Hypertrophic Cardiomyopathy Discovery
by Gaetano Thiene, Chiara Calore, Monica De Gaspari and Cristina Basso
J. Cardiovasc. Dev. Dis. 2024, 11(10), 300; https://doi.org/10.3390/jcdd11100300 - 28 Sep 2024
Cited by 1 | Viewed by 2129
Abstract
The discovery of hypertrophic cardiomyopathy (HCM) dates back to 1958, when the pathologist Donald Teare of the St. George’s Hospital in London performed autopsies in eight cases with asymmetric hypertrophy of the ventricular septum and bizarre disorganization (disarray) at histology, first interpreted as [...] Read more.
The discovery of hypertrophic cardiomyopathy (HCM) dates back to 1958, when the pathologist Donald Teare of the St. George’s Hospital in London performed autopsies in eight cases with asymmetric hypertrophy of the ventricular septum and bizarre disorganization (disarray) at histology, first interpreted as hamartoma. Seven had died suddenly. The cardiac specimens were cut along the long axis, similar to the 2D echo. In the same year, at the National Institute of Health U.S.A., Eugene Braunwald, a hemodynamist, and Andrew Glenn Morrow, a cardiac surgeon, clinically faced a patient with an apparently similar morbid entity, with a systolic murmur and subaortic valve gradient. “Discrete” subaortic stenosis was postulated. However, at surgery, Dr. Morrow observed only hypertrophy and performed myectomy to relieve the obstruction. This first Braunwald–Morrow patient underwent a successful cardiac transplant later at the disease end stage. The same Dr. Morrow was found to be affected by the familial HCM and died suddenly in 1992. The term “functional subaortic stenosis” was used in 1959 and “idiopathic hypertrophic subaortic stenosis” in 1960. Years before, in 1957, Lord Brock, a cardiac surgeon at the Guy’s Hospital in London, during alleged aortic valve surgery in extracorporeal circulation, did not find any valvular or discrete subaortic stenoses. In 1980, John F. Goodwin of the Westminster Hospital in London, the head of an international WHO committee, put forward the first classification of heart muscle diseases, introducing the term cardiomyopathy (dilated, hypertrophic, and endomyocardial restrictive). In 1995, the WHO classification was revisited, with the addition of two new entities, namely arrhythmogenic and purely myocardial restrictive, the latter a paradox of a small heart accounting for severe congestive heart failure by ventricular diastolic impairment. A familial occurrence was noticed earlier in HCM and published by Teare and Goodwin in 1960. In 1989–1990, the same family underwent molecular genetics investigation by the Seidman team in Boston, and a missense mutation of the β-cardiac myosin heavy chain in chromosome 14 was found. Thus, 21 years elapsed from HCM gross discovery to molecular discoveries. The same original family was the source of both the gross and genetic explanations of HCM, which is now named sarcomere disease. Restrictive cardiomyopathy, characterized grossly without hypertrophy and histologically by myocardial disarray, was found to also have a sarcomeric genetic mutation, labeled “HCM without hypertrophy”. Sarcomere missense mutations have also been reported in dilated cardiomyopathy (DCM) and non-compaction cardiomyopathy. Moreover, sarcomeric gene defects have been detected in some DNA non-coding regions of HCM patients. The same mutation in the family may express different phenotypes (HCM, DCM, and RCM). Large ischemic scars have been reported by pathologists and are nowadays easily detectable in vivo by cardiac magnetic resonance with gadolinium. The ischemic arrhythmic substrate enhances the risk of sudden death. Full article
Show Figures

Figure 1

8 pages, 2857 KB  
Case Report
Diagnostic Challenges of Axenfeld-Rieger Syndrome and a Novel FOXC1 Gene Mutation in a Polish Family
by Bogumił Wowra, Marzena Wysocka-Kosmulska, Karolina Stanienda-Sokół, Olga Łach-Wojnarowicz, Dariusz Dobrowolski and Edward Wylęgała
J. Clin. Med. 2024, 13(19), 5761; https://doi.org/10.3390/jcm13195761 - 27 Sep 2024
Viewed by 1937
Abstract
(1) Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder, the symptoms of which include both ocular and systemic abnormalities. In the studied subjects, the cornea was significantly opacified with peripheral scarring neovascularization, which is not specific to this syndrome. A suspicion of [...] Read more.
(1) Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder, the symptoms of which include both ocular and systemic abnormalities. In the studied subjects, the cornea was significantly opacified with peripheral scarring neovascularization, which is not specific to this syndrome. A suspicion of incorrect diagnosis was raised despite an initial diagnosis of a bilateral Chandler syndrome. (2) In order to provide the proper diagnosis, a DNA sequencing genetic test was conducted with three sisters carrying the presence of a genome imbalance in the FOXC1 gene. The aim of this study is to report a case of a Polish family with a novel gene mutation and its relation with ARS. (3) Our findings implicate the novel deletion of the FOXC1 gene in the pathogenesis of ARS in the affected family. The phenotypic variability observed, including differences in corneal and systemic anomalies, underscores the importance of genetic testing and suggests the influence of non-genetic factors on ARS manifestation. Full article
(This article belongs to the Special Issue Corneal Diseases: Clinical Diagnosis and Management)
Show Figures

Figure 1

12 pages, 3820 KB  
Article
Rapid Diagnostic PCR Assay Method for Species Identification of Mantidis Ootheca (Sangpiaoxiao) Based on Cytochrom C Oxidase I (COI) Barcode Analysis
by Sumin Noh, Wook Jin Kim, Ji-Min Cha, Goya Choi, Sungyu Yang, Jun-Ho Song and Byeong Cheol Moon
Int. J. Mol. Sci. 2024, 25(18), 10224; https://doi.org/10.3390/ijms251810224 - 23 Sep 2024
Cited by 1 | Viewed by 1375
Abstract
Mantidis Ootheca (sangpiaoxiao), the egg case of the mantis, is a type of insect-derived traditional medicine widely used in East Asia. However, species identification based on egg morphology is challenging, leading to the distribution of counterfeit and adulterated products. The use of inauthentic [...] Read more.
Mantidis Ootheca (sangpiaoxiao), the egg case of the mantis, is a type of insect-derived traditional medicine widely used in East Asia. However, species identification based on egg morphology is challenging, leading to the distribution of counterfeit and adulterated products. The use of inauthentic ingredients can pose serious health risks to consumers. This study aimed to develop PCR markers that can rapidly and accurately differentiate between authentic and counterfeit Mantidis Ootheca. The mitochondrial cytochrome c oxidase I (COI) region was sequenced in thirteen samples from four mantis species: Tenodera angustipennis, Statilia maculata, Hierodula patellifera, and T. sinensis. Four sets of SCAR primers were designed based on species-specific nucleotide polymorphisms, and a multiplex SCAR assay was developed by combining all sets of the primers. The sequence-characterized amplified region (SCAR) primers successfully produced amplicons for each target species, even with low-DNA templates or templates containing DNA from multiple samples. No amplification was observed for nontarget species. This study presents a novel approach for identifying authentic Mantidis Ootheca species using DNA-based diagnostic marker assays, which enable rapid and precise species identification. The SCAR assays developed in this study will aid in maintaining quality control and promoting the standardization of commercial Mantidis Ootheca products. Full article
Show Figures

Figure 1

37 pages, 4373 KB  
Review
The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair?
by Fereshteh Sadat Younesi and Boris Hinz
Int. J. Mol. Sci. 2024, 25(16), 8712; https://doi.org/10.3390/ijms25168712 - 9 Aug 2024
Cited by 2 | Viewed by 4050
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is [...] Read more.
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring—called fibrosis—that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies. Full article
Show Figures

Figure 1

15 pages, 2790 KB  
Article
Outbreak of Alternaria Black Spot of Pomegranate (Punica granatum L.) in Italy as a Consequence of Unusual Climatic Conditions
by Gaetano Tirrò, Sebastiano Conti Taguali, Antonella Pane, Mario Riolo, David Ezra and Santa Olga Cacciola
Plants 2024, 13(14), 2007; https://doi.org/10.3390/plants13142007 - 22 Jul 2024
Cited by 1 | Viewed by 3784
Abstract
Alternaria black spot of pomegranate (Punica granatum) was reported for the first time in Italy. In spring 2023, an outbreak of this disease was noticed in commercial pomegranate ‘Wonderful’ orchards of the municipality of Misterbianco (Sicily), following an unusually rainy period. [...] Read more.
Alternaria black spot of pomegranate (Punica granatum) was reported for the first time in Italy. In spring 2023, an outbreak of this disease was noticed in commercial pomegranate ‘Wonderful’ orchards of the municipality of Misterbianco (Sicily), following an unusually rainy period. A total of 30 randomly selected Alternaria isolates recovered from typical necrotic spots of leaves and fruits were characterized. Based on the colony morphology on solid agar media (PDA and MEA), isolates were separated into three distinct morphotypes (1, 2, and 3). The first two morphotypes comprised only isolates from fruits, while morphotype 3 comprised only isolates from leaves. Multigene phylogenetic analysis of four DNA regions, including internal transcribed spacer (ITS), translation elongation factor 1-α (EF-1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and a SCAR marker (OPA10–2), identified the isolates of morphotypes 1 and 2 as Alternaria alternata and morphotype 3 isolates as A. arborescens. In pathogenicity tests on unwounded leaves and fruit, the isolates of all three morphotypes produced symptoms on the leaves of three pomegranate cultivars, ‘Acco’, ‘Wonderful’, and ‘Etna’. The symptoms on ‘Acco’ leaves were the least severe. Conversely, the fruits of ‘Acco’ were the most susceptible. The isolates of morphotypes 2 and 3 were not pathogenic on the fruits of ‘Wonderful’ and ‘Etna’. This is the first report of Alternaria black spot in Italy and of A. arborescens associated with Alternaria black spot of pomegranate worldwide. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

14 pages, 959 KB  
Article
Evaluating Single-Nucleotide Polymorphisms in Inflammasome Proteins and Serum Levels of IL-18 and IL-1β in Kidney Interstitial Damage in Anti-Neutrophilic Cytoplasmic Antibody-Associated Vasculitis
by Laura Martinez Valenzuela, Anna Vidal-Alabró, Belén Rubio, Paula Antón-Pàmpols, Francisco Gómez-Preciado, Xavier Fulladosa, Josep Maria Cruzado, Juan Torras, Nuria Lloberas and Juliana Draibe
Int. J. Mol. Sci. 2024, 25(12), 6479; https://doi.org/10.3390/ijms25126479 - 12 Jun 2024
Cited by 2 | Viewed by 1461
Abstract
The inflammasome regulates the innate inflammatory response and is involved in autoimmune diseases. In this study, we explored the levels of IL-18 and IL-1β in serum and urine and the influence of various single-nucleotide polymorphisms (SNPs) on kidney lesions at diagnosis in patients [...] Read more.
The inflammasome regulates the innate inflammatory response and is involved in autoimmune diseases. In this study, we explored the levels of IL-18 and IL-1β in serum and urine and the influence of various single-nucleotide polymorphisms (SNPs) on kidney lesions at diagnosis in patients with ANCA-associated vasculitis (AAV) and their clinical outcomes. Ninety-two patients with renal AAV were recruited, and blood and urine were collected at diagnosis. Serum and urine cytokine levels were measured by ELISA. DNA was extracted and genotyped using TaqMan assays for SNPs in several inflammasome genes. Lower serum IL-18 (p = 0.049) and the IL-18 rs187238 G-carrier genotype (p = 0.042) were associated with severe fibrosis. The IL-18 rs1946518 TT genotype was associated with an increased risk of relapse (p = 0.05), whereas GG was related to better renal outcomes (p = 0.031). The rs187238 GG genotype was identified as a risk factor for mortality within the first year after AAV diagnosis, independent of the requirement for dialysis or lung involvement (p = 0.013). We suggest that decreased cytokine levels could be a surrogate marker of scarring and chronicity of the renal lesions, together with the rs187238 GG genotype. If our results are validated, the rs1946518 TT genotype predicts the risk of relapse and renal outcomes during follow-up. Full article
(This article belongs to the Special Issue New Advances in Inflammasomes)
Show Figures

Figure 1

11 pages, 285 KB  
Communication
No Association of Polymorphisms in the Genes Encoding Interleukin-6 and Interleukin-6 Receptor Subunit Alpha with the Risk of Keloids in Polish Patients
by Andrzej Dmytrzak, Klaudyna Lewandowska, Agnieszka Boroń, Beata Łoniewska, Natalie Grzesch, Andrzej Brodkiewicz, Jeremy S. C. Clark, Andrzej Ciechanowicz and Dorota Kostrzewa-Nowak
Int. J. Mol. Sci. 2024, 25(10), 5284; https://doi.org/10.3390/ijms25105284 - 13 May 2024
Viewed by 1533
Abstract
A keloid is a benign fibroproliferative hypertrophy of scar tissue that extends outside the original wound and invades adjacent healthy skin. Keloid formation is thought to be a complex process including overactivity of the interleukin-6 signaling pathway and genetic susceptibility. The aim of [...] Read more.
A keloid is a benign fibroproliferative hypertrophy of scar tissue that extends outside the original wound and invades adjacent healthy skin. Keloid formation is thought to be a complex process including overactivity of the interleukin-6 signaling pathway and genetic susceptibility. The aim of the study was to investigate possible associations between rs1800797, rs1800796, and rs1800795 polymorphisms in the promoter of the IL6 gene encoding interleukin-6 and the rs2228145 polymorphism in the IL6R gene encoding the interleukin-6 receptor subunit alpha with the predisposition to keloids in Polish patients. The genetic polymorphisms were identified either using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) or sequencing of samples of genomic DNA extracted from blood leukocytes of 86 adult patients with keloids and 100 newborns comprising a control group. No significant differences in the distributions of IL6 or IL6R alleles or genotypes were found between keloid patients and newborn controls. There were also no significant differences between both groups in the distribution of IL6 haplotypes. The IL6 rs1800797, rs1800796 and rs1800795 and IL6R rs2228145 polymorphisms were not found to predispose individuals in the study group to keloids. IL6 promoter haplotypes were not found to be associated with a higher risk of keloids in the studied group. Full article
(This article belongs to the Special Issue The Role of Cytokines in Diseases)
Back to TopTop