Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (767)

Search Parameters:
Keywords = DNA homologous recombination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3123 KB  
Review
Targeting ATR-CHK1 and ATM-CHK2 Axes in Pancreatic Cancer—A Comprehensive Review of Literature
by Mateusz Kciuk, Katarzyna Wanke, Beata Marciniak, Damian Kołat, Marta Aleksandrowicz, Somdutt Mujwar, Tarik Ainane and Renata Kontek
Int. J. Mol. Sci. 2026, 27(3), 1152; https://doi.org/10.3390/ijms27031152 - 23 Jan 2026
Viewed by 85
Abstract
Pancreatic cancer (PC) remains a highly lethal malignancy with limited treatment options and poor survival. Targeting DNA damage response (DDR) pathways has emerged as a promising therapeutic strategy, particularly the ATR-CHK1 and ATM-CHK2 axes. Preclinical studies demonstrate that ATR inhibition disrupts replication stress [...] Read more.
Pancreatic cancer (PC) remains a highly lethal malignancy with limited treatment options and poor survival. Targeting DNA damage response (DDR) pathways has emerged as a promising therapeutic strategy, particularly the ATR-CHK1 and ATM-CHK2 axes. Preclinical studies demonstrate that ATR inhibition disrupts replication stress tolerance, impairs homologous recombination, and disables checkpoint control, enhancing cytotoxicity from standard therapies including gemcitabine, FOLFIRINOX, fluoropyrimidines, and radiotherapy. Synergistic effects have also been observed with other DDR-targeted agents, such as PARP and WEE1 inhibitors. Genomic contexts, including ATM deficiency, ARID1A alterations, and oncogene-driven replication stress, refine therapeutic sensitivity, supporting precision patient stratification. Early-phase clinical trials of ATR inhibitors (ART0380, AZD6738, BBI-355) alone or in combination show promising safety, tolerability, and preliminary efficacy. In this review, we summarize current literature on targeting the ATM-CHK2 and ATR-CHK1 pathways in PC, highlighting preclinical evidence, clinical developments, and strategies for biomarker-driven, precision oncology approaches. Full article
Show Figures

Figure 1

29 pages, 1806 KB  
Review
Impeding the NHEJ Pathway for Overcoming Radioresistance in the Context of Precision Radiotherapy of Cancer
by Dragoș Andrei Niculae, Radu Marian Șerban, Dana Niculae and Doina Drăgănescu
Pharmaceutics 2026, 18(1), 131; https://doi.org/10.3390/pharmaceutics18010131 - 20 Jan 2026
Viewed by 140
Abstract
Non-homologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway that operates throughout the cell cycle to maintain the genomic stability of the cell. Unlike homologous recombination (HR), NHEJ is capable of repairing DSBs without the need for a homologous [...] Read more.
Non-homologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway that operates throughout the cell cycle to maintain the genomic stability of the cell. Unlike homologous recombination (HR), NHEJ is capable of repairing DSBs without the need for a homologous template, making it a rapid response mechanism, but potentially prone to errors. Central to NHEJ function and essential for the ligation through the recruitment and activation of additional repair factors, such as Artemis, XRCC4, and DNA ligase IV, is the DNA-dependent protein kinase (DNA-PK) complex. Dysregulation in the NHEJ pathway contributes to genomic instability, oncogenesis, and resistance to genotoxic therapies. Consequently, inhibitors of DNA-PK have emerged as promising therapeutic agents to sensitize tumor cells to radiation and DNA-damaging chemotherapeutics. Inhibiting the DNA-PK ability to recruit the protein complex needed for successful DSB repair promotes cell death through apoptosis or mitotic catastrophe. While inhibitors of DNA-PK can be used to enhance the effects of genotoxic therapies, the field still struggles to address critical problems: how to best exploit the differential DNA repair capacities among tumor subtypes, how to maximize radiosensitization of cancerous cells while sparing normal tissues, and how to translate preclinical studies into clinical benefits. Given that NHEJ constitutes the primary line of defense against radiation-induced damage, rapidly repairing the majority of double-strand breaks throughout the cell cycle, this review concentrates on targeting the DNA-PK complex, as the master regulator of this rapid-response mechanism, highlighting why its inhibition represents a strategic action to overcome intrinsic radioresistance. The implementation of DNA-PK inhibitors into medical practice can enable the stratification of oncologic patients into two categories, based on the tumors’ vulnerability to NHEJ disruptions. Thus, the therapeutic pathways of patients with NHEJ tumors could branch, combining traditional genotoxic therapies (radiation and DNA-damaging chemotherapeutics) with DNA-PK inhibitors to achieve an enhanced effect and improved survival outcomes. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

18 pages, 3163 KB  
Article
Daxx-Dependent H3.3 Deposition Promotes Double-Strand Breaks Repair by Homologous Recombination
by Laura Zannini, Simona Aliprandi, Domenico Delia and Giacomo Buscemi
Cells 2026, 15(2), 162; https://doi.org/10.3390/cells15020162 - 16 Jan 2026
Viewed by 257
Abstract
DNA double-strand breaks (DSBs) can be induced by cellular byproducts or genotoxic agents. Improper processing of these lesions leads to increased genome instability, which constitutes a hallmark of pathological conditions and fuels carcinogenesis. DSBs are primarily repaired by homologous recombination (HR) and non-homologous [...] Read more.
DNA double-strand breaks (DSBs) can be induced by cellular byproducts or genotoxic agents. Improper processing of these lesions leads to increased genome instability, which constitutes a hallmark of pathological conditions and fuels carcinogenesis. DSBs are primarily repaired by homologous recombination (HR) and non-homologous end joining (NHEJ) and the proper balance between these two pathways is finely modulated by specific molecular events. Here, we report that the histone chaperone DAXX plays a fundamental role in the response to DSBs. Indeed, in human cells, DSBs induce ATM/ATR-dependent phosphorylation of DAXX on serine 424 and 712 and promote its binding to chromatin and the deposition of the histone variant H3.3 in proximity to DNA breaks. Enrichment of H3.3 at DSBs promotes 53BP1 recruitment to these lesions and the repair of DNA breaks by HR pathways. Moreover, H3.3-specific post translational modifications, particularly K36 tri-methylation, play a key role in these processes. Altogether, these findings indicate that DAXX and H3.3 mutations may contribute to tumorigenesis-enhancing genome instability. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

11 pages, 1015 KB  
Communication
Duplication of the Antistasin-Like Structure Resulted in a New Anticoagulant Protein in the Medicinal Leech
by Ksenia A. Brovina, Vladislav V. Babenko, Valentin A. Manuvera, Pavel A. Bobrovsky, Daria D. Kharlampieva and Vassili N. Lazarev
Biomolecules 2026, 16(1), 155; https://doi.org/10.3390/biom16010155 - 15 Jan 2026
Viewed by 222
Abstract
Blood-sucking organisms produce various anticoagulant proteins that prevent blood clotting in their prey. Even in well-studied species like Hirudo medicinalis, many such proteins remain unidentified. We previously described a novel cysteine-rich anticoagulant (CRA), a distant homolog of antistasin. Later, we discovered another, [...] Read more.
Blood-sucking organisms produce various anticoagulant proteins that prevent blood clotting in their prey. Even in well-studied species like Hirudo medicinalis, many such proteins remain unidentified. We previously described a novel cysteine-rich anticoagulant (CRA), a distant homolog of antistasin. Later, we discovered another, much larger homolog in the medicinal leech. Its amino acid sequence is also highly cysteine-rich. Analysis of cysteine patterns showed four antistasin-like domain motifs, with one of them strongly disrupted. Since both antistasin and CRA contain two such domains, the new protein represents a duplicated antistasin-like structure. We cloned its cDNA, expressed the recombinant protein in Escherichia coli, purified it by metal-chelate chromatography, refolded it, and tested its anticoagulant properties. Using standard clinical assays—activated partial thromboplastin time, prothrombin time, and thrombin time—we found that the protein inhibited coagulation in all tests, though to varying degrees. These findings suggest that different antistasin-like anticoagulants in the leech enable it to block both intrinsic and extrinsic coagulation pathways, while hirudin inhibits the final step of clot formation. The combination of different anticoagulant proteins allows the leech to effectively prevent the prey’s blood from clotting during feeding. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1247 KB  
Article
Evidence for Quasi-High-LET Biological Effects in Clinical Proton Beams That Suppress c-NHEJ and Enhance HR and Alt-EJ
by Emil Mladenov, Mina Pressler, Veronika Mladenova, Aashish Soni, Fanghua Li, Feline Heinzelmann, Johannes Niklas Esser, Razan Hessenow, Eleni Gkika, Verena Jendrossek, Beate Timmermann, Martin Stuschke and George Iliakis
Cells 2026, 15(1), 86; https://doi.org/10.3390/cells15010086 - 4 Jan 2026
Viewed by 373
Abstract
Protons are conventionally regarded as a low-linear energy transfer (low-LET) radiation modality with a relative biological effectiveness (RBE) of 1.1, suggesting direct mechanistic similarity to X-rays in the underpinning biological effects. However, exposure to spread-out Bragg peak (SOBP) protons reveals instructive deviations from [...] Read more.
Protons are conventionally regarded as a low-linear energy transfer (low-LET) radiation modality with a relative biological effectiveness (RBE) of 1.1, suggesting direct mechanistic similarity to X-rays in the underpinning biological effects. However, exposure to spread-out Bragg peak (SOBP) protons reveals instructive deviations from this assumption. Indeed, proton beams have a maximum LET of ~5 keV/µm but display reduced reliance on classical non-homologous end joining (c-NHEJ) as well as an increased dependence on homologous recombination (HR) and alternative end joining (alt-EJ). These features are well described in cells exposed to high-LET radiation and typically manifest between 100 and 150 keV/µm. We hypothesized that this apparent discrepancy reflects biological consequences of proton-beam properties that remain uncharacterized. In the present study, we outline exploratory experiments aiming at uncovering such mechanisms. We begin by investigating for both entrance and SOBP protons the dose-dependent engagement of HR we recently showed for X-rays. Consistent with our previous findings with X-rays, HR engagement after exposure to both types of proton beams declined with dose, from ~80% at 0.2 Gy to less than 20% at higher doses. RAD51/γH2AX foci ratios, reflecting HR engagement, were modestly higher following proton irradiation, in line with increased HR utilization. G2-checkpoint activation, previously linked to HR, was also stronger after exposure to protons, as was DNA end resection. Moreover, the formation of structural chromosomal abnormalities (SCAs) was higher for SOBP than entrance protons and X-rays. Collectively, our results suggest quasi-high-LET characteristics for proton beams and raise the question as to the physical proton properties that underpin them. We discuss that the commonly employed definition of LET may be insufficient for this purpose. Full article
Show Figures

Figure 1

27 pages, 2341 KB  
Review
Molecular Basis of Persister Awakening and Lag-Phase Recovery in Escherichia coli After Antibiotic Exposure
by Karolina Stojowska-Swędrzyńska, Ewa Laskowska and Dorota Kuczyńska-Wiśnik
Int. J. Mol. Sci. 2026, 27(1), 467; https://doi.org/10.3390/ijms27010467 - 1 Jan 2026
Viewed by 481
Abstract
Antibiotic persistence is a transient phenotype in which a subset of genetically susceptible bacteria survives lethal antibiotic exposure without acquiring resistance. However, survival alone does not define a persister cell—only cells that successfully recover, resume growth, and produce viable progeny complete the persister [...] Read more.
Antibiotic persistence is a transient phenotype in which a subset of genetically susceptible bacteria survives lethal antibiotic exposure without acquiring resistance. However, survival alone does not define a persister cell—only cells that successfully recover, resume growth, and produce viable progeny complete the persister cycle. Recent studies in Escherichia coli show that persister awakening is a multistage process shaped by dormancy depth, metabolic state, and antibiotic-induced damage. Upstream induction mechanisms, including stringent-response signaling and toxin–antitoxin–mediated growth arrest, primarily determine dormancy depth but do not directly control awakening kinetics. During the lag phase, persister cells undergo coordinated recovery involving detoxification of residual antibiotics, ATP restoration, dissolution of protein aggregates, and ribosome reactivation. After exposure to fluoroquinolones, awakening additionally requires SOS-driven DNA repair via homologous recombination or transcription-coupled repair. In contrast, β-lactam–exposed persister cells rely mainly on efflux-mediated detoxification and asymmetric damage partitioning. Failure to restore proteostasis or resolve damage results in abortive recovery or cell death. Only after damage processing and metabolic reactivation can persister cells resume division and generate viable progeny. This review integrates current molecular insights into persister cell recovery in E. coli, highlighting the lag phase as the critical barrier between survival and true persistence. Full article
(This article belongs to the Special Issue Research Advances in Antibiotic Resistance)
Show Figures

Figure 1

9 pages, 796 KB  
Article
Prevalence and Clinical Associations of Germline DDR Variants in Prostate Cancer: Real-World Evidence from a 122-Patient Turkish Cohort
by Seval Akay, Taha Resid Ozdemir, Ozge Ozer Kaya, Mustafa Degirmenci and Olcun Umit Unal
Genes 2026, 17(1), 23; https://doi.org/10.3390/genes17010023 - 26 Dec 2025
Viewed by 315
Abstract
Background: Germline alterations in DNA damage repair (DDR) genes represent a clinically important subset of prostate cancer (PCa), but real-world data from Middle Eastern and Turkish populations remain limited. We evaluated the prevalence and clinicopathologic associations of germline DDR variants in a single-center [...] Read more.
Background: Germline alterations in DNA damage repair (DDR) genes represent a clinically important subset of prostate cancer (PCa), but real-world data from Middle Eastern and Turkish populations remain limited. We evaluated the prevalence and clinicopathologic associations of germline DDR variants in a single-center Turkish cohort. Methods: We retrospectively analyzed 122 men with histologically confirmed PCa who underwent germline multigene panel testing. Variants were classified according to ACMG/ClinVar criteria. Patients were grouped as pathogenic/likely pathogenic (P/LP), variants of uncertain significance (VUS), or variant-negative. Patients were grouped as variant-positive (P/LP or VUS/uncategorized) or clinically actionable variant–negative (benign/likely benign or no variant detected). Group comparisons used t-tests, chi-square or Fisher’s exact tests as appropriate. Results: The median age at diagnosis was 65.2 years (mean 64.6 ± 8.78). Overall, 37 patients (30.3%) carried at least one germline variant, including 12 (9.8%) with P/LP alterations and 24 (19.7%) with VUS; one patient (0.8%) harbored an uncategorized variant. The most frequently affected genes were CHEK2 (n = 8), BRCA1 (n = 6), BRCA2 (n = 6), ATM (n = 5), and APC (n = 4). Variant-positive status increased from 10.8% in ISUP 1–2 to 21.6% in ISUP 3 and 76.0% in ISUP 4–5, although this trend was not statistically significant (p = 0.391). Mean age at diagnosis and the prevalence of metastatic disease did not differ between variant-positive and clinically actionable variant–negative patients (64.2 vs. 65.7 years, p = 0.390; 66.7% vs. 64.6%, p = 0.842). Truncating DDR variants (RAD50, BRCA2, MSH3, NBN, CHEK2, ATM) occurred predominantly in ISUP 4–5 tumors. Conclusions: Germline DDR alterations—most notably in BRCA2, CHEK2, and ATM—were present in a substantial subset of Turkish men with PCa and showed a non-significant trend toward clustering in higher-grade disease. The high prevalence of VUS reflects limited genomic annotation in under-represented populations and underscores the need for longitudinal reinterpretation. These data support the clinical value of incorporating germline DDR testing into risk assessment and familial counseling, while larger cohorts integrating somatic profiling are needed to refine genotype–phenotype associations. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

17 pages, 2231 KB  
Article
Genome-Wide Identification and Expression Analysis of the ClHMGB Gene Family in Watermelon Under Abiotic Stress and Fusarium oxysporum Infection
by Changqing Xuan, Mengli Yang, Yufan Ma, Xue Dai, Shen Liang, Gaozheng Chang and Xian Zhang
Int. J. Mol. Sci. 2026, 27(1), 157; https://doi.org/10.3390/ijms27010157 - 23 Dec 2025
Viewed by 278
Abstract
High-Mobility Group B (HMGB) proteins are conserved non-histone nuclear proteins involved in DNA replication, transcription, recombination, repair; plant growth and development; and stress responses. In this study, we identified nine ClHMGB genes in watermelon using genome-wide search. Phylogenetic and homology analyses classified them [...] Read more.
High-Mobility Group B (HMGB) proteins are conserved non-histone nuclear proteins involved in DNA replication, transcription, recombination, repair; plant growth and development; and stress responses. In this study, we identified nine ClHMGB genes in watermelon using genome-wide search. Phylogenetic and homology analyses classified them into four distinct classes. Synteny analysis revealed that ClHMGB genes share closer evolutionary relationships with dicots than with monocots. Tissue-specific expression profiling showed that eight ClHMGB members exhibit higher transcript levels in female and/or male flowers, suggesting that they play essential roles in floral organ development. Under drought, low-temperature, and salt stresses, ClHMGB members displayed distinct expression patterns. For instance, ClHMGB4 and ClHMGB8 were downregulated under drought and low-temperature stress but upregulated under salt stress, indicating potential functional specialization in response to different abiotic stresses. The highly virulent Fusarium oxysporum f. sp. niveum race 2 (Fon R2) induced the upregulation of more ClHMGB genes than the less virulent race 1 (Fon R1). Four members (ClHMGB1, 4, 6, and 7) were consistently upregulated by both races, suggesting that they may play fundamental roles in disease resistance. This study provides a foundation for further investigation into the roles of ClHMGB genes in growth, development, and stress responses of watermelon. Full article
(This article belongs to the Special Issue Plant Responses to Biotic and Abiotic Stresses)
Show Figures

Figure 1

10 pages, 824 KB  
Case Report
A Novel ATRIP Mutation Detected in an Iranian Family with Familial Clustering of Breast Cancer: A Case Report
by Neda Zamani, Mehar Chahal, Iman Salahshourifar, Reiyhane Talebian and Mohammad R. Akbari
Curr. Oncol. 2025, 32(12), 711; https://doi.org/10.3390/curroncol32120711 - 17 Dec 2025
Viewed by 353
Abstract
Purpose: ATRIP (ATR-interacting protein) is a critical partner of ATR (ataxia telangiectasia and Rad3-related). The ATR-ATRIP heterodimer plays an essential role in initiating homologous recombination repair (HRR) during replication stress and inducing double-stranded DNA breaks following unresolved stalled replication forks. Our team recently [...] Read more.
Purpose: ATRIP (ATR-interacting protein) is a critical partner of ATR (ataxia telangiectasia and Rad3-related). The ATR-ATRIP heterodimer plays an essential role in initiating homologous recombination repair (HRR) during replication stress and inducing double-stranded DNA breaks following unresolved stalled replication forks. Our team recently identified ATRIP as a novel breast cancer susceptibility gene candidate through whole-exome sequencing (WES) of familial breast cancer patients and healthy controls from the Polish founder population, with subsequent validation in both Polish and British cohorts. In the present study, we report for the first time the detection of a novel deleterious mutation in ATRIP among several members of an Iranian family with clustering of breast cancer who were negative for mutations in the already known breast cancer risk genes. Methods: Six family members underwent germline DNA testing by WES, following initial negative results from multigene panel testing. Candidate variants were confirmed by Sanger sequencing and assessed according to ACMG guidelines. Results: We detected a novel ATRIP frameshift mutation (NM_130384.3:c.1033delC) in four of six family members that were tested, including two individuals affected with breast cancer. No pathogenic variants were found in other known cancer susceptibility genes. Conclusions: This is the first report of a deleterious ATRIP mutation in an Iranian family with familial breast cancer, suggesting a potential role of ATRIP in hereditary breast cancer. Further studies are required to confirm the role of ATRIP in breast cancer susceptibility, refine risk assessment, and evaluate potential personalized therapeutic strategies. In the interim, genetic counseling for ATRIP mutation carriers should proceed with caution, given current limitations in clinical interpretation. Full article
(This article belongs to the Special Issue Advanced Research on Breast Cancer Genes in Cancers)
Show Figures

Figure 1

18 pages, 8266 KB  
Article
Homologous Recombination Is Associated with Enhanced Anti-Tumor Innate Immunity and Favorable Prognosis in Head and Neck Cancer
by Negin Soghli, Aminollah Khormali and Aimin Peng
Cancers 2025, 17(24), 3999; https://doi.org/10.3390/cancers17243999 - 15 Dec 2025
Viewed by 603
Abstract
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy, often diagnosed at advanced stages with poor survival outcomes. Homologous recombination (HR), a major DNA double-strand break (DSB) repair pathway, safeguards genomic stability via error-free repair. While HR deficiency has been [...] Read more.
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy, often diagnosed at advanced stages with poor survival outcomes. Homologous recombination (HR), a major DNA double-strand break (DSB) repair pathway, safeguards genomic stability via error-free repair. While HR deficiency has been well established as a driver of genomic instability and tumorigenesis in several cancer types, the role of HR in HNSCC remains relatively understudied. Methods: Here, we analyzed the expression patterns of key HR proteins in HNSCC and investigated their association with clinical parameters, DNA methylation, immune cell infiltration, and patient survival outcome. Results: Surprisingly, our results demonstrate that HR factors are consistently upregulated in HNSCC, in both HPV-positive and HPV-negative groups. Survival analysis identified many HR factors, including ATM, BRCA1, BRCA2, PALB2, LIG1, RPA1, and RPA2, as potential prognostic biomarkers for better overall survival. Interestingly, we observed a significant correlation between HR protein overexpression and immune cell infiltration in HNSCC, suggesting a potential immunomodulatory role of HR proteins. To experimentally validate this association in both HPV-positive and -negative cell lines, we showed that MRE11 and RAD51 overexpression in HNSCC cells led to increased phosphorylation of IRF3 and STAT1, indicating activation of the cGAS/STING-mediated innate immune signaling. Conclusion: Together, our findings provide a comprehensive overview of the HR pathway in HNSCC, highlighting the dual role of HR proteins in both genomic maintenance and immune regulation. The consistent upregulation of HR proteins, their association with disease progression, and potential immunogenic effects underscore their promise as diagnostic/prognostic biomarkers and therapeutic targets in HNSCC. Full article
(This article belongs to the Special Issue New Biomarkers in Cancers 2nd Edition)
Show Figures

Figure 1

21 pages, 6705 KB  
Article
DNMT3B Knockdown Enhances PARP Inhibitor Sensitivity in Biliary Tract Cancer Cells via Opioid Growth Factor Receptor-Mediated Homologous Recombination Impairment
by Soichiro Oda, Kazumichi Kawakubo, Masaki Kuwatani, Shugo Tanaka, Katsuma Nakajima, Shoya Shiratori, Hiroki Yonemura, Shunichiro Nozawa, Koji Hirata, Ryo Sugiura and Naoya Sakamoto
Cancers 2025, 17(24), 3936; https://doi.org/10.3390/cancers17243936 - 9 Dec 2025
Viewed by 411
Abstract
Background: Biliary tract cancer (BTC) is an aggressive malignancy with poor prognosis and limited therapeutic options. Poly(ADP-ribose) polymerase (PARP) inhibitors have demonstrated efficacy in tumors with homologous recombination repair (HRR) deficiency. However, actionable BRCA1/2 mutations are rare in BTC. Epigenetic modulation via [...] Read more.
Background: Biliary tract cancer (BTC) is an aggressive malignancy with poor prognosis and limited therapeutic options. Poly(ADP-ribose) polymerase (PARP) inhibitors have demonstrated efficacy in tumors with homologous recombination repair (HRR) deficiency. However, actionable BRCA1/2 mutations are rare in BTC. Epigenetic modulation via DNA methyltransferase (DNMT) inhibition is a proposed strategy for inducing an HR-deficient (“BRCAness”) phenotype and thereby enhancing therapeutic response to PARP inhibitors. This study aimed to determine whether the DNMT inhibitor azacitidine (AZA) enhances the antitumor effects of the PARP inhibitor niraparib (NIR) and to identify molecular mechanisms underlying this interaction. Methods: Two BTC cell lines, TFK-1 and RBE, were treated with AZA and/or NIR or subjected to siRNA-mediated DNMT1, DNMT3A, or DNMT3B knockdown. Functional analyses included homologous recombination (HR) assays, flow cytometric evaluation of cell-cycle distribution and apoptosis, proliferation and survival assays, and IC50 determination. Whole-transcriptome RNA sequencing was performed to identify differentially expressed genes after AZA treatment or DNMT3B knockdown, followed by validation via qPCR and Western blotting. To explore epigenetic regulation, whole-genome bisulfite sequencing was performed on TFK-1 cells following DNMT3B knockdown. Results: AZA treatment decreased HR frequency in a dose-dependent manner and enhanced the sensitivity of BTC cells to NIR, as evidenced by increased apoptosis, suppressed proliferation, and reduced IC50 values. DNMT3B knockdown recapitulated these effects, establishing a causal relationship between DNMT3B suppression and disrupted HR repair. RNA sequencing identified opioid growth factor receptor (OGFR) as a commonly upregulated gene after DNMT3B knockdown. Functional validation showed that OGFR overexpression reduced HR activity, increased apoptosis, and enhanced NIR sensitivity. Contrarily, OGFR knockdown conferred relative resistance. Whole-genome bisulfite sequencing showed no significant CpG methylation changes at the OGFR promoter region, indicating that OGFR induction is mediated through DNMT3B-dependent transcriptional regulation rather than direct promoter demethylation. Conclusions: DNMT3B inhibition sensitizes BTC cells to PARP inhibitors by disrupting HR repair. OGFR was identified as a novel regulator of HR and PARP inhibitor sensitivity, controlled via noncanonical DNMT3B-dependent transcriptional mechanisms that operate independently of CpG methylation. These findings provide new mechanistic insights into the epigenetic control of DNA repair and support the rationale for combining DNMT and PARP inhibitors as a promising therapeutic strategy for BTC beyond genetically HR-deficient cases. Full article
(This article belongs to the Special Issue Molecular Markers and Targeted Therapy for Hepatobiliary Tumors)
Show Figures

Figure 1

18 pages, 1385 KB  
Review
Identification of Actionable Mutations in Metastatic Castration-Resistant Prostate Cancer Through Circulating Tumor DNA: Are We There Yet?
by Wensi Tao, Amanda Sabel and R. Daniel Bonfil
Curr. Oncol. 2025, 32(12), 692; https://doi.org/10.3390/curroncol32120692 - 8 Dec 2025
Viewed by 696
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a powerful and minimally invasive approach for genomic profiling of metastatic castration-resistant prostate cancer (mCRPC), enabling real-time detection of tumor-derived mutations that guide therapy. Approximately 20% of mCRPC patients harbor alterations in homologous recombination repair [...] Read more.
Circulating tumor DNA (ctDNA) analysis has emerged as a powerful and minimally invasive approach for genomic profiling of metastatic castration-resistant prostate cancer (mCRPC), enabling real-time detection of tumor-derived mutations that guide therapy. Approximately 20% of mCRPC patients harbor alterations in homologous recombination repair (HRR) genes, most commonly BRCA1/2 and ATM, which are actionable with different poly-(ADP-ribose) polymerase inhibitors (PARPIs) used as monotherapy or in combination with androgen receptor signaling inhibitors (ARSIs). A smaller subset of patients with mismatch repair deficiency (MMRd) or microsatellite instability-high (MSI-high) tumors may benefit from immune checkpoint blockade with pembrolizumab. Different FDA-approved liquid biopsy assays detect these actionable alterations when tissue biopsies are unavailable or insufficient. This review summarizes current evidence on ctDNA-based genotyping in mCRPC, highlighting clinically actionable mutations, corresponding targeted therapies, and technical and analytical considerations for clinical implementation. By capturing DNA shed from multiple metastatic sites, ctDNA profiling provides a comprehensive view of tumor heterogeneity and enables serial monitoring of molecular evolution. Overall, ctDNA analysis represents a transformative advance in precision oncology, supporting personalized treatment selection and ongoing assessment of therapeutic response in mCRPC. Full article
(This article belongs to the Section Genitourinary Oncology)
Show Figures

Graphical abstract

18 pages, 1175 KB  
Review
The Role of Homologous Recombination Deficiency (HRD) in Renal Cell Carcinoma (RCC): Biology, Biomarkers, and Therapeutic Opportunities
by Alberto Bongiovanni, Pierfranco Conte, Vincenza Conteduca, Matteo Landriscina, Giuseppe Di Lorenzo and Francesco Cognetti
Curr. Oncol. 2025, 32(12), 690; https://doi.org/10.3390/curroncol32120690 - 7 Dec 2025
Viewed by 651
Abstract
Renal Cell Carcinoma (RCC) is a common malignancy, often diagnosed incidentally. In recent years, the prognosis of metastatic disease has been improved due to the development of immune checkpoint inhibitors (ICI) and tyrosine kinase inhibitors (TKI) as first-line treatments. However, when progression occurs, [...] Read more.
Renal Cell Carcinoma (RCC) is a common malignancy, often diagnosed incidentally. In recent years, the prognosis of metastatic disease has been improved due to the development of immune checkpoint inhibitors (ICI) and tyrosine kinase inhibitors (TKI) as first-line treatments. However, when progression occurs, the therapeutic options are limited. Understanding crucial biological pathways could lead to a greater understanding of the natural history of the disease, which could help to overcome the mechanism of resistance and to develop new treatments. The clinical significance of homologous recombination deficiency (HRD) in RCC remains to be investigated. To improve the knowledge about this topic, we conducted a narrative review to summarize the current evidence on HRD-related variations and signatures in RCC, together with their prognostic and predictive implications. Preliminary evidence indicates that canonical HRD variants (BRCA1/2) are infrequent in RCC, while broader DNA damage response (DDR) alterations like BAP1, PBRM1, ATM, and SETD2 are more prevalent. Elevated HRD genomic scores in clear-cell RCC correlate with a worse prognosis and an immunologically exhausted microenvironment. From a therapeutic point of view, PARP inhibitor monotherapy has exhibited initial efficacy in small cohorts with high levels of DDR mutation, yet remains investigational for RCC. Full article
(This article belongs to the Section Genitourinary Oncology)
Show Figures

Figure 1

20 pages, 4494 KB  
Article
Global Proteomic Determination of the Poly-Pharmacological Effects of PARP Inhibitors Following Treatment of High-Grade Serous Ovarian Cancer Cells
by Jesenia M. Perez, Valerie Barrera-Estrada, Carly A. I. Twigg and Stefani N. Thomas
Int. J. Mol. Sci. 2025, 26(24), 11820; https://doi.org/10.3390/ijms262411820 - 7 Dec 2025
Viewed by 436
Abstract
High-grade serous ovarian cancer (HGSOC) is the most commonly diagnosed ovarian cancer subtype. Approximately half of all patients diagnosed with HGSOC are deficient in homologous recombination (HR), harbor BRCA1/2 mutations, and are treated with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis). FDA-approved PARPis Olaparib, [...] Read more.
High-grade serous ovarian cancer (HGSOC) is the most commonly diagnosed ovarian cancer subtype. Approximately half of all patients diagnosed with HGSOC are deficient in homologous recombination (HR), harbor BRCA1/2 mutations, and are treated with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis). FDA-approved PARPis Olaparib, Niraparib, and Rucaparib all contribute to adverse effects in patients due to their poly-pharmacological properties. This feature necessitates investigation of global protein responses to PARPi treatment beyond DNA repair in the context of BRCA mutational status and HR deficiency. We sought to determine the landscape of differential PARPi-induced proteomes in HGSOC cells exhibiting different BRCA1/2 mutational statuses. Here, we applied immunofluorescence microscopy to detect γH2AX, Rad51, and geminin foci as markers of DNA damage and repair upon treatment of HGSOC cells with IC50 doses of PARPis. Global proteome perturbations upon PARPi treatment were measured using quantitative mass spectrometry-based proteomics. The proteomic data highlighted cell line effects, masking high-dose PARPi treatment response. Interrogation of PARPi response within biological pathways identified through gene set enrichment analysis (GSEA) revealed significant changes to proteins involved in Epithelial–Mesenchymal Transition (EMT), E2F targets, and cholesterol homeostasis. Our study establishes proteomic evidence supporting the poly-pharmacological characteristics of Niraparib, Olaparib, and Rucaparib in HGSOC cells. Full article
(This article belongs to the Special Issue Molecular Genetics in Ovarian Cancer)
Show Figures

Graphical abstract

19 pages, 3726 KB  
Article
The Complete Mitochondrial Genome of Callicarpa americana L. Reveals the Structural Evolution and Size Differences in Lamiaceae
by Yang Wu, Jiayue Xu, Tenglong Hong, Jing He, Yuxiang Chen, Ye Zhang, Xinyu Hu, Huimin Sun, Li He and Dingkun Liu
Biology 2025, 14(12), 1747; https://doi.org/10.3390/biology14121747 - 5 Dec 2025
Viewed by 433
Abstract
Callicarpa americana L. is a member of the Lamiaceae family with important ornamental and medicinal value. Although the chloroplast genome of Lamiaceae has been extensively studied, its mitochondrial genome remains unreported, limiting a comprehensive understanding of the phylogeny and genome evolution of Lamiaceae. [...] Read more.
Callicarpa americana L. is a member of the Lamiaceae family with important ornamental and medicinal value. Although the chloroplast genome of Lamiaceae has been extensively studied, its mitochondrial genome remains unreported, limiting a comprehensive understanding of the phylogeny and genome evolution of Lamiaceae. In this study, the complete mitochondrial genome of C. americana was successfully assembled for the first time. The genome is 499,565 bp in length, showing a complex multi-branched closed-loop structure that contains 37 protein-coding genes, 23 tRNA genes, and 4 rRNA genes. The difference in mitochondrial genome size is relatively large compared to Orobanchaceae species, but the difference in GC content is not obvious. The expansion of genome size was mainly due to the accumulation of non-coding regions and repetitive sequences. Meanwhile, two pairs of long repetitive sequences (LR3 and LR5) mediated homologous recombination. The mitogenome was also identified; there were a total of 494 C-to-U RNA editing sites in protein-coding genes. In addition, 42 mitochondrial plastid DNA fragments (MTPTs) were detected, with a total length of 21,464 bp, accounting for 4.30% of the genome. Repeat sequence analysis showed that tetranucleotide SSR was the most abundant repeat type in the mitochondria of Lamiaceae. Phylogenetic analysis based on the alignment of 32 protein-coding gene sequences showed that Callicarpa is sister to the other eight species of Lamiaceae. This work fills an important gap by presenting the first complete mitochondrial genome of C. americana, providing an important data resource for further understanding the structural evolution, dynamic recombination mechanism, and phylogeny of the mitochondrial genome of Lamiaceae. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genome Editing)
Show Figures

Figure 1

Back to TopTop