Targeting ATR-CHK1 and ATM-CHK2 Axes in Pancreatic Cancer—A Comprehensive Review of Literature
Abstract
1. Introduction
2. ATR/CHK1 Axis in DDR
3. ATM/CHK2 Axis in DDR
4. Downstream Events in ATR-CHK1 and ATM-CHK2 Axis
4.1. Single-Strand DNA Break Repair (SSBR)
4.2. Double-Strand DNA Break Repair (DSBR)
5. Preclinical Studies
5.1. ATR Inhibitors
5.1.1. Combination of ATR and PARP-1/2 Inhibitors
5.1.2. Combination of ATR Inhibitors with Other Therapeutical Agents
5.2. CHK1 Inhibitors
5.3. ATM Inhibitors
6. Clinical Studies
6.1. Completed Clinical Trials
6.2. Future and Ongoing Clinical Trials
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 53BP1 | TP53-binding protein 1 |
| 5-FU | 5-fluorouracil |
| 9-1-1 | RAD9-RAD1-HUS1 complex |
| AML | acute myeloid leukemia |
| AMPK | AMP-activated protein kinase |
| ARID1A | AT-rich interactive domain-containing protein 1A |
| ASIR | age-standardized incidence rate |
| ASMR | age-standardized mortality rate |
| ATM | ataxia-telangiectasia mutated kinase |
| ATP8B1 | ATPase phospholipid transporting 8B1 |
| ATR | ataxia telangiectasia and rad3-related |
| ATRIP | ATR-interacting protein |
| BAX | BCL2 associated X, apoptosis regulator |
| BCL-2 | B-cell lymphoma 2 |
| BCL-XL | B-cell lymphoma-extra large |
| BMI | body mass index |
| BRCA1/2 | breast cancer type 1/2 susceptibility protein |
| CAFs | cancer-associated fibroblasts |
| CBP/p300 | CREB-binding protein (CBP) and its paralog p300 |
| CCL2 | C–C motif chemokine ligand 2 |
| CCL3 | C–C motif chemokine ligand 3 |
| CCL5 | C–C motif chemokine ligand 5 |
| CD44 | Cluster of Differentiation 44 |
| CDC25 | cell division control 25 phosphatases |
| CDK | cyclin-dependent kinases |
| CDKN2A | cyclin-dependent kinase inhibitor 2A |
| cGAS–STING | GMP-AMP synthase–stimulator of interferon genes |
| CHK1 | checkpoint kinase 1 |
| CHK2 | checkpoint kinase 2 |
| CHOP | C/EBP homologous protein |
| CMTM6 | CKLF-like MARVEL transmembrane domain-containing protein 6 |
| CRISPR | clustered regularly interspaced short palindromic repeats |
| CRISPR-Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats–CRISPR-associated protein 9 |
| CtBP | C-terminal binding protein |
| CtIP | CtBP interacting protein |
| CXCL10 | C–X–C motif chemokine ligand 10 |
| DALYs | disability-adjusted life years |
| DDR | DNA damage response |
| DNA-PK | DNA-dependent protein kinase |
| DNA-PKcs | DNA-dependent protein kinase catalytic subunit |
| dNTP | deoxynucleotide triphosphate |
| DOR | duration of response |
| DSBR | double-strand DNA break repair |
| DSBs | DNA double-strand breaks |
| EcDNA | extrachromosomal DNA |
| ecDTx | ecDNA-directed therapy |
| EHMT2 | histone methyltransferase G9a |
| EMT | epithelial-to-mesenchymal transition |
| ER | endoplasmic reticulum |
| ERK | extracellular signal-regulated kinase |
| ETAA1 | Ewing tumor-associated antigen 1 |
| FOL | folinic acid |
| GRP78 | glucose-regulated protein 78 |
| HER2 | human epidermal growth factor receptor 2 |
| HNSCC | head and neck squamous cell carcinoma |
| HR | homologous recombination |
| HRD | homologous recombination deficiency |
| ICGC | International Cancer Genome Consortium |
| IFN-1 | type I interferon |
| IHC | Immunohistochemistry |
| IMPaCT | The Individualized Molecular Pancreatic Cancer Therapy |
| IRE | irreversible electroporation |
| IRI | irinotecan |
| KAP1 | KRAB-associated protein 1 |
| KO | knockout |
| KPC | genetically engineered mouse model with Kras^G12D, Trp53^R172H, and pancreas-specific Cre recombinase |
| LIG4 | ligase IV |
| LIGIII | DNA ligase III |
| MDC-1 | mediator of DNA damage checkpoint protein 1 |
| mDDRi | multi-DDR interference |
| MDM2 | mouse double minute 2 homolog |
| MDS | myelodysplastic syndromes |
| MDSCs | myeloid-derived suppressor cells |
| MOF | metal–organic framework |
| MRN | MRE11-RAD50-NBS1 complex |
| MTD | maximum-tolerated dose |
| nal-IRI | liposomal irinotecan |
| NBS1 | Nibrin |
| NGS | next-generation sequencing |
| NHEJ | non-homologous end joining |
| OS | overall survival |
| OXA | oxaliplatin |
| P21 | cyclin-dependent kinase inhibitor 1A |
| PALB2 | partner and localizer of BRCA2 |
| PAR | poly(ADP-ribose) |
| PARP | poly (ADP-ribose) polymerase |
| PARPi | PARP inhibitor |
| PCNA | proliferating cell nuclear antigen |
| PD-1/PD-L1 | programmed cell death protein 1/programmed death-ligand 1 |
| PDAC | pancreatic ductal adenocarcinoma |
| PDX | patient-derived xenograft |
| PFS | progression-free survival |
| PK | Pharmacokinetics |
| PLK1 | Polo-like kinase 1 |
| PNKP | polynucleotide kinase/phosphatase |
| POLB | DNA polymerase β |
| pRB | retinoblastoma protein |
| PUMA | p53 up-regulated modulator of apoptosis |
| RAD17 | replication factor C (RFC)-related RAD17 |
| RAD51 | DNA repair protein RAD51 homolog/RAD51 homolog 1 |
| RAD54L | DNA repair and recombination protein RAD54-like |
| RCC | renal cell carcinoma |
| RE | reversible electroporation |
| RecQ1 | ATP-dependent DNA helicase Q1 |
| RIF1 | replication timing regulatory factor 1 |
| RNF4 | ring finger protein 4 |
| RNF8 | ring finger protein 8 |
| RNF168 | ring finger protein 168 |
| RNR | ribonucleotide reductase |
| ROS | reactive oxygen species |
| RP2D | recommended phase II dose |
| RPA | replication protein A |
| RRM2 | ribonucleotide reductase M2 subunit |
| RS | replication stress |
| S-1 | tegafur, gimeracil (CDHP), and oteracil potassium (Oxo) |
| SCLC | small cell lung cancer |
| siRNA | small interfering RNA |
| SMAD4 | SMAD family member 4 |
| SNPs | single-nucleotide polymorphisms |
| SRC | SRC proto-oncogene, non-receptor tyrosine kinase |
| SSBR | single-strand DNA break repair |
| SSBs | single-strand breaks |
| ssDNA | single-stranded DNA |
| SWI/SNF | SWItch/Sucrose Non-Fermentable |
| TAMs | M2-like tumor-associated macrophages |
| TBK1 | TANK-binding kinase 1 |
| TCR | T cell receptor |
| TEAEs | treatment-emergent adverse events |
| TIP60 | Tat-interactive protein 60 kDa |
| TMB | tumor mutation burden |
| TME | tumor microenvironment |
| TNBC | triple-negative breast cancer |
| TOPBP1 | DNA topoisomerase 2-binding protein 1 |
| TP53 | cellular tumor antigen P53 |
| TREGs | regulatory T-cells |
| TYMS | thymidylate synthase |
| UPR | unfolded protein response |
| WEE1 | G2 checkpoint kinase |
| XRCC1 | X-ray repair cross-complementing protein 1 |
References
- Li, T.; Lin, C.; Wang, W. Global, Regional, and National Burden of Pancreatic Cancer from 1990 to 2021, Its Attributable Risk Factors, and Projections to 2050: A Systematic Analysis of the Global Burden of Disease Study 2021. BMC Cancer 2025, 25, 189. [Google Scholar] [CrossRef] [PubMed]
- Partyka, O.; Pajewska, M.; Kwaśniewska, D.; Czerw, A.; Deptała, A.; Budzik, M.; Cipora, E.; Gąska, I.; Gazdowicz, L.; Mielnik, A.; et al. Overview of Pancreatic Cancer Epidemiology in Europe and Recommendations for Screening in High-Risk Populations. Cancers 2023, 15, 3634. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Klein, A.P. Pancreatic Cancer Epidemiology: Understanding the Role of Lifestyle and Inherited Risk Factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef]
- Kolbeinsson, H.M.; Chandana, S.; Wright, G.P.; Chung, M. Pancreatic Cancer: A Review of Current Treatment and Novel Therapies. J. Investig. Surg. Off. J. Acad. Surg. Res. 2023, 36, 2129884. [Google Scholar] [CrossRef]
- Garajová, I.; Peroni, M.; Gelsomino, F.; Leonardi, F. A Simple Overview of Pancreatic Cancer Treatment for Clinical Oncologists. Curr. Oncol. 2023, 30, 9587–9601. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Narang, A.; He, J.; Wolfgang, C.; Li, K.; Zheng, L. Consensus, Debate, and Prospective on Pancreatic Cancer Treatments. J. Hematol. Oncol. 2024, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.W.; O’Reilly, E.M. Next-Generation Therapies for Pancreatic Cancer. Expert Rev. Gastroenterol. Hepatol. 2024, 18, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.; Raufi, A.G.; Safyan, R.A.; Bates, S.E.; Manji, G.A. BRCA Mutations in Pancreas Cancer: Spectrum, Current Management, Challenges and Future Prospects. Cancer Manag. Res. 2020, 12, 2731–2742. [Google Scholar] [CrossRef]
- Calheiros, J.; Corbo, V.; Saraiva, L. Overcoming Therapeutic Resistance in Pancreatic Cancer: Emerging Opportunities by Targeting BRCAs and P53. Biochim. Biophys. Acta BBA-Rev. Cancer 2023, 1878, 188914. [Google Scholar] [CrossRef]
- Dalmasso, B.; Puccini, A.; Catalano, F.; Borea, R.; Iaia, M.L.; Bruno, W.; Fornarini, G.; Sciallero, S.; Rebuzzi, S.E.; Ghiorzo, P. Beyond BRCA: The Emerging Significance of DNA Damage Response and Personalized Treatment in Pancreatic and Prostate Cancer Patients. Int. J. Mol. Sci. 2022, 23, 4709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wei, M.; Xu, J.; Hua, J.; Liang, C.; Meng, Q.; Zhang, Y.; Liu, J.; Zhang, B.; Yu, X.; et al. PARP Inhibitors in Pancreatic Cancer: Molecular Mechanisms and Clinical Applications. Mol. Cancer 2020, 19, 49. [Google Scholar] [CrossRef]
- Gupta, M.; Iyer, R.; Fountzilas, C. Poly(ADP-Ribose) Polymerase Inhibitors in Pancreatic Cancer: A New Treatment Paradigms and Future Implications. Cancers 2019, 11, 1980. [Google Scholar] [CrossRef]
- Singh, H.M.; Bailey, P.; Hübschmann, D.; Berger, A.K.; Neoptolemos, J.P.; Jäger, D.; Siveke, J.; Springfeld, C. Poly(ADP-Ribose) Polymerase Inhibition in Pancreatic Cancer. Genes. Chromosomes Cancer 2021, 60, 373–384. [Google Scholar] [CrossRef]
- Sunkara, T.; Bandaru, S.S.; Boyilla, R.; Kunadharaju, R.; Kukkadapu, P.; Chennamadhavuni, A. Poly Adenosine Diphosphate-Ribose Polymerase (PARP) Inhibitors in Pancreatic Cancer. Cureus 2022, 14, e22575. [Google Scholar] [CrossRef]
- Kasi, A.; Al-Jumayli, M.; Park, R.; Baranda, J.; Sun, W. Update on the Role of Poly (ADP-Ribose) Polymerase Inhibitors in the DNA Repair-Deficient Pancreatic Cancers: A Narrative Review. J. Pancreat. Cancer 2020, 6, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Mordes, D.A.; Glick, G.G.; Zhao, R.; Cortez, D. TopBP1 Activates ATR through ATRIP and a PIKK Regulatory Domain. Genes Dev. 2008, 22, 1478–1489. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, E.; Takeishi, Y.; Ueda, S.; Tsurimoto, T. Interaction between Rad9-Hus1-Rad1 and TopBP1 Activates ATR-ATRIP and Promotes TopBP1 Recruitment to Sites of UV-Damage. DNA Repair 2014, 21, 1–11. [Google Scholar] [CrossRef]
- Kumagai, A.; Lee, J.; Yoo, H.Y.; Dunphy, W.G. TopBP1 Activates the ATR-ATRIP Complex. Cell 2006, 124, 943–955. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Zhou, Q.; Chen, J.; Yuan, J. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response. Curr. Biol. 2016, 26, 3257–3268. [Google Scholar] [CrossRef]
- Thada, V.; Cortez, D. Common Motifs in ETAA1 and TOPBP1 Required for ATR Kinase Activation. J. Biol. Chem. 2019, 294, 8395–8402. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, Y.; Xu, Y.; Ning, S.; Huo, W.; Hou, M.; Gao, G.; Ji, J.; Guo, R.; Xu, D. Ewing Tumor-Associated Antigen 1 Interacts with Replication Protein A to Promote Restart of Stalled Replication Forks. J. Biol. Chem. 2016, 291, 21956–21962. [Google Scholar] [CrossRef] [PubMed]
- Räschle, M. Proteomics Reveals a New DNA Repair Factor Involved in DNA Damage Signaling. Mol. Cell. Oncol. 2017, 4, e1263713. [Google Scholar] [CrossRef] [PubMed]
- Leung-Pineda, V.; Ryan, C.E.; Piwnica-Worms, H. Phosphorylation of Chk1 by ATR Is Antagonized by a Chk1-Regulated Protein Phosphatase 2A Circuit. Mol. Cell. Biol. 2006, 26, 7529–7538. [Google Scholar] [CrossRef]
- Moiseeva, T.N.; Yin, Y.; Calderon, M.J.; Qian, C.; Schamus-Haynes, S.; Sugitani, N.; Osmanbeyoglu, H.U.; Rothenberg, E.; Watkins, S.C.; Bakkenist, C.J. An ATR and CHK1 Kinase Signaling Mechanism That Limits Origin Firing during Unperturbed DNA Replication. Proc. Natl. Acad. Sci. USA 2019, 116, 13374–13383. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Elder, R.T.; Qin, K.; Park, H.U.; Liang, D.; Zhao, R.Y. Phosphatase Type 2A-Dependent and -Independent Pathways for ATR Phosphorylation of Chk1. J. Biol. Chem. 2007, 282, 7287–7298. [Google Scholar] [CrossRef]
- Xu, N.; Libertini, S.; Zhang, Y.; Gillespie, D.A. Cdk Phosphorylation of Chk1 Regulates Efficient Chk1 Activation and Multiple Checkpoint Proficiency. Biochem. Biophys. Res. Commun. 2011, 413, 465–470. [Google Scholar] [CrossRef]
- Shen, T.; Huang, S. The Role of Cdc25A in the Regulation of Cell Proliferation and Apoptosis. Anticancer Agents Med. Chem. 2012, 12, 631–639. [Google Scholar] [CrossRef]
- Patil, M.; Pabla, N.; Dong, Z. Checkpoint Kinase 1 in DNA Damage Response and Cell Cycle Regulation. Cell. Mol. Life Sci. 2013, 70, 4009–4021. [Google Scholar] [CrossRef]
- Yano, K.; Shiotani, B. Emerging Strategies for Cancer Therapy by ATR Inhibitors. Cancer Sci. 2023, 114, 2709–2721. [Google Scholar] [CrossRef]
- Lee, J.-H.; Mand, M.R.; Deshpande, R.A.; Kinoshita, E.; Yang, S.-H.; Wyman, C.; Paull, T.T. Ataxia Telangiectasia-Mutated (ATM) Kinase Activity Is Regulated by ATP-Driven Conformational Changes in the Mre11/Rad50/Nbs1 (MRN) Complex. J. Biol. Chem. 2013, 288, 12840–12851. [Google Scholar] [CrossRef]
- Hartlerode, A.J.; Morgan, M.J.; Wu, Y.; Buis, J.; Ferguson, D.O. Recruitment and Activation of the ATM Kinase in the Absence of DNA-Damage Sensors. Nat. Struct. Mol. Biol. 2015, 22, 736–743. [Google Scholar] [CrossRef]
- Paull, T.T. Mechanisms of ATM Activation. Annu. Rev. Biochem. 2015, 84, 711–738. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Paull, T.T. Direct Activation of the ATM Protein Kinase by the Mre11/Rad50/Nbs1 Complex. Science 2004, 304, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Kastan, M.B.; Lim, D.S. The Many Substrates and Functions of ATM. Nat. Rev. Mol. Cell Biol. 2000, 1, 179–186. [Google Scholar] [CrossRef]
- Matsuoka, S.; Ballif, B.A.; Smogorzewska, A.; McDonald, E.R.; Hurov, K.E.; Luo, J.; Bakalarski, C.E.; Zhao, Z.; Solimini, N.; Lerenthal, Y.; et al. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science 2007, 316, 1160–1166. [Google Scholar] [CrossRef]
- Kciuk, M.; Marciniak, B.; Mojzych, M.; Kontek, R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int. J. Mol. Sci. 2020, 21, 7264. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, K.; Almasan, A. Histone H2AX Phosphorylation: A Marker for DNA Damage. Methods Mol. Biol. 2012, 920, 613–626. [Google Scholar] [CrossRef]
- Podhorecka, M.; Skladanowski, A.; Bozko, P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J. Nucleic Acids 2010, 2010, 920161. [Google Scholar] [CrossRef]
- Prabhu, K.S.; Kuttikrishnan, S.; Ahmad, N.; Habeeba, U.; Mariyam, Z.; Suleman, M.; Bhat, A.A.; Uddin, S. H2AX: A Key Player in DNA Damage Response and a Promising Target for Cancer Therapy. Biomed. Pharmacother. 2024, 175, 116663. [Google Scholar] [CrossRef]
- Salguero, I.; Belotserkovskaya, R.; Coates, J.; Sczaniecka-Clift, M.; Demir, M.; Jhujh, S.; Wilson, M.D.; Jackson, S.P. MDC1 PST-Repeat Region Promotes Histone H2AX-Independent Chromatin Association and DNA Damage Tolerance. Nat. Commun. 2019, 10, 5191. [Google Scholar] [CrossRef] [PubMed]
- Stucki, M.; Clapperton, J.A.; Mohammad, D.; Yaffe, M.B.; Smerdon, S.J.; Jackson, S.P. MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks. Cell 2005, 123, 1213–1226, Erratum in Cell 2005, 133, 549. [Google Scholar] [CrossRef] [PubMed]
- Stucki, M.; Jackson, S.P. gammaH2AX and MDC1: Anchoring the DNA-Damage-Response Machinery to Broken Chromosomes. DNA Repair 2006, 5, 534–543. [Google Scholar] [CrossRef]
- Kelliher, J.; Ghosal, G.; Leung, J.W.C. New Answers to the Old RIDDLE: RNF168 and the DNA Damage Response Pathway. FEBS J. 2022, 289, 2467–2480. [Google Scholar] [CrossRef]
- Yin, Y.; Seifert, A.; Chua, J.S.; Maure, J.-F.; Golebiowski, F.; Hay, R.T. SUMO-Targeted Ubiquitin E3 Ligase RNF4 Is Required for the Response of Human Cells to DNA Damage. Genes Dev. 2012, 26, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Galanty, Y.; Belotserkovskaya, R.; Coates, J.; Jackson, S.P. RNF4, a SUMO-Targeted Ubiquitin E3 Ligase, Promotes DNA Double-Strand Break Repair. Genes Dev. 2012, 26, 1179–1195. [Google Scholar] [CrossRef]
- Zhou, T.; Yi, F.; Wang, Z.; Guo, Q.; Liu, J.; Bai, N.; Li, X.; Dong, X.; Ren, L.; Cao, L.; et al. The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer. Int. J. Biol. Sci. 2019, 15, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Ward, I.M.; Minn, K.; van Deursen, J.; Chen, J. P53 Binding Protein 53BP1 Is Required for DNA Damage Responses and Tumor Suppression in Mice. Mol. Cell. Biol. 2003, 23, 2556–2563. [Google Scholar] [CrossRef]
- Mirza-Aghazadeh-Attari, M.; Mohammadzadeh, A.; Yousefi, B.; Mihanfar, A.; Karimian, A.; Majidinia, M. 53BP1: A Key Player of DNA Damage Response with Critical Functions in Cancer. DNA Repair 2019, 73, 110–119. [Google Scholar] [CrossRef]
- Gupta, A.; Hunt, C.R.; Chakraborty, S.; Pandita, R.K.; Yordy, J.; Ramnarain, D.B.; Horikoshi, N.; Pandita, T.K. Role of 53BP1 in the Regulation of DNA Double-Strand Break Repair Pathway Choice. Radiat. Res. 2014, 181, 1–8. [Google Scholar] [CrossRef]
- Wu, J.; Lu, L.-Y.; Yu, X. The Role of BRCA1 in DNA Damage Response. Protein Cell 2010, 1, 117–123. [Google Scholar] [CrossRef]
- Li, S.; Tang, M.; Xiong, Y.; Feng, X.; Wang, C.; Nie, L.; Huang, M.; Zhang, H.; Yin, L.; Zhu, D.; et al. Systematic Investigation of BRCA1-A, -B, and -C Complexes and Their Functions in DNA Damage Response and DNA Repair. Oncogene 2024, 43, 2621–2634. [Google Scholar] [CrossRef] [PubMed]
- Brandsma, I.; Gent, D.C. Pathway Choice in DNA Double Strand Break Repair: Observations of a Balancing Act. Genome Integr. 2012, 3, 9. [Google Scholar] [CrossRef]
- Scully, R.; Panday, A.; Elango, R.; Willis, N.A. DNA Double Strand Break Repair Pathway Choice in Somatic Mammalian Cells. Nat. Rev. Mol. Cell Biol. 2019, 20, 698–714. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, D. Repair Pathway Choice for Double-Strand Breaks. Essays Biochem. 2020, 64, 765–777. [Google Scholar] [CrossRef]
- Ward, I.M.; Wu, X.; Chen, J. Threonine 68 of Chk2 Is Phosphorylated at Sites of DNA Strand Breaks. J. Biol. Chem. 2001, 276, 47755–47758. [Google Scholar] [CrossRef]
- Ahn, J.-Y.; Li, X.; Davis, H.L.; Canman, C.E. Phosphorylation of Threonine 68 Promotes Oligomerization and Autophosphorylation of the Chk2 Protein Kinase via the Forkhead-Associated Domain. J. Biol. Chem. 2002, 277, 19389–19395. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.Y.; Schwarz, J.K.; Piwnica-Worms, H.; Canman, C.E. Threonine 68 Phosphorylation by Ataxia Telangiectasia Mutated Is Required for Efficient Activation of Chk2 in Response to Ionizing Radiation. Cancer Res. 2000, 60, 5934–5936. [Google Scholar]
- Uto, K.; Inoue, D.; Shimuta, K.; Nakajo, N.; Sagata, N. Chk1, but Not Chk2, Inhibits Cdc25 Phosphatases by a Novel Common Mechanism. EMBO J. 2004, 23, 3386–3396. [Google Scholar] [CrossRef]
- Busino, L.; Chiesa, M.; Draetta, G.F.; Donzelli, M. Cdc25A Phosphatase: Combinatorial Phosphorylation, Ubiquitylation and Proteolysis. Oncogene 2004, 23, 2050–2056. [Google Scholar] [CrossRef]
- Falck, J.; Mailand, N.; Syljuåsen, R.G.; Bartek, J.; Lukas, J. The ATM-Chk2-Cdc25A Checkpoint Pathway Guards against Radioresistant DNA Synthesis. Nature 2001, 410, 842–847. [Google Scholar] [CrossRef]
- Ahn, J.; Prives, C. Checkpoint Kinase 2 (Chk2) Monomers or Dimers Phosphorylate Cdc25C after DNA Damage Regardless of Threonine 68 Phosphorylation. J. Biol. Chem. 2002, 277, 48418–48426. [Google Scholar] [CrossRef] [PubMed]
- Hassepass, I.; Voit, R.; Hoffmann, I. Phosphorylation at Serine 75 Is Required for UV-Mediated Degradation of Human Cdc25A Phosphatase at the S-Phase Checkpoint. J. Biol. Chem. 2003, 278, 29824–29829. [Google Scholar] [CrossRef]
- Zhang, J.; Willers, H.; Feng, Z.; Ghosh, J.C.; Kim, S.; Weaver, D.T.; Chung, J.H.; Powell, S.N.; Xia, F. Chk2 Phosphorylation of BRCA1 Regulates DNA Double-Strand Break Repair. Mol. Cell. Biol. 2004, 24, 708–718. [Google Scholar] [CrossRef]
- Chen, J.J.; Silver, D.; Cantor, S.; Livingston, D.M.; Scully, R. BRCA1, BRCA2, and Rad51 Operate in a Common DNA Damage Response Pathway. Cancer Res. 1999, 59, 1752s–1756s. [Google Scholar] [PubMed]
- Carvalho, M.A.; Couch, F.J.; Monteiro, A.N.A. Functional Assays for BRCA1 and BRCA2. Int. J. Biochem. Cell Biol. 2007, 39, 298–310. [Google Scholar] [CrossRef]
- Fu, X.; Tan, W.; Song, Q.; Pei, H.; Li, J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front. Cell Dev. Biol. 2022, 10, 813457. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.L.; Rodriguez, A.M.; Snyder, R.R.; Hankins, G.D.V.; Boehning, D. Structure-Function of the Tumor Suppressor BRCA1. Comput. Struct. Biotechnol. J. 2012, 1, e201204005. [Google Scholar] [CrossRef]
- Cousineau, I.; Abaji, C.; Belmaaza, A. BRCA1 Regulates RAD51 Function in Response to DNA Damage and Suppresses Spontaneous Sister Chromatid Replication Slippage: Implications for Sister Chromatid Cohesion, Genome Stability, and Carcinogenesis. Cancer Res. 2005, 65, 11384–11391. [Google Scholar] [CrossRef]
- Ramirez-Otero, M.A.; Costanzo, V. “Bridging the DNA Divide”: Understanding the Interplay between Replication- Gaps and Homologous Recombination Proteins RAD51 and BRCA1/2. DNA Repair 2024, 141, 103738. [Google Scholar] [CrossRef]
- Foray, N.; Marot, D.; Gabriel, A.; Randrianarison, V.; Carr, A.M.; Perricaudet, M.; Ashworth, A.; Jeggo, P. A Subset of ATM- and ATR-Dependent Phosphorylation Events Requires the BRCA1 Protein. EMBO J. 2003, 22, 2860–2871. [Google Scholar] [CrossRef]
- Yarden, R.I.; Papa, M.Z. BRCA1 at the Crossroad of Multiple Cellular Pathways: Approaches for Therapeutic Interventions. Mol. Cancer Ther. 2006, 5, 1396–1404. [Google Scholar] [CrossRef]
- Kehn, K.; Berro, R.; Alhaj, A.; Bottazzi, M.E.; Yeh, W.-I.; Klase, Z.; Van Duyne, R.; Fu, S.; Kashanchi, F. Functional Consequences of Cyclin D1/BRCA1 Interaction in Breast Cancer Cells. Oncogene 2007, 26, 5060–5069. [Google Scholar] [CrossRef] [PubMed]
- Benada, J.; Burdová, K.; Lidak, T.; von Morgen, P.; Macurek, L. Polo-like Kinase 1 Inhibits DNA Damage Response during Mitosis. Cell Cycle 2015, 14, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-F.; Acharya, S.S.; Choe, K.N.; Nikhil, K.; Adelmant, G.; Satapathy, S.R.; Sharma, S.; Viccaro, K.; Rana, S.; Natarajan, A.; et al. A Mitotic CDK5-PP4 Phospho-Signaling Cascade Primes 53BP1 for DNA Repair in G1. Nat. Commun. 2019, 10, 4252. [Google Scholar] [CrossRef]
- Luo, K.; Deng, M.; Li, Y.; Wu, C.; Xu, Z.; Yuan, J.; Lou, Z. CDK-Mediated RNF4 Phosphorylation Regulates Homologous Recombination in S-Phase. Nucleic Acids Res. 2015, 43, 5465–5475. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, C.; Li, J.; Xing, P.; Li, J.; Zheng, S.; Chen, X. Cell Cycle-Dependent Control of Homologous Recombination. Acta Biochim. Biophys. Sin. 2017, 49, 655–668. [Google Scholar] [CrossRef]
- Dutto, I.; Scalera, C.; Prosperi, E. CREBBP and P300 Lysine Acetyl Transferases in the DNA Damage Response. Cell. Mol. Life Sci. 2018, 75, 1325–1338. [Google Scholar] [CrossRef]
- Ikura, T.; Ogryzko, V.V.; Grigoriev, M.; Groisman, R.; Wang, J.; Horikoshi, M.; Scully, R.; Qin, J.; Nakatani, Y. Involvement of the TIP60 Histone Acetylase Complex in DNA Repair and Apoptosis. Cell 2000, 102, 463–473. [Google Scholar] [CrossRef]
- Squatrito, M.; Gorrini, C.; Amati, B. Tip60 in DNA Damage Response and Growth Control: Many Tricks in One HAT. Trends Cell Biol. 2006, 16, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jiang, X.; Price, B.D. Tip60: Connecting Chromatin to DNA Damage Signaling. Cell Cycle 2010, 9, 930–936. [Google Scholar] [CrossRef]
- Sardar, S.; McNair, C.M.; Ravindranath, L.; Chand, S.N.; Yuan, W.; Bogdan, D.; Welti, J.; Sharp, A.; Ryan, N.K.; Knudsen, L.A.; et al. AR Coactivators, CBP/P300, Are Critical Mediators of DNA Repair in Prostate Cancer. Oncogene 2024, 43, 3197–3213. [Google Scholar] [CrossRef]
- Ogiwara, H.; Ui, A.; Otsuka, A.; Satoh, H.; Yokomi, I.; Nakajima, S.; Yasui, A.; Yokota, J.; Kohno, T. Histone Acetylation by CBP and P300 at Double-Strand Break Sites Facilitates SWI/SNF Chromatin Remodeling and the Recruitment of Non-Homologous End Joining Factors. Oncogene 2011, 30, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Harrod, A.; Lane, K.A.; Downs, J.A. The Role of the SWI/SNF Chromatin Remodelling Complex in the Response to DNA Double Strand Breaks. DNA Repair 2020, 93, 102919. [Google Scholar] [CrossRef]
- Sadek, M.; Sheth, A.; Zimmerman, G.; Hays, E.; Vélez-Cruz, R. The Role of SWI/SNF Chromatin Remodelers in the Repair of DNA Double Strand Breaks and Cancer Therapy. Front. Cell Dev. Biol. 2022, 10, 1071786. [Google Scholar] [CrossRef]
- Ribeiro-Silva, C.; Vermeulen, W.; Lans, H. SWI/SNF: Complex Complexes in Genome Stability and Cancer. DNA Repair 2019, 77, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Mohan, C.; Das, C.; Tyler, J. Histone and Chromatin Dynamics Facilitating DNA Repair. DNA Repair 2021, 107, 103183. [Google Scholar] [CrossRef] [PubMed]
- Dinant, C.; Houtsmuller, A.B.; Vermeulen, W. Chromatin Structure and DNA Damage Repair. Epigenetics Chromatin 2008, 1, 9. [Google Scholar] [CrossRef]
- Downs, J.A.; Gasser, S.M. Chromatin Remodeling and Spatial Concerns in DNA Double-Strand Break Repair. Curr. Opin. Cell Biol. 2024, 90, 102405. [Google Scholar] [CrossRef]
- Khanna, K.K.; Keating, K.E.; Kozlov, S.; Scott, S.; Gatei, M.; Hobson, K.; Taya, Y.; Gabrielli, B.; Chan, D.; Lees-Miller, S.P.; et al. ATM Associates with and Phosphorylates P53: Mapping the Region of Interaction. Nat. Genet. 1998, 20, 398–400. [Google Scholar] [CrossRef]
- Banin, S.; Moyal, L.; Shieh, S.; Taya, Y.; Anderson, C.W.; Chessa, L.; Smorodinsky, N.I.; Prives, C.; Reiss, Y.; Shiloh, Y.; et al. Enhanced Phosphorylation of P53 by ATM in Response to DNA Damage. Science 1998, 281, 1674–1677. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Goodarzi, A.A.; Higashimoto, Y.; Noda, Y.; Lees-Miller, S.P.; Appella, E.; Anderson, C.W. ATM Mediates Phosphorylation at Multiple P53 Sites, Including Ser(46), in Response to Ionizing Radiation. J. Biol. Chem. 2002, 277, 12491–12494. [Google Scholar] [CrossRef]
- Turenne, G.A.; Paul, P.; Laflair, L.; Price, B.D. Activation of P53 Transcriptional Activity Requires ATM’s Kinase Domain and Multiple N-Terminal Serine Residues of P53. Oncogene 2001, 20, 5100–5110. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, J. Mechanism of P53 Stabilization by ATM after DNA Damage. Cell Cycle 2010, 9, 472–478. [Google Scholar] [CrossRef]
- Nakagawa, K.; Taya, Y.; Tamai, K.; Yamaizumi, M. Requirement of ATM in Phosphorylation of the Human P53 Protein at Serine 15 Following DNA Double-Strand Breaks. Mol. Cell. Biol. 1999, 19, 2828–2834. [Google Scholar] [CrossRef]
- Nghiem, P.; Park, P.K.; Kim Ys, Y.; Desai, B.N.; Schreiber, S.L. ATR Is Not Required for P53 Activation but Synergizes with P53 in the Replication Checkpoint. J. Biol. Chem. 2002, 277, 4428–4434. [Google Scholar] [CrossRef]
- Tibbetts, R.S.; Brumbaugh, K.M.; Williams, J.M.; Sarkaria, J.N.; Cliby, W.A.; Shieh, S.-Y.; Taya, Y.; Prives, C.; Abraham, R.T. A Role for ATR in the DNA Damage-Induced Phosphorylation of P53. Genes Dev. 1999, 13, 152–157. [Google Scholar] [CrossRef]
- Derheimer, F.A.; O’Hagan, H.M.; Krueger, H.M.; Hanasoge, S.; Paulsen, M.T.; Ljungman, M. RPA and ATR Link Transcriptional Stress to P53. Proc. Natl. Acad. Sci. USA 2007, 104, 12778–12783. [Google Scholar] [CrossRef]
- Kulkarni, A.; Das, K.C. Differential Roles of ATR and ATM in P53, Chk1, and Histone H2AX Phosphorylation in Response to Hyperoxia: ATR-Dependent ATM Activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L998–L1006. [Google Scholar] [CrossRef] [PubMed]
- Lakin, N.D.; Hann, B.C.; Jackson, S.P. The Ataxia-Telangiectasia Related Protein ATR Mediates DNA-Dependent Phosphorylation of P53. Oncogene 1999, 18, 3989–3995. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.-H.; Chung, P.-H.; Sun, T.-P.; Shieh, S.-Y. P53 C-Terminal Phosphorylation by CHK1 and CHK2 Participates in the Regulation of DNA-Damage-Induced C-Terminal Acetylation. Mol. Biol. Cell 2005, 16, 1684–1695. [Google Scholar] [CrossRef]
- Shieh, S.Y.; Ahn, J.; Tamai, K.; Taya, Y.; Prives, C. The Human Homologs of Checkpoint Kinases Chk1 and Cds1 (Chk2) Phosphorylate P53 at Multiple DNA Damage-Inducible Sites. Genes Dev. 2000, 14, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Stanbridge, E.J.; Lao, X.; Cai, Q.; Fan, S.T.; Redpath, J.L. P53-Dependent Chk1 Phosphorylation Is Required for Maintenance of Prolonged G2 Arrest. Radiat. Res. 2007, 168, 706–715. [Google Scholar] [CrossRef]
- Tian, H.; Faje, A.T.; Lee, S.L.; Jorgensen, T.J. Radiation-Induced Phosphorylation of Chk1 at S345 Is Associated with P53-Dependent Cell Cycle Arrest Pathways. Neoplasia 2002, 4, 171–180. [Google Scholar] [CrossRef]
- Craig, A.; Scott, M.; Burch, L.; Smith, G.; Ball, K.; Hupp, T. Allosteric Effects Mediate CHK2 Phosphorylation of the P53 Transactivation Domain. EMBO Rep. 2003, 4, 787–792. [Google Scholar] [CrossRef]
- Hirao, A.; Kong, Y.Y.; Matsuoka, S.; Wakeham, A.; Ruland, J.; Yoshida, H.; Liu, D.; Elledge, S.J.; Mak, T.W. DNA Damage-Induced Activation of P53 by the Checkpoint Kinase Chk2. Science 2000, 287, 1824–1827. [Google Scholar] [CrossRef]
- Chen, L.; Gilkes, D.M.; Pan, Y.; Lane, W.S.; Chen, J. ATM and Chk2-Dependent Phosphorylation of MDMX Contribute to P53 Activation after DNA Damage. EMBO J. 2005, 24, 3411–3422. [Google Scholar] [CrossRef]
- Shi, D.; Gu, W. Dual Roles of MDM2 in the Regulation of P53. Genes Cancer 2012, 3, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, T.; Nota, A.; Taya, Y.; Okamoto, K. Functional Role of Mdm2 Phosphorylation by ATR in Attenuation of P53 Nuclear Export. Oncogene 2003, 22, 8870–8880. [Google Scholar] [CrossRef]
- Maya, R.; Balass, M.; Kim, S.T.; Shkedy, D.; Leal, J.F.; Shifman, O.; Moas, M.; Buschmann, T.; Ronai, Z.; Shiloh, Y.; et al. ATM-Dependent Phosphorylation of Mdm2 on Serine 395: Role in P53 Activation by DNA Damage. Genes Dev. 2001, 15, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Gencel-Augusto, J.; Lozano, G. P53 Tetramerization: At the Center of the Dominant-Negative Effect of Mutant P53. Genes Dev. 2020, 34, 1128–1146. [Google Scholar] [CrossRef]
- Beckerman, R.; Prives, C. Transcriptional Regulation by P53. Cold Spring Harb. Perspect. Biol. 2010, 2, a000935. [Google Scholar] [CrossRef]
- Jeffrey, P.D.; Gorina, S.; Pavletich, N.P. Crystal Structure of the Tetramerization Domain of the P53 Tumor Suppressor at 1.7 Angstroms. Science 1995, 267, 1498–1502. [Google Scholar] [CrossRef]
- Harper, J.W.; Elledge, S.J.; Keyomarsi, K.; Dynlacht, B.; Tsai, L.H.; Zhang, P.; Dobrowolski, S.; Bai, C.; Connell-Crowley, L.; Swindell, E. Inhibition of Cyclin-Dependent Kinases by P21. Mol. Biol. Cell 1995, 6, 387–400. [Google Scholar] [CrossRef]
- Mansilla, S.F.; De La Vega, M.B.; Calzetta, N.L.; Siri, S.O.; Gottifredi, V. CDK-Independent and PCNA-Dependent Functions of P21 in DNA Replication. Genes 2020, 11, 593. [Google Scholar] [CrossRef] [PubMed]
- Waga, S.; Hannon, G.J.; Beach, D.; Stillman, B. The P21 Inhibitor of Cyclin-Dependent Kinases Controls DNA Replication by Interaction with PCNA. Nature 1994, 369, 574–578. [Google Scholar] [CrossRef]
- Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple Functions of P21 in Cell Cycle, Apoptosis and Transcriptional Regulation after DNA Damage. DNA Repair 2016, 42, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Dutto, I.; Tillhon, M.; Cazzalini, O.; Stivala, L.A.; Prosperi, E. Biology of the Cell Cycle Inhibitor P21(CDKN1A): Molecular Mechanisms and Relevance in Chemical Toxicology. Arch. Toxicol. 2015, 89, 155–178. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How Does P53 Induce Apoptosis and How Does This Relate to P53-Mediated Tumour Suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef]
- Amaral, J.D.; Xavier, J.M.; Steer, C.J.; Rodrigues, C.M. The Role of P53 in Apoptosis. Discov. Med. 2010, 9, 145–152. [Google Scholar]
- Shen, Y.; White, E. P53-Dependent Apoptosis Pathways. Adv. Cancer Res. 2001, 82, 55–84. [Google Scholar] [CrossRef]
- Zamzami, N.; Kroemer, G. P53 in Apoptosis Control: An Introduction. Biochem. Biophys. Res. Commun. 2005, 331, 685–687. [Google Scholar] [CrossRef]
- Smith, J.; Tho, L.M.; Xu, N.; Gillespie, D.A. The ATM-Chk2 and ATR-Chk1 Pathways in DNA Damage Signaling and Cancer. Adv. Cancer Res. 2010, 108, 73–112. [Google Scholar] [CrossRef]
- Kamaletdinova, T.; Fanaei-Kahrani, Z.; Wang, Z.-Q. The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers. Cells 2019, 8, 1625. [Google Scholar] [CrossRef]
- Schiewer, M.J.; Mandigo, A.C.; Gordon, N.; Huang, F.; Gaur, S.; de Leeuw, R.; Zhao, S.G.; Evans, J.; Han, S.; Parsons, T.; et al. PARP-1 Regulates DNA Repair Factor Availability. EMBO Mol. Med. 2018, 10, e8816. [Google Scholar] [CrossRef] [PubMed]
- Conceição, C.J.F.; Moe, E.; Ribeiro, P.A.; Raposo, M. PARP1: A Comprehensive Review of Its Mechanisms, Therapeutic Implications and Emerging Cancer Treatments. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189282. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, R.K.; Singh, N.; Jaggi, A.S. Poly(ADP-Ribose) Polymerase-1 (PARP-1) and Its Therapeutic Implications. Vascul. Pharmacol. 2010, 53, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Caldecott, K.W. XRCC1 Protein; Form and Function. DNA Repair 2019, 81, 102664. [Google Scholar] [CrossRef]
- London, R.E. The Structural Basis of XRCC1-Mediated DNA Repair. DNA Repair 2015, 30, 90–103. [Google Scholar] [CrossRef]
- Caldecott, K.W. XRCC1 and DNA Strand Break Repair. DNA Repair 2003, 2, 955–969. [Google Scholar] [CrossRef]
- Eichman, B.F. Repair and Tolerance of DNA Damage at the Replication Fork: A Structural Perspective. Curr. Opin. Struct. Biol. 2023, 81, 102618. [Google Scholar] [CrossRef]
- Cox, M.M. Recombinational DNA Repair of Damaged Replication Forks in Escherichia Coli: Questions. Annu. Rev. Genet. 2001, 35, 53–82. [Google Scholar] [CrossRef]
- Jones, R.M.; Petermann, E. Replication Fork Dynamics and the DNA Damage Response. Biochem. J. 2012, 443, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Gnügge, R.; Symington, L.S. DNA End Resection during Homologous Recombination. Curr. Opin. Genet. Dev. 2021, 71, 99–105. [Google Scholar] [CrossRef]
- Qiu, S.; Huang, J. MRN Complex Is an Essential Effector of DNA Damage Repair. J. Zhejiang Univ. Sci. B 2021, 22, 31–37. [Google Scholar] [CrossRef]
- Tisi, R.; Vertemara, J.; Zampella, G.; Longhese, M.P. Functional and Structural Insights into the MRX/MRN Complex, a Key Player in Recognition and Repair of DNA Double-Strand Breaks. Comput. Struct. Biotechnol. J. 2020, 18, 1137–1152. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.Y.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-Homologous DNA End Joining and Alternative Pathways to Double-Strand Break Repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Raghavan, S.C. Nonhomologous End Joining: New Accessory Factors Fine Tune the Machinery. Trends Genet. 2021, 37, 582–599. [Google Scholar] [CrossRef]
- Rulten, S.L.; Grundy, G.J. Non-Homologous End Joining: Common Interaction Sites and Exchange of Multiple Factors in the DNA Repair Process. BioEssays News Rev. Mol. Cell. Dev. Biol. 2017, 39, 1600209. [Google Scholar] [CrossRef]
- Vogt, A.; He, Y. Structure and Mechanism in Non-Homologous End Joining. DNA Repair 2023, 130, 103547. [Google Scholar] [CrossRef]
- Fokas, E.; Prevo, R.; Pollard, J.R.; Reaper, P.M.; Charlton, P.A.; Cornelissen, B.; Vallis, K.A.; Hammond, E.M.; Olcina, M.M.; Gillies McKenna, W.; et al. Targeting ATR in Vivo Using the Novel Inhibitor VE-822 Results in Selective Sensitization of Pancreatic Tumors to Radiation. Cell Death Dis. 2012, 3, e441. [Google Scholar] [CrossRef]
- Bruciamacchie, M.; Garambois, V.; Vie, N.; Bessede, T.; Michaud, H.-A.; Chepeaux, L.-A.; Gros, L.; Bonnefoy, N.; Robin, M.; Brager, D.; et al. ATR Inhibition Potentiates FOLFIRINOX Cytotoxic Effect in Models of Pancreatic Ductal Adenocarcinoma by Remodelling the Tumour Microenvironment. Br. J. Cancer 2025, 132, 222–235. [Google Scholar] [CrossRef]
- Liu, S.; Ge, Y.; Wang, T.; Edwards, H.; Ren, Q.; Jiang, Y.; Quan, C.; Wang, G. Inhibition of ATR Potentiates the Cytotoxic Effect of Gemcitabine on Pancreatic Cancer Cells through Enhancement of DNA Damage and Abrogation of Ribonucleotide Reductase Induction by Gemcitabine. Oncol. Rep. 2017, 37, 3377–3386. [Google Scholar] [CrossRef]
- Wallez, Y.; Dunlop, C.R.; Johnson, T.I.; Koh, S.-B.; Fornari, C.; Yates, J.W.T.; Bernaldo de Quirós Fernández, S.; Lau, A.; Richards, F.M.; Jodrell, D.I. The ATR Inhibitor AZD6738 Synergizes with Gemcitabine In Vitro and In Vivo to Induce Pancreatic Ductal Adenocarcinoma Regression. Mol. Cancer Ther. 2018, 17, 1670–1682. [Google Scholar] [CrossRef]
- Dunlop, C.R.; Wallez, Y.; Johnson, T.I.; Bernaldo de Quirós Fernández, S.; Durant, S.T.; Cadogan, E.B.; Lau, A.; Richards, F.M.; Jodrell, D.I. Complete Loss of ATM Function Augments Replication Catastrophe Induced by ATR Inhibition and Gemcitabine in Pancreatic Cancer Models. Br. J. Cancer 2020, 123, 1424–1436. [Google Scholar] [CrossRef]
- Höfer, S.; Frasch, L.; Brajkovic, S.; Putzker, K.; Lewis, J.; Schürmann, H.; Leone, V.; Sakhteman, A.; The, M.; Bayer, F.P.; et al. Gemcitabine and ATR Inhibitors Synergize to Kill PDAC Cells by Blocking DNA Damage Response. Mol. Syst. Biol. 2025, 21, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Perkhofer, L.; Schmitt, A.; Romero Carrasco, M.C.; Ihle, M.; Hampp, S.; Ruess, D.A.; Hessmann, E.; Russell, R.; Lechel, A.; Azoitei, N.; et al. ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage. Cancer Res. 2017, 77, 5576–5590. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Takada, K.; Nakano, A.; Takeuchi, O.; Watanabe, K.; Hirohara, M.; Masuda, Y. Combination of S-1 and the Oral ATR Inhibitor Ceralasertib Is Effective against Pancreatic Cancer Cells. Cancer Chemother. Pharmacol. 2024, 94, 763–774. [Google Scholar] [CrossRef]
- Finan, J.M.; Di Niro, R.; Park, S.Y.; Jeong, K.J.; Hedberg, M.D.; Smith, A.; McCarthy, G.A.; Haber, A.O.; Muschler, J.; Sears, R.C.; et al. The Polymeric Fluoropyrimidine CF10 Overcomes Limitations of 5-FU in Pancreatic Ductal Adenocarcinoma Cells through Increased Replication Stress. Cancer Biol. Ther. 2024, 25, 2421584. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Li, Y.; Dobbelstein, M. Wee1 Is Required to Sustain ATR/Chk1 Signaling upon Replicative Stress. Oncotarget 2015, 6, 13072–13087. [Google Scholar] [CrossRef]
- Tuli, R.; Surmak, A.J.; Reyes, J.; Armour, M.; Hacker-Prietz, A.; Wong, J.; DeWeese, T.L.; Herman, J.M. Radiosensitization of Pancreatic Cancer Cells In Vitro and In Vivo through Poly (ADP-Ribose) Polymerase Inhibition with ABT-888. Transl. Oncol. 2014, 7, 439–445. [Google Scholar] [CrossRef]
- Hou, Z.; Cui, Y.; Xing, H.; Mu, X. Down-Expression of Poly(ADP-Ribose) Polymerase in P53-Regulated Pancreatic Cancer Cells. Oncol. Lett. 2018, 15, 1943–1948. [Google Scholar] [CrossRef]
- Roger, E.; Gout, J.; Arnold, F.; Beutel, A.K.; Müller, M.; Abaei, A.; Barth, T.F.E.; Rasche, V.; Seufferlein, T.; Perkhofer, L.; et al. Maintenance Therapy for ATM-Deficient Pancreatic Cancer by Multiple DNA Damage Response Interferences after Platinum-Based Chemotherapy. Cells 2020, 9, 2110. [Google Scholar] [CrossRef]
- Parsels, L.A.; Engelke, C.G.; Parsels, J.; Flanagan, S.A.; Zhang, Q.; Tanska, D.; Wahl, D.R.; Canman, C.E.; Lawrence, T.S.; Morgan, M.A. Combinatorial Efficacy of Olaparib with Radiation and ATR Inhibitor Requires PARP1 Protein in Homologous Recombination-Proficient Pancreatic Cancer. Mol. Cancer Ther. 2021, 20, 263–273. [Google Scholar] [CrossRef]
- Tang, X.-M.; Shi, M.-M.; Wang, J.-C.; Gu, Y.-J.; Dai, Y.-T.; Yang, Q.-X.; Liu, J.; Ren, L.-J.; Liu, X.-Y.; Yang, C.; et al. TOPBP1 as a Potential Predictive Biomarker for Enhanced Combinatorial Efficacy of Olaparib and AZD6738 in PDAC. Cell Biosci. 2025, 15, 17. [Google Scholar] [CrossRef]
- Herbert, K.J.; Upstill-Goddard, R.; Dreyer, S.B.; Rebus, S.; Pilarsky, C.; Debabrata, M.; Lord, C.J.; Biankin, A.V.; Froeling, F.E.M.; Chang, D.K. Sequential ATR and PARP Inhibition Overcomes Acquired DNA Damaging Agent Resistance in Pancreatic Ductal Adenocarcinoma. Br. J. Cancer 2025, 133, 381–393. [Google Scholar] [CrossRef]
- Lee, S.I.; Nam, A.-R.; Oh, K.-S.; Kim, J.-M.; Bang, J.-H.; Jeong, Y.; Choo, S.Y.; Kim, H.J.; Yoon, J.; Kim, T.-Y.; et al. Therapeutic Potential of BOLD-100, a GRP78 Inhibitor, Enhanced by ATR Inhibition in Pancreatic Ductal Adenocarcinoma. Cell Commun. Signal. 2025, 23, 281. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, G.; Salmonson, A.; Toro-Zapata, J.; de Assuncao, T.M.; Mathison, A.; Dusetti, N.; Iovanna, J.; Urrutia, R.; Lomberk, G. Combined Targeting of G9a and Checkpoint Kinase 1 Synergistically Inhibits Pancreatic Cancer Cell Growth by Replication Fork Collapse. Mol. Cancer Res. 2020, 18, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Klomp, J.E.; Lee, Y.S.; Goodwin, C.M.; Papke, B.; Klomp, J.A.; Waters, A.M.; Stalnecker, C.A.; DeLiberty, J.M.; Drizyte-Miller, K.; Yang, R.; et al. CHK1 Protects Oncogenic KRAS-Expressing Cells from DNA Damage and Is a Target for Pancreatic Cancer Treatment. Cell Rep. 2021, 37, 110060. [Google Scholar] [CrossRef]
- Fredebohm, J.; Wolf, J.; Hoheisel, J.D.; Boettcher, M. Depletion of RAD17 Sensitizes Pancreatic Cancer Cells to Gemcitabine. J. Cell Sci. 2013, 126, 3380–3389. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Dai, A.; Huang, T.; Niu, W.; Liu, L.; Xu, H.; Yin, T.; Jiang, T.; Sun, S.; Lei, P.; et al. Simultaneous Delivery of Dual Inhibitors of DNA Damage Repair Sensitizes Pancreatic Cancer Response to Irreversible Electroporation. ACS Nano 2023, 17, 12915–12932. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Jiao, L.; Chang, P.; Evans, D.B.; Abbruzzese, J.L.; Li, D. Single-Nucleotide Polymorphisms of DNA Damage Response Genes Are Associated with Overall Survival in Patients with Pancreatic Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 2042–2048. [Google Scholar] [CrossRef]
- Li, D.; Frazier, M.; Evans, D.B.; Hess, K.R.; Crane, C.H.; Jiao, L.; Abbruzzese, J.L. Single Nucleotide Polymorphisms of RecQ1, RAD54L, and ATM Genes Are Associated with Reduced Survival of Pancreatic Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 1720–1728. [Google Scholar] [CrossRef]
- Weekes, C.D.; Nallapareddy, S.; Rudek, M.A.; Norris-Kirby, A.; Laheru, D.; Jimeno, A.; Donehower, R.C.; Murphy, K.M.; Hidalgo, M.; Baker, S.D.; et al. Thymidylate Synthase (TYMS) Enhancer Region Genotype-Directed Phase II Trial of Oral Capecitabine for 2nd Line Treatment of Advanced Pancreatic Cancer. Investig. New Drugs 2011, 29, 1057–1065. [Google Scholar] [CrossRef]
- Chantrill, L.A.; Nagrial, A.M.; Watson, C.; Johns, A.L.; Martyn-Smith, M.; Simpson, S.; Mead, S.; Jones, M.D.; Samra, J.S.; Gill, A.J.; et al. Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 2029–2037. [Google Scholar] [CrossRef]
- Waqar, S.N.; Robinson, C.; Olszanski, A.J.; Spira, A.; Hackmaster, M.; Lucas, L.; Sponton, L.; Jin, H.; Hering, U.; Cronier, D.; et al. Phase I Trial of ATM Inhibitor M3541 in Combination with Palliative Radiotherapy in Patients with Solid Tumors. Investig. New Drugs 2022, 40, 596–605, Erratum in Investig. New Drugs 2022, 40, 679. [Google Scholar] [CrossRef] [PubMed]
- Laquente, B.; Lopez-Martin, J.; Richards, D.; Illerhaus, G.; Chang, D.Z.; Kim, G.; Stella, P.; Richel, D.; Szcylik, C.; Cascinu, S.; et al. A Phase II Study to Evaluate LY2603618 in Combination with Gemcitabine in Pancreatic Cancer Patients. BMC Cancer 2017, 17, 137. [Google Scholar] [CrossRef]
- Zhou, Z.; Saluja, A.K.; Houchen, C.W.; Li, M. Replication Stress Identifies Novel Molecular Classification Associated with Treatment Outcomes in Pancreatic Cancer. Pancreatol. Off. J. Int. Assoc. Pancreatol. 2023, 23, 82–89. [Google Scholar] [CrossRef]
- Dreyer, S.B.; Upstill-Goddard, R.; Paulus-Hock, V.; Paris, C.; Lampraki, E.-M.; Dray, E.; Serrels, B.; Caligiuri, G.; Rebus, S.; Plenker, D.; et al. Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology 2021, 160, 362–377.e13. [Google Scholar] [CrossRef]
- Gaballa, A.; Gebhardt-Wolf, A.; Krenz, B.; Mattavelli, G.; John, M.; Cossa, G.; Andreani, S.; Schülein-Völk, C.; Montesinos, F.; Vidal, R.; et al. PAF1c Links S-Phase Progression to Immune Evasion and MYC Function in Pancreatic Carcinoma. Nat. Commun. 2024, 15, 1446. [Google Scholar] [CrossRef]
- Anand, J.R.; Droby, G.N.; Joseph, S.; Patel, U.; Zhang, X.; Klomp, J.A.; Der, C.J.; Purvis, J.E.; Wolff, S.C.; Bowser, J.L.; et al. TRIP13 Protects Pancreatic Cancer Cells against Intrinsic and Therapy-Induced DNA Replication Stress. NAR Cancer 2025, 7, zcaf009. [Google Scholar] [CrossRef]
- Smith, S.J.; Meng, F.; Lingeman, R.G.; Li, C.M.; Li, M.; Boneh, G.; Seppälä, T.T.; Phan, T.; Li, H.; Burkhart, R.A.; et al. Therapeutic Targeting of Oncogene-Induced Transcription-Replication Conflicts in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2025, 169, 600–614.e11. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wang, Y.; Shen, Y.; Wu, K.; Shi, Y.; Cao, T.; Yuan, S.; Zhu, Y.; Bai, Y.; et al. Nano-Enabled Regulation of DNA Damage in Tumor Cells to Enhance Neoantigen-Based Pancreatic Cancer Immunotherapy. Biomaterials 2024, 311, 122710. [Google Scholar] [CrossRef]
- Lenzo, F.L.; Kato, S.; Pabla, S.; DePietro, P.; Nesline, M.K.; Conroy, J.M.; Burgher, B.; Glenn, S.T.; Kuvshinoff, B.; Kurzrock, R.; et al. Immune Profiling and Immunotherapeutic Targets in Pancreatic Cancer. Ann. Transl. Med. 2021, 9, 119. [Google Scholar] [CrossRef]
- Underwood, P.W.; Trevino, J.G. A Deeper Understanding of the Tumor Microenvironment in Pancreatic Cancer: The Key to Developing Effective Immunotherapies. Ann. Transl. Med. 2019, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Gai, J.; McPhaul, T.J.; Luo, H.; Lin, P.; Liu, D.; Pishvaian, M.; Roberts, N.J.; Wu, K.; He, J.; et al. Homologous Recombination-DNA Damage Response Defects Increase TMB and Neoantigen Load, but Not Effector T Cell Density and Clonal Diversity in Pancreatic Cancer. Exp. Hematol. Oncol. 2025, 14, 86. [Google Scholar] [CrossRef]
- Dillon, M.T.; Bergerhoff, K.F.; Pedersen, M.; Whittock, H.; Crespo-Rodriguez, E.; Patin, E.C.; Pearson, A.; Smith, H.G.; Paget, J.T.E.; Patel, R.R.; et al. ATR Inhibition Potentiates the Radiation-Induced Inflammatory Tumor Microenvironment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3392–3403. [Google Scholar] [CrossRef]
- Sun, L.-L.; Yang, R.-Y.; Li, C.-W.; Chen, M.-K.; Shao, B.; Hsu, J.-M.; Chan, L.-C.; Yang, Y.; Hsu, J.L.; Lai, Y.-J.; et al. Inhibition of ATR Downregulates PD-L1 and Sensitizes Tumor Cells to T Cell-Mediated Killing. Am. J. Cancer Res. 2018, 8, 1307–1316. [Google Scholar] [PubMed]
- Song, N.; Bai, M.; Che, X.; Li, Z.; Jing, W.; Li, C.; Teng, Z.; Qu, X.; Liu, Y. PD-L1 Upregulation Accompanied with Epithelial-Mesenchymal Transition Attenuates Sensitivity to ATR Inhibition in P53 Mutant Pancreatic Cancer Cells. Med. Oncol. Northwood Lond. Engl. 2020, 37, 47. [Google Scholar] [CrossRef]
- Gutiontov, S.I.; Weichselbaum, R.R. STING (or SRC) Like an ICB: Priming the Immune Response in Pancreatic Cancer. Cancer Res. 2019, 79, 3815–3817. [Google Scholar] [CrossRef]
- Zhang, Q.; Green, M.D.; Lang, X.; Lazarus, J.; Parsels, J.D.; Wei, S.; Parsels, L.A.; Shi, J.; Ramnath, N.; Wahl, D.R.; et al. Inhibition of ATM Increases Interferon Signaling and Sensitizes Pancreatic Cancer to Immune Checkpoint Blockade Therapy. Cancer Res. 2019, 79, 3940–3951. [Google Scholar] [CrossRef]
- Seetharamu, N.; Preeshagul, I.R.; Sullivan, K.M. New PD-L1 Inhibitors in Non-Small Cell Lung Cancer—Impact of Atezolizumab. Lung Cancer Auckl. NZ 2017, 8, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, C.-Y.; Tou, F.-F.; Wen, X.-M.; Kuang, Y.-K.; Zhu, Q.; Hu, H. Association of PD-L1 Expression Status with the Efficacy of PD-1/PD-L1 Inhibitors and Overall Survival in Solid Tumours: A Systematic Review and Meta-Analysis. Int. J. Cancer 2020, 147, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Kołat, D.; Kałuzińska-Kołat, Ż.; Gawrysiak, M.; Drozda, R.; Celik, I.; Kontek, R. PD-1/PD-L1 and DNA Damage Response in Cancer. Cells 2023, 12, 530. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.H.; Nam, A.-R.; Park, J.E.; Bang, J.-H.; Bang, Y.-J.; Oh, D.-Y. Therapeutic Co-Targeting of WEE1 and ATM Downregulates PD-L1 Expression in Pancreatic Cancer. Cancer Res. Treat. 2020, 52, 149–166. [Google Scholar] [CrossRef]
- Abt, E.R.; Le, T.M.; Dann, A.M.; Capri, J.R.; Poddar, S.; Lok, V.; Li, L.; Liang, K.; Creech, A.L.; Rashid, K.; et al. Reprogramming of Nucleotide Metabolism by Interferon Confers Dependence on the Replication Stress Response Pathway in Pancreatic Cancer Cells. Cell Rep. 2022, 38, 110236. [Google Scholar] [CrossRef]
- Deppas, J.J.; Kiesel, B.F.; Guo, J.; Rigatti, L.H.; Latoche, J.D.; Green, A.; Knizner, P.; Clump, D.A.; Pandya, P.; Vendetti, F.P.; et al. Comparative in Vivo Toxicology of ATR Inhibitors Ceralasertib, Elimusertib, and Berzosertib Alone and in Combination with Ionizing Radiation. Toxicol. Appl. Pharmacol. 2025, 500, 117375. [Google Scholar] [CrossRef]
- Martorana, F.; Da Silva, L.A.; Sessa, C.; Colombo, I. Everything Comes with a Price: The Toxicity Profile of DNA-Damage Response Targeting Agents. Cancers 2022, 14, 953. [Google Scholar] [CrossRef]
- Joo, Y.K.; Ramirez, C.; Kabeche, L. A TRilogy of ATR’s Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers 2024, 16, 3536. [Google Scholar] [CrossRef]
- McCabe, N.; Walker, S.M.; Kennedy, R.D. When the Guardian Becomes the Enemy: Targeting ATM in PTEN-Deficient Cancers. Mol. Cell. Oncol. 2015, 3, e1053595. [Google Scholar] [CrossRef][Green Version]




| Combination | Rationale | System/Models | Key Findings | Source |
|---|---|---|---|---|
| VE-822 + radiation/gemcitabine | Enhancement of the therapeutic efficacy of chemo- and radiotherapy by blocking ATR signaling | In vitro and in vivo xenografts: pancreatic cancer (MiaPaCa-2 and PSN-1) and primary PDAC line (PancM) + normal human fibroblast cells (MRC5: CCL171; and HFL-1: CCL153) | Disrupted checkpoint maintenance; ↑ DNA damage; inhibited HR; ↓ clonogenic survival; tumor growth delay without added normal tissue toxicity | [141] |
| VE-822 + FOLFIRINOX | Overcoming resistance to the chemotherapeutic regimen to improve its efficacy through ATR inhibition | Primary pancreatic cancer cell line (TC25) obtained from an untreated PDAC. The Pancpec, P4604 and P7054 cell lines were derived from PDX of human primary pancreatic tumour, peritoneum and liver metastasis specimens. The mouse KPC-Luc cell line and the immortalised CAF3 cell line. CAFs isolated from human PDAC samples using the outgrowth method. | Strong synergy between drugs observed independent of BRCA1/2/ATM status; effective in resistant models; ↑ apoptosis; remodeling of TME (↓ CAF, ↑ immune infiltration) | [142] |
| AZ20 + gemcitabine | ATR inhibition as a means to amplify gemcitabine-induced DNA damage in cancer cells | In vitro: AsPC-1, BxPC-3, CFPAC-1, HPAC and MIAPaCa-2 human pancreatic cancer cell lines | AZ20 reduced CHK1 phosphorylation; caused S- and G2/M arrest, and exhibited synergy with gemcitabine, with promotion of cell death. RRM2 upregulation was blocked through the use of the combination | [143] |
| AZD6738 + gemcitabine | ATR inhibition as a means to amplify gemcitabine efficacy and overcome resistance | In vitro and in vivo xenografts/KPC model: human pancreatic cancer cells (MIA PaCa-2, Panc-1, SW1990, Capan-1, AsPC-1, HPAF-II, Capan-2), murine pancreatic cancer cells (K8484, DT8082, TB31456, TB32048 previously established from KRasG12D; p53R172H; Pdx1-Cre mice), KPCFT79653 established from a KrasG12D; Trp53R270H; Brca2Tr/Δ11; Pdx-Cre (KPCB) mouse | AZD6738 prevented gemcitabine-induced CHK1 activation and RRM2 accumulation. Synergistic anticancer activity with a near-complete loss of clonogenicity, significant tumor regression, and extended survival in xenograft models | [144] |
| AZD6738 + gemcitabine (ATM loss context) | Study to assess contribution of ATM deficiency to replication stress | In vitro and in vivo xenografts/KPC model: human pancreatic cell lines: AsPC-1, MIA PaCa-2, PANC-1 and HPAF-II, murine pancreatic cancer cells: K8484 and DT8082 established from KPC mice of 129/SvJae/C57Bl/6 background | Only complete abrogation of ATM function, achieved by either pharmacological blockade or CRISPR-mediated knockout, but not by partial reduction with siRNA, conferred marked sensitivity to the ATR inhibitor–gemcitabine combination. In the absence of ATM, this treatment intensified replication catastrophe, while phosphorylation of CHK2 (T68) and KAP1 (S824) remained sustained through DNA-PK signaling. In vivo, the ATRi/gemcitabine regimen produced only growth delay in xenografts with intact ATM, whereas ATM-null tumors underwent regression in NSG mice. | [145] |
| Elimusertib + gemcitabine | Identification of synergistic compounds through large-scale screening | Pancreatic cancer cell lines: MiaPaCa-2, AsPC-1, PSN-1, BxPC-3, PANC-1, FAMPAC, Capan-1, PaTu-8988-T, Dan-G, HuP-T4 Suit2-07, Colo-357, HPDE and patient-derived organoids | Strong synergy between elimusertib and gemcitabine in the majority of cell lines, evidenced by blocked CHK1 phosphorylation | [146] |
| VE-822 or olaparib in ATM-deficient PDAC | Exploitation of synthetic lethality between ATR, PARP-1, and ATM | In vitro and in vivo: heterotopic and orthotopic mouse models | ATM loss confers mitotic defects and genomic instability, making ATM-deficient PDAC sensitive to PARPi (olaparib) and ATRi (VE-822) combination | [147] |
| AZD6738 + S-1 | Targeting ATR as a means of replication stress enhancement in PDAC | In vitro: pancreatic cell lines (BxPC-3, SUIT-2, PANC-1, MiaPaCa-2) and xenograft models | Synergistic PDAC cell proliferation suppression, increase in cell apoptosis, blocked ATR–CHK1 signaling with xenograft growth markedly reduced | [148] |
| CF10 ± ATR (AZD6738)/WEE1 (AZD1775) inhibitors | Synergistic use of potent next-generation fluoropyrimidine agent and targeted therapies suppressing ATR and WEE1 activities to augment replication stress | In vitro: pancreatic cancer cell lines: BXPC3, Capan-1/2, HPAF-II, HS 766T, AsPC-1†, MIA PaCa-2†, Panc-1†, 4853-T, 7171-T and primary PDAC patient-derived models | CF10 exhibited ~308× more potent activity than 5-FU. Efficacy was potentiated by ATR/WEE1 inhibitors and reversed by dNTPs supports RS mechanism involved in the cellular response to combinations | [149] |
| WEE1 (MK-1775), ATR (VE-821), CHK1 (SB 218078) inhibitors + gemcitabine | Exploit checkpoint inhibition to enhance cytotoxicity of gemcitabinebine | In vitro: Panc1 (human pancreatic epithelioid carcinoma) and U2OS (human osteosarcoma) | DDR inhibitors enhanced gemcitabine activity. WEE1 inhibition exhibited the strongest potentiating potential; WEE1 inhibition required CDK1/2 and PLK1 to reduce ATR/CHK1 axis pathway activity. Furthermore, reduction in claspin and CtIP was observed. | [150] |
| Olaparib + AZD6738 + radiation | Extending PARPi and radiation efficacy to HR-proficient PDAC through ATR inhibition | In vitro: HR proficient (MiaPaCa2, Panc1) and HR deficient (Capan1) pancreatic cell lines. CRISPR-Cas9 PARP1 KO cell lines. Pancreatic cancer cell xenografts | Synergy was observed independent of HR status. PARP1–DNA complexes are central to radiosensitization. Increase in DSBs prevalence, RS and significant tumor growth delay was observed in HR-proficient models following treatment with the drug combination. | [154] |
| Olaparib + AZD6738 in high TOPBP1 PDAC | TOPBP1 as predictive biomarker for augmented combinatorial efficacy of olaparib and AZD6738 in PDAC | In vitro: pancreatic cells (Patu8988, BXPC3, AsPC-1, PANC-1, CFPAC, and MIAPaCa-2), primary cell lines (0001, 0037, 0049 derived from PDAC patients, xenografts | High TOPBP1 correlated with poor prognosis. Combination treatment induced TP53-dependent apoptosis and was most effective in TOPBP1-high tumors | [155] |
| AZD6738 + Olaparib (sequential dosing) | Combination treatment to overcome chemoresistance | Patient derived cell lines and BRCA2 revertant Capan1 cell lines | Drugs exhibited synergy. Sequence-dependent efficacy was noted (ATRi followed by PARPi showed most profound activity in DDR-proficient cancers) which supports sequential over concurrent use | [156] |
| AZD6738 + BOLD-100 (GRP78 inhibitor) | Exploiting ER stress-induced DDR to boost treatment efficacy | In vitro and in vivo: pancreatic cancer cell lines (SNU-213, SNU-324, SNU-2918, PANC-1, Capan-1, Capan-2, AsPC-1, and MIA PaCa2,HPAF-II cell) | BOLD-100 induced CHOP-dependent apoptosis and ROS accumulation which triggered ATR–CHK1 axis activation and synergized with AZD6738 | [157] |
| Agent/Trial Title | NCT Number | Description & Rationale | Status | Estimated Enrollment |
|---|---|---|---|---|
| ART0380—A Phase I/IIa, Open-label, Multi-center Study to Assess the Safety, Tolerability, Pharmacokinetics and Preliminary Efficacy of the ATR Kinase Inhibitor ART0380 Administered Orally as Monotherapy and in Combination to Patients With Advanced or Metastatic Solid Tumors | NCT04657068 | Potent, selective oral ATR inhibitor under investigation in advanced/metastatic solid tumors, including pancreatic cancer. Trial evaluates ART0380 as monotherapy and in combination with gemcitabine or irinotecan to exacerbate replication stress/DNA damage. Includes patients with ATM-deficient tumors and high-grade serous ovarian, primary peritoneal, or fallopian tube carcinomas. Aims to establish recommended dosing, assess safety/tolerability, and expand the translational role of ATR inhibition. | Recruiting | 597 |
| AZD6738 (Ceralasertib)—Phase II Trial of Ceralasertib (AZD6738) Alone and in Combination With Olaparib or Durvalumab in Patients With Selected Solid Tumor Malignancies | NCT03682289 | Oral ATR inhibitor studied as monotherapy and in combination with PARP inhibitor (olaparib) or programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint inhibitor (durvalumab). Focuses on biomarker-defined subgroups (ARID1A-altered, ATM-deficient tumors), including RCC, urothelial carcinoma, pancreatic, endometrial, and other solid tumors. Primary endpoints include ORR and composite measures; secondary endpoints include PFS, DOR, and safety. Designed to establish ATR inhibition as monotherapy and as a combinatorial backbone in DDR-deficient cancers. | Recruiting | 89 |
| BBI-355 (± BBI-825)—Study of the CHK1 Inhibitor BBI-355, an ecDNA-directed Therapy (ecDTx), and the RNR Inhibitor BBI-825, in Subjects With Tumors With Oncogene Amplifications (POTENTIATE) | NCT05827614 | First-in-class ecDNA-directed therapy (CHK1 inhibitor BBI-355) investigated alone or with RNR inhibitor BBI-825 and other agents (e.g., erlotinib, futibatinib). Designed to disrupt replication stress response and DNA repair in ecDNA-driven oncogene-amplified tumors. Enrolling patients with advanced/metastatic refractory solid tumors, including TNBC, high-grade serous ovarian/endometrial carcinoma, HNSCC, SCLC, sarcomas, and metastatic pancreatic cancer. Trial aims to define safety, optimal dosing, and translational value of ecDNA targeting as a novel therapeutic paradigm. | Recruiting | 127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kciuk, M.; Wanke, K.; Marciniak, B.; Kołat, D.; Aleksandrowicz, M.; Mujwar, S.; Ainane, T.; Kontek, R. Targeting ATR-CHK1 and ATM-CHK2 Axes in Pancreatic Cancer—A Comprehensive Review of Literature. Int. J. Mol. Sci. 2026, 27, 1152. https://doi.org/10.3390/ijms27031152
Kciuk M, Wanke K, Marciniak B, Kołat D, Aleksandrowicz M, Mujwar S, Ainane T, Kontek R. Targeting ATR-CHK1 and ATM-CHK2 Axes in Pancreatic Cancer—A Comprehensive Review of Literature. International Journal of Molecular Sciences. 2026; 27(3):1152. https://doi.org/10.3390/ijms27031152
Chicago/Turabian StyleKciuk, Mateusz, Katarzyna Wanke, Beata Marciniak, Damian Kołat, Marta Aleksandrowicz, Somdutt Mujwar, Tarik Ainane, and Renata Kontek. 2026. "Targeting ATR-CHK1 and ATM-CHK2 Axes in Pancreatic Cancer—A Comprehensive Review of Literature" International Journal of Molecular Sciences 27, no. 3: 1152. https://doi.org/10.3390/ijms27031152
APA StyleKciuk, M., Wanke, K., Marciniak, B., Kołat, D., Aleksandrowicz, M., Mujwar, S., Ainane, T., & Kontek, R. (2026). Targeting ATR-CHK1 and ATM-CHK2 Axes in Pancreatic Cancer—A Comprehensive Review of Literature. International Journal of Molecular Sciences, 27(3), 1152. https://doi.org/10.3390/ijms27031152

