Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = DMRT2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4028 KiB  
Article
Influence of Dynamic Magnetic Field Exposure Duration on the Germination and Growth of Khao Dawk Mali 105 Rice Seed
by Tiwanat Gaewsondee, Cherdpong Chiawchanwattana, Phirayot Khaengkan, Juckamas Laohavanich, Chanat Vipattanaporn and Suphan Yangyuen
Agronomy 2025, 15(7), 1630; https://doi.org/10.3390/agronomy15071630 - 4 Jul 2025
Viewed by 499
Abstract
Magnetic field (MF) priming provides a chemical-free alternative to conventional methods; however, static exposure approaches are often limited by spatial heterogeneity in field–seed interaction caused by fixed seed positioning, undermining both treatment uniformity and reproducibility. To address this, the present study investigated the [...] Read more.
Magnetic field (MF) priming provides a chemical-free alternative to conventional methods; however, static exposure approaches are often limited by spatial heterogeneity in field–seed interaction caused by fixed seed positioning, undermining both treatment uniformity and reproducibility. To address this, the present study investigated the effects of dynamic MF exposure on the germination and early growth of Khao Dawk Mali 105 (KDML 105) rice seeds. A novel MF testing apparatus was developed using a 150 mT permanent magnet and a vortex-based air injection system designed to continuously rotate and redistribute seeds, ensuring uniform exposure. Seeds were treated for 0, 5, 10, 15, and 20 min to evaluate effects on vigor, germination, and seedling growth. The results showed that 5 and 10 min exposures significantly enhanced seed vigor (93.00% and 94.67%, respectively) compared to the control (83.33%), with 10 min yielding the highest improvement (p < 0.05, DMRT). Shoot and root growth also increased by 14.21% and 99.59%, respectively. These findings suggest that moderate-duration dynamic MF exposure is an efficient, eco-friendly priming technique for improving seed vigor and early growth. Future research should explore long-term agronomic impacts, economic feasibility, and varietal responses. The apparatus’s scalable design supports integration into industrial seed processing lines, advancing sustainable rice production. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 5478 KiB  
Article
The Interaction of DMRTA2 with HSP90β Inhibits p53 Ubiquitination and Activates the p53 Pathway to Suppress the Malignant Progression of Non-Small-Cell Lung Cancer
by Shiyang Deng, Ling Li and Jiang Du
Curr. Issues Mol. Biol. 2025, 47(7), 497; https://doi.org/10.3390/cimb47070497 - 28 Jun 2025
Viewed by 396
Abstract
Background: Lung cancer, predominantly NSCLC (80%), has a poor prognosis due to late diagnosis and limited treatment efficacy. DMRTA2 (DMRT5), a transcription factor linked to neural/germ cell development, is overexpressed in NSCLC per TCGA data, indicating its potential role in tumorigenesis and [...] Read more.
Background: Lung cancer, predominantly NSCLC (80%), has a poor prognosis due to late diagnosis and limited treatment efficacy. DMRTA2 (DMRT5), a transcription factor linked to neural/germ cell development, is overexpressed in NSCLC per TCGA data, indicating its potential role in tumorigenesis and as a therapeutic target. Methods: Conduct a comprehensive search of the relevant theoretical foundations. Based on this, differential expression analysis will be performed using the DESeq2 package in R on RNA-seq data from lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. The research will then employ various methods, including CRISPR genome editing, MTS assay, flow cytometry, Western blot, co-immunoprecipitation, immunofluorescence, and qRT-PCR. Results: Through experimental validation, we found that DMRTA2 mRNA is highly expressed in non-small-cell lung cancer (NSCLC) tissues and is negatively correlated with poor prognosis. DMRTA2 binds to HSP90β, inhibiting the interaction between HSP90β and p53, thereby suppressing p53 ubiquitination and nuclear export. This activates the p53 pathway, inhibiting the proliferation and invasion of lung cancer cells. Conclusions: In NSCLC, DMRTA2 acts as a context-dependent regulator, stabilizing wild-type p53 through competitive HSP90β binding to suppress tumors, while in p53-compromised cells, potentially engaging HSP90β or alternative pathways to promote malignancy. Its dual localization and transport interactions reveal multifunctional, stress-responsive roles beyond transcription. Full article
Show Figures

Figure 1

13 pages, 6770 KiB  
Article
Differential Expression Characteristics of Two Isoforms nr5a2f and nr5a2m in Gonadal Differentiation of Chinese Giant Salamanders, Andrias davidianus
by Dan Hu, Guanglve Li, Guohua Zou, Jiaqing Xu, Wenyin Luo and Qiaomu Hu
Animals 2025, 15(11), 1667; https://doi.org/10.3390/ani15111667 - 5 Jun 2025
Viewed by 366
Abstract
Nr5a2 (nuclear receptor subfamily 5, group a, member 2) is involved in gonad development and sex hormone synthesis. In this study, the full length of Nr5a2f and Nr5a2m were obtained by Nr5a2 variable splicing from Andrias davidianus, and the tissue distribution was [...] Read more.
Nr5a2 (nuclear receptor subfamily 5, group a, member 2) is involved in gonad development and sex hormone synthesis. In this study, the full length of Nr5a2f and Nr5a2m were obtained by Nr5a2 variable splicing from Andrias davidianus, and the tissue distribution was detected. We identified Nr5a2f of 2455 bp and Nr5a2m of 2150 bp length, encoding 479 and 325 amino, respectively. We first characterized Nr5a2f and Nr5a2m gene expression in developing gonads. Results showed that Nr5a2f had significantly high expression in the ovary and little expression in other tissues, during the sex differentiation and sex reversal, Nr5a2f expression was gradually decreased in the ovary and the expression in the testis was significantly lower than in the ovary from 1 year to 6 year old. Significantly high expression was observed in the ovary and reversal ovary, while low expression was in the testis and reversal testis. While Nr5a2m expression exhibited the opposite profile, high expression was observed in the brain and testis. During sex differentiation and sex reversal, high expression was shown in the testis and low expression in the ovary from one year to six years old and significantly higher expression emerged in testis and reversal testis than in ovary and reversal ovary. In situ hybridization, results showed that Nr5a2f began to express in female undifferentiated gonads and the expression level increased from 48 dpf to 91, while Nr5a2m was expressed in male undifferentiated gonads. Three RNA interference sites were designed and we detected that site 293 exhibited a significant inhibitory effect in ovary cells. After Nr5a2f expression was inhibited by site 293, we observed that female-based gene Nr5a2f, foxl2 and cyp19 expression were decreased, while the male-based gene dmrt1 and cyp17 expression was increased. These results suggested that Nr5a2f and Nr5a2m exhibited different expression patterns in the process of sex differentiation, which provided a foundation for further functional characterizations. Full article
Show Figures

Figure 1

20 pages, 2142 KiB  
Article
Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus
by Ai Hang Tran Nguyen, Jihye Yoon, Wenyan Nong, Susan Glendinning, Quinn P. Fitzgibbon, Gregory G. Smith, Jerome H. L. Hui, Ka Hou Chu, Volker Herzig and Tomer Ventura
Int. J. Mol. Sci. 2025, 26(11), 5149; https://doi.org/10.3390/ijms26115149 - 27 May 2025
Viewed by 613
Abstract
Understanding the mechanisms of sexual development would pave the way for producing mono-sex populations to aid the aquaculture industry. This study investigates the functions of the Y-linked iDmrt1 paralogue (Po-iDMY) and insulin-like androgenic gland hormone (Po-IAG) in the process of sexual development [...] Read more.
Understanding the mechanisms of sexual development would pave the way for producing mono-sex populations to aid the aquaculture industry. This study investigates the functions of the Y-linked iDmrt1 paralogue (Po-iDMY) and insulin-like androgenic gland hormone (Po-IAG) in the process of sexual development in the tropical rock lobster, Panulirus ornatus (TRL). Previously, we identified that Po-iDMY, a male-specific heterogametic (Y-linked) paralogue of the autosomal Po-iDmrt1 found in TRL, is a second sex-linked iDmrt gene identified in invertebrates. Using 5′ and 3′ rapid amplification of cDNA ends and data from a draft male genome (with an assembly genome size of approximately 2.446 Gbp and 87% BUSCO completeness), we obtained the full-length Po-iDMY gene (encoding a protein of 312 amino acids). A 411 bp male-specific sequence located at the 3′ untranslated region of Po-iDMY mRNA was used as a sex marker, which was reported for the first time in our draft genome. However, Po-iDMY is not a master sex-determining factor since it was not expressed across developmental stages of embryos, juveniles and adults. Instead, we silenced Po-IAG at an early juvenile stage, generating two potential neo-females, implying that sexual manipulation could be a promising technique in TRL. Full article
(This article belongs to the Special Issue Recent Advances in Crustacean Aquaculture)
Show Figures

Figure 1

18 pages, 7688 KiB  
Article
The Function of Heat Shock Transcription Factors in Sex Differentiation in Cynoglossus semilaevis
by Zhijie Li, Xuexue Sun, Haipeng Yan, Lijun Wang, Xihong Li, Na Wang, Min Wei and Wenteng Xu
Animals 2025, 15(10), 1443; https://doi.org/10.3390/ani15101443 - 16 May 2025
Viewed by 355
Abstract
Chinese tongue sole (Cynoglossus semilaevis) is an important marine fish in China. It has sexual dimorphism. The weight and growth rate of female fish are much greater than those of male fish. However, high temperatures can induce sex reversal in genetic [...] Read more.
Chinese tongue sole (Cynoglossus semilaevis) is an important marine fish in China. It has sexual dimorphism. The weight and growth rate of female fish are much greater than those of male fish. However, high temperatures can induce sex reversal in genetic female fish (ZW) to phenotypic male fish; thus, identifying the genetic elements involved in temperature perception will provide the molecular basis for sex control. The heat shock transcription factor (hsf) is known as an important component of temperature sensing and mediates the heat shock response in fish such as Danio rerio; however, its function in C. semilaevis is unclear. In this study, five hsf genes (hsf1, hsf2, hsf4, hsf5a, and hsf5b) were identified in tongue sole and found to be expressed in the gonads at different developmental stages, peaking from 7M to 1Y. Gonadal in situ hybridization revealed that hsf gene signals were mainly localized in germ cells, e.g., sperm in the testis and all-stage oocytes in the ovary. Upon high-temperature stimulation, the expression of the hsf gene in the gonads increased gradually with increasing stimulation time, but different hsf genes presented different response patterns. After the RNA interference of hsf in the testis and ovarian cell lines, a series of sex-related genes, such as foxl2 and dmrt1, significantly changed. In vivo RNA interference had an effect on the female gonads and mainly affected neurl3 expression. On the basis of these data, we speculate that hsf responds to temperature stimulation and plays an important role in sex differentiation. This study helps elucidate the relationship between temperature sensing and sex differentiation in C. semilaevis. Full article
(This article belongs to the Special Issue Sex Determination and Differentiation in Aquatic Animals)
Show Figures

Figure 1

18 pages, 3873 KiB  
Article
Integrated Genomic and Transcriptomic Analysis Reveals a Transcription Factor Gene Set Facilitating Gonadal Differentiation in the Pacific Oyster Crassostrea gigas
by Yunwang Shen, Ziyi Wang, Yanglei Jia and Xiao Liu
Genes 2025, 16(5), 513; https://doi.org/10.3390/genes16050513 - 28 Apr 2025
Viewed by 475
Abstract
Background/Objectives: The Pacific oyster Crassostrea gigas has emerged as a promising model system for sex determination studies due to its complex reproduction strategy and sex reversal. Transcription factors (TFs) play crucial roles in sex determination and gonadal differentiation. Despite previous research revealing functions [...] Read more.
Background/Objectives: The Pacific oyster Crassostrea gigas has emerged as a promising model system for sex determination studies due to its complex reproduction strategy and sex reversal. Transcription factors (TFs) play crucial roles in sex determination and gonadal differentiation. Despite previous research revealing functions of several conserved sex-determining pathway genes, such as Dmrt1, Foxl2, and SoxH, little is known about the other essential TF regulators driving C. gigas gonadal differentiation and development. Methods: In this study, a systematic identification of TFs revealed 1167 TF genes in the C. gigas genome. Comparative transcriptome analysis of C. gigas female and male gonads demonstrated 123 differentially expressed TF genes. Results: The majority of these sex-related TF genes were up-regulated in female or male gonads from the inactive stage to the mature stage. Moreover, this TF gene set was deeply conserved and showed similar regulation in the Kumamoto oyster Crassostrea sikamea gonads, suggesting their important regulatory roles in gonadal differentiation and development in Crassostrea oysters. Furthermore, two BTB TF gene clusters were identified in the C. gigas genome, both of which were specifically expressed in the male gonad. Gene numbers of each BTB gene cluster showed significant variations among six Crassostrea species. Conclusions: To the best of our knowledge, this study provides the first report of the whole TF family in C. gigas. The sex-related TF gene set will be a valuable resource for further research aimed at uncovering TF gene regulatory networks in oyster sex determination and gonadal differentiation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

28 pages, 6411 KiB  
Article
A Numerical Study of Aerodynamic Drag Reduction and Heat Transfer Enhancement Using an Inclined Partition for Electronic Component Cooling
by Youssef Admi, Abdelilah Makaoui, Mohammed Amine Moussaoui and Ahmed Mezrhab
Processes 2025, 13(4), 1137; https://doi.org/10.3390/pr13041137 - 10 Apr 2025
Viewed by 467
Abstract
This study presents a numerical investigation of fluid flow around a heated rectangular cylinder controlled by an inclined partition, aiming to suppress vortex shedding, reduce aerodynamic drag, and enhance thermal exchange. The double multiple relaxation time lattice Boltzmann method (DMRT-LBM) is employed to [...] Read more.
This study presents a numerical investigation of fluid flow around a heated rectangular cylinder controlled by an inclined partition, aiming to suppress vortex shedding, reduce aerodynamic drag, and enhance thermal exchange. The double multiple relaxation time lattice Boltzmann method (DMRT-LBM) is employed to investigate the influence of Reynolds number variations and partition positions on the aerodynamic and thermal characteristics of the system. The results reveal the presence of three distinct thermal regimes depending on the Reynolds number. Increasing the Reynolds number intensifies thermal vortex shedding, thereby improving heat exchange efficiency. Moreover, a higher Reynolds number leads to a greater reduction in the drag coefficient, reaching 125.41% for Re=250. Additionally, improvements in thermal performance were quantified, with Nusselt number enhancements of 29.47% for Re=100, 55.55% for Re=150, 74.78% for Re=200, and 82.87% for Re=250. The influence of partition positioning g on the aerodynamic performance was also examined at Re=150, revealing that increasing the spacing g generally leads to a rise in the drag coefficient, thereby reducing the percentage of drag reduction. However, the optimal configuration was identified at g=2d, where the maximum drag coefficient reduction reached 130.97%. In contrast, the impact of g on the thermal performance was examined for Re=100, 150, and 200, revealing a significant heat transfer improvements on the top and bottom faces: reaching up to 99.47% on the top face for Re=200 at g=3d. Nevertheless, for all Reynolds numbers and partition placements, a decrease in heat transfer was observed on the front face due to the partition shielding it from the incoming flow. These findings underscore the effectiveness of an inclined partition in enhancing both the thermal and aerodynamic performance of a rectangular component. This approach holds strong potential for various industrial applications, particularly in aeronautics, where similar control surfaces are used to minimize drag, as well as in heat exchangers and electronic cooling systems where optimizing heat dissipation is crucial for performance and energy efficiency. Full article
(This article belongs to the Special Issue Applications of Nanofluids and Nano-PCMs in Heat Transfer)
Show Figures

Figure 1

14 pages, 9062 KiB  
Article
Effects of Treatment with a DNA Methyltransferase Inhibitor 5-aza-dC on Sex Differentiation in Medaka (Oryzias latipes)
by Xiaojuan Cui, Liumeiyang Xu, Nan Tian and Jianjun Peng
Int. J. Mol. Sci. 2025, 26(7), 3280; https://doi.org/10.3390/ijms26073280 - 1 Apr 2025
Cited by 1 | Viewed by 2526
Abstract
DNA methylation is a common epigenetic modification of DNA levels in the genome of eukaryotic cells, and an aberrant elevation of DNA methylation in gene promoter regions can inhibit gene expression. DNA methyltransferases (DNMTs) are involved in genomic DNA methylation, divided into maintenance [...] Read more.
DNA methylation is a common epigenetic modification of DNA levels in the genome of eukaryotic cells, and an aberrant elevation of DNA methylation in gene promoter regions can inhibit gene expression. DNA methyltransferases (DNMTs) are involved in genomic DNA methylation, divided into maintenance DNA methyltransferases and de novo methylases, which are expressed to different degrees in the testis and ovaries. 5-aza-2′-deoxycytidine (5-aza-dC) is a cytidine analog with a strong methylation inhibition. In this experiment, medaka fish fries were treated with 5-aza-dC at 0 μg/L, 50 μg/L, and 100 μg/L. It was found that 100 g/L concentration of 5-aza-dC inhibited both body length and body weight of the adult fish, while 50 g/L concentration had no significant difference. In addition, paraffin section observation and gonad index statistics showed that after 100 g/L concentration of 5-aza-dC treatment, the gonad index of female fish increased significantly, but the gonad index of male fish had no significant difference. And the development of sperms and ovaries was normal without significant difference. Finally, we found that 5-aza-dC not only significantly decreased the transcription levels of dnmt1 and dnmt3bb.1, but also significantly increased the expression levels of female-related genes such as foxl2, cyp19a1 and wnt4, and significantly decreased the expression levels of male-related genes such as dmrt1, sox9a and amh. The DNA methylation patterns of foxl2 and dmrt1 genes were altered. This work provides more references for understanding the mechanism of DNA methylation affecting sex determination in fish. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

35 pages, 3356 KiB  
Review
Mechanisms of Hormonal, Genetic, and Temperature Regulation of Germ Cell Proliferation, Differentiation, and Death During Spermatogenesis
by María Maroto, Sara N. Torvisco, Cristina García-Merino, Raúl Fernández-González and Eva Pericuesta
Biomolecules 2025, 15(4), 500; https://doi.org/10.3390/biom15040500 - 29 Mar 2025
Cited by 3 | Viewed by 4541
Abstract
Spermatogenesis is a complex and highly regulated process involving the proliferation, differentiation, and apoptosis of germ cells. This process is controlled by various hormonal, genetic, and environmental factors, including temperature. In hormonal regulation, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) are [...] Read more.
Spermatogenesis is a complex and highly regulated process involving the proliferation, differentiation, and apoptosis of germ cells. This process is controlled by various hormonal, genetic, and environmental factors, including temperature. In hormonal regulation, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) are essential for correct spermatogenesis development from the early stages and spermatogonia proliferation to germ cell maturation. Other hormones, like inhibin and activin, finely participate tuning the process of spermatogenesis. Genetic regulation involves various transcription factors, such as SOX9, SRY, and DMRT1, which are crucial for the development and maintenance of the testis and germ cells. MicroRNAs (miRNAs) play a significant role by regulating gene expression post-transcriptionally. Epigenetic modifications, including DNA methylation, histone modifications, and chromatin remodelling, are also vital. Temperature regulation is another critical aspect, with the testicular temperature maintained around 2–4 °C below body temperature, essential for efficient spermatogenesis. Heat shock proteins (HSPs) protect germ cells from heat-induced damage by acting as molecular chaperones, ensuring proper protein folding and preventing the aggregation of misfolded proteins during thermal stress. Elevated testicular temperature can impair spermatogenesis, increasing germ cell apoptosis and inducing oxidative stress, DNA damage, and the disruption of the blood–testis barrier, leading to germ cell death and impaired differentiation. The cellular mechanisms of germ cell proliferation, differentiation, and death include the mitotic divisions of spermatogonia to maintain the germ cell pool and produce spermatocytes. Spermatocytes undergo meiosis to produce haploid spermatids, which then differentiate into mature spermatozoa. Apoptosis, or programmed cell death, ensures the removal of defective germ cells and regulates the germ cell population. Hormonal imbalance, genetic defects, and environmental stress can trigger apoptosis during spermatogenesis. Understanding these mechanisms is crucial for addressing male infertility and developing therapeutic interventions. Advances in molecular biology and genetics continue to uncover the intricate details of how spermatogenesis is regulated at multiple levels, providing new insights and potential targets for treatment. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanism of Spermatogenesis)
Show Figures

Figure 1

19 pages, 6434 KiB  
Article
An Inducible CYP19A1 Excision Model for Sexual Differentiation in Chicken (Gallus gallus) via the CRISPR/Cas9 System
by Guangzheng Liu, Yixiu Peng, Zeyu Li, Xilin Zhu, Hongyan Sun, Guohong Chen, Qisheng Zuo, Yingjie Niu, Jiuzhou Song, Wei Han, Wanhong Wei, Bichun Li and Kai Jin
Vet. Sci. 2025, 12(4), 296; https://doi.org/10.3390/vetsci12040296 - 22 Mar 2025
Viewed by 733
Abstract
Aromatase, a crucial enzyme for estrogen synthesis, plays a vital role in gender determination and differentiation. This study aimed to establish an inducible knockout model of the chicken CYP19A1 gene, which encodes aromatase, to support gender control in chickens. We selected the most [...] Read more.
Aromatase, a crucial enzyme for estrogen synthesis, plays a vital role in gender determination and differentiation. This study aimed to establish an inducible knockout model of the chicken CYP19A1 gene, which encodes aromatase, to support gender control in chickens. We selected the most efficient sgRNA target site and constructed an inducible knockout model based on the Tet-on system. The knockout efficiency reached 80% with 20 μg/mL DOX induction in vitro. The encapsulation of the plasmid with PEI and injection into eggs achieved a knockout efficiency of 45% in ovo. qRT-PCR analysis revealed a significant downregulation of female-related genes (CYP19A1, FOXL2, ESR1) and upregulation of male-related genes (DMRT1, SOX9, AMH) in female chicken embryos after induction. Western blotting showed decreased protein expression of CYP19A1 and FOXL2, and increased SOX9 expression in female embryos post-DOX induction. Elisa detection further confirmed lower estradiol levels in the gonads of induced female embryos compared to normal and non-induced females. These findings demonstrate the successful establishment of an inducible knockout system for the CYP19A1 gene in chickens, providing theoretical and technical support for the creation of new breeding materials for gender control. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Figure 1

10 pages, 712 KiB  
Article
A Genomic and Phenotypic Investigation of Feed Efficiency and Growth Traits in Targhee and Rambouillet Sheep
by Daniel Schaub and Christian J. Posbergh
Animals 2025, 15(6), 783; https://doi.org/10.3390/ani15060783 - 10 Mar 2025
Viewed by 685
Abstract
The U.S. range sheep industry uses estimated breeding values (EBVs) as part of their breeding objectives to increase post-weaning weight. The study objective was to quantify the relationship between lamb growth EBVs, feed intake, and feed efficiency. Eighty-one range ewe lambs were enrolled [...] Read more.
The U.S. range sheep industry uses estimated breeding values (EBVs) as part of their breeding objectives to increase post-weaning weight. The study objective was to quantify the relationship between lamb growth EBVs, feed intake, and feed efficiency. Eighty-one range ewe lambs were enrolled in the study to measure residual feed intake (RFI) over two 42-d periods at both the weaning and yearling stages. The ewe lambs’ post-weaning weight EBVs (PWWT EBVs) were linearly associated with their phenotypic traits. Preliminary genome wide associations (GWAs) were also performed with Dry Matter Intake (DMI), RFI, mid-test body size, and average daily gain (ADG) and Ovine 50K SNP genotypes. Post-weaning weight EBVs were associated with dry matter intake (DMI) (p < 0.05) but had no association with residual feed intake (RFI) (p > 0.05) in both experimental periods. However, PWWT EBV was predictive of mid-test body weight in both periods (p < 0.05). A single SNP at Oar2:68,812,505, located within DMRT2, was associated with DMI and RFI in the second experimental period (Bonferroni corrected p <0.05). While selecting for higher post-weaning weight range ewes may increase feed consumed due to a larger body size, it was not associated with feed efficiency. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5402 KiB  
Article
Comparative Transcriptomic Analysis of Male and Female Gonads in the Zig-Zag Eel (Mastacembelus armatus)
by Fangyu Cui, Yuanyuan Wang, Haiyan Liang, Yexin Yang, Zhiyong Jiang, Jiahuan Song, Chao Liu, Yuli Wu, Xidong Mu and Yi Liu
Fishes 2025, 10(3), 117; https://doi.org/10.3390/fishes10030117 - 6 Mar 2025
Viewed by 561
Abstract
The zig-zag eel (Mastacembelus armatus) is a unique economic fish species in China and exhibits significant dimorphism of male and female phenotypes. Cultivating all-male seedlings can significantly improve production efficiency. To investigate sex differentiation and gonadal development in M. armatus, [...] Read more.
The zig-zag eel (Mastacembelus armatus) is a unique economic fish species in China and exhibits significant dimorphism of male and female phenotypes. Cultivating all-male seedlings can significantly improve production efficiency. To investigate sex differentiation and gonadal development in M. armatus, high-throughput sequencing technology was used to analyze the transcriptomes of male and female gonads at different developmental stages, both before and after sex differentiation. We identified key genes involved in sex differentiation, male-specific differentially expressed genes (DEGs), including dmrt1, amh, sox9, gsdf, and dmrt2b, and female-biased DEGs, including foxl2, rspo1, gdf9, bmp15, and wnt4. GO and KEGG enrichment analyses revealed that signaling pathways such as MAPK, Wnt, and TGF-β play significant roles in sex differentiation in M. armatus. The expression levels of 13 sex-related genes, including dmrt1, sox9, amh, foxl2, rspo1, and wnt4, were determined by RT–qPCR in addition to RNA sequencing. RT-qPCR validation results were consistent with the transcriptomic data, confirming the reliability of our findings. This research provides valuable insights into the mechanisms of sex differentiation in M. armatus and lays a foundation for developing all-male populations in aquaculture. Full article
(This article belongs to the Special Issue Genetics and Breeding in Aquaculture)
Show Figures

Figure 1

17 pages, 14593 KiB  
Article
Characterization and Differential Expression of Sex Genes in Adults of Tropical Gar (Atractosteus tropicus)
by Otilio Méndez-Marin, María de Lourdes Jiménez-Badillo, Carina Shianya Álvarez-Villagomez, Talhia Martínez-Burguete, Uriel Rodriguez-Estrada, Gloria Gertrudys Asencio-Alcudia, Graciela María Pérez-Jiménez, Gabriela Galindo-Cortés, Virgilio Eugenio Arenas-Fuentes, Rafael Martínez-García, Luis Daniel Jiménez-Martínez and Carlos Alfonso Alvarez-González
Fishes 2025, 10(3), 94; https://doi.org/10.3390/fishes10030094 - 23 Feb 2025
Viewed by 811
Abstract
The tropical gar (Atractosteus tropicus) is a primitive freshwater fish of significant commercial importance in southeastern Mexico. However, its population is in danger due to habitat loss and overexploitation. Cultivation emerges as a viable reproductive management strategy; yet further studies are [...] Read more.
The tropical gar (Atractosteus tropicus) is a primitive freshwater fish of significant commercial importance in southeastern Mexico. However, its population is in danger due to habitat loss and overexploitation. Cultivation emerges as a viable reproductive management strategy; yet further studies are crucial to understanding molecular markers guiding reproductive management, differentiation, and sexual maturation in this species. We analyzed the expression of five sex-related genes (foxl2, sox9, cyp17a1, dmrt1, and cyp19a1) in the brain, liver, and gonads of adult A. tropicus (four females and five males). Methodologically, we collected samples and conducted RNA extraction, cDNA synthesis, and gene expression analysis using qPCR. The gonadal histology provided morphological context that reveals that the differential expression of genes establishes differences between sexes. The sexual phenotype of females is observed with the high expression of dmrt1, while in males, there is a reduction in the expression of dmrt1 and high levels of sox9, foxl2, and cyp17a1. Our findings establish dmrt1 and cyp19a1 as potential sex biomarkers and provide a molecular basis for developing sexing protocols in A. tropicus. Full article
(This article belongs to the Special Issue Advances in Fish Reproductive Physiology)
Show Figures

Figure 1

15 pages, 2515 KiB  
Article
Chr23-miR-200s and Dmrt1 Control Sexually Dimorphic Trade-Off Between Reproduction and Growth in Zebrafish
by Si Ge, Ying Liu, Haoran Huang, Jiawang Yu, Xiaohui Li, Qiaohong Lin, Peipei Huang and Jie Mei
Int. J. Mol. Sci. 2025, 26(4), 1785; https://doi.org/10.3390/ijms26041785 - 19 Feb 2025
Viewed by 893
Abstract
In animals, a trade-off exists between reproduction and growth, which are the most fundamental traits. Males and females exhibit profound differences in reproduction and growth in fish species. However, the precise molecular mechanism governing this phenomenon is still not clear. Here, we uncovered [...] Read more.
In animals, a trade-off exists between reproduction and growth, which are the most fundamental traits. Males and females exhibit profound differences in reproduction and growth in fish species. However, the precise molecular mechanism governing this phenomenon is still not clear. Here, we uncovered that chr23-miR-200s and dmrt1 knockout specifically caused an impairment in reproduction and an increase in body growth in female and male zebrafish, respectively. Chr23-miR-200s and Dmrt1 directly regulate the stat5b gene by targeting its 3′UTR and promoter. The loss of stat5b completely abolished the elevated growth performance in chr23-miR-200s-KO or dmrt1−/− zebrafish. Moreover, the dmrt1 transgenic zebrafish had significantly lower body length and body weight than the control males, accompanied by a significant reduction in stat5b expression in the liver of transgenic fish. In summary, our study proposes a regulatory model elucidating the roles of chr23-miR-200s and Dmrt1 in controlling the sexually dimorphic trade-off between reproduction and growth. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 13531 KiB  
Article
Functional Study of Four Histone Genes Involved in the Spermatogenesis of Cynoglossus semilaevis
by Xuexue Sun, Zhijie Li, Lijun Wang, Haipeng Yan, Xihong Li, Na Wang, Zhongdian Dong and Wenteng Xu
Animals 2025, 15(4), 593; https://doi.org/10.3390/ani15040593 - 18 Feb 2025
Viewed by 814
Abstract
Chinese tongue sole (Cynoglossus semilaevis) is an important mariculture fish in China, and female individuals present a growth advantage. However, genetic females (ZW) can sex reverse to phenotypic males, designated pseudomales. The pseudomale shows abnormal spermatogenesis and produces only Z sperm. [...] Read more.
Chinese tongue sole (Cynoglossus semilaevis) is an important mariculture fish in China, and female individuals present a growth advantage. However, genetic females (ZW) can sex reverse to phenotypic males, designated pseudomales. The pseudomale shows abnormal spermatogenesis and produces only Z sperm. Histone is pivotal in spermatogenesis, and post-translational modification could regulate its function. A comparison of testis phosphorylated and ubiquitinated proteins revealed 8 and 12 differentially phosphorylated and ubiquitinated histones in the testes of male and pseudomale Chinese tongue soles, respectively, but there was no difference in the translation level of these proteins. We selected four histone genes, h1.1-like, h1.2-like, h3, and h3.3-like, for further analysis. The expression levels of the h1.1-like, h3, and h3.3-like genes reached their highest levels at 2 years post-hatching (yph), and the expression level of h1.2-like reached its highest level at 1.5 years post-hatching (1.5 yph), indicating that its role began during the late stage of gonadal development. Promoter activity verification revealed that the promoters of the h1.1-like, h1.2-like, h3, and h3.3-like genes were located approximately upstream 2000 bp and six histone-related transcription factor sites were predicted. YY1A, YY1B, C-JUN, and JUNB may have negative regulatory effects on h1.1-like, h1.2-like, h3, and h3.3-like; AR and ETS-2 may have positive regulatory effects on h3 and h3.3-like. The ISH results revealed that h1.1-like, h1.2-like, h3, and h3.3-like mRNAs were located mainly in the sperm cells in the testes and the oocytes at various stages in the ovaries. After siRNA knockdown, the expression of dmrt1 in testis cell lines and the expression of tesk1 and neurl3 in males was downregulated, suggesting that the h1.1-like, h1.2-like, h3, and h3.3-like genes may have a negative regulatory role in spermatogenesis. The regulatory role in female fish remains to be explored. Mass spectrometry analysis revealed that histones have an important role in chromosome remodeling. These results provide a genetic basis for the molecular mechanism of gonadal development and spermatogenesis in Chinese tongue sole. Full article
(This article belongs to the Special Issue Sex Determination and Differentiation in Aquatic Animals)
Show Figures

Figure 1

Back to TopTop