Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = DCFH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2131 KiB  
Article
Investigating Neuroprotective Effects of Berberine on Mitochondrial Dysfunction and Autophagy Impairment in Parkinson’s Disease
by Hae-Rim Cha, Jin-Seok Kim, Jin-Hyeob Ryu and Hyun-Jeong Cho
Int. J. Mol. Sci. 2025, 26(15), 7342; https://doi.org/10.3390/ijms26157342 (registering DOI) - 29 Jul 2025
Viewed by 260
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. In this study, we investigated the therapeutic potential and underlying mechanisms of berberine in both cellular and animal models of PD. In vitro, SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) exhibited decreased viability and increased oxidative stress, both of which were significantly alleviated by berberine treatment based on cell viability assays and DCFH-DA staining. Western blot analysis revealed that berberine modulated the AMPK–PGC-1α–SIRT1 signaling pathway and restored the expression of autophagy-related proteins LC3B and P62, suggesting that berberine could improve mitochondrial function and autophagy balance. In vivo studies using a 6-OHDA-induced PD mouse model further confirmed these effects, showing that berberine could improve motor function and lead to molecular changes consistent with in vitro studies. Additionally, safety evaluations indicated no significant hepatotoxicity based on AST and ALT levels. Body weight also remained stable throughout treatment. Collectively, our findings suggest that berberine can not only alleviate PD-related symptoms but also target key pathological mechanisms, supporting its potential as a therapeutic candidate for PD and other neurodegenerative diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 172
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

22 pages, 1531 KiB  
Article
Evaluation of the Biological Properties and Antibacterial Activities of the Natural Food Supplement “Epavin” for Liver Detoxification and Protection
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Anita Caforio, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Foods 2025, 14(15), 2600; https://doi.org/10.3390/foods14152600 - 24 Jul 2025
Viewed by 356
Abstract
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients [...] Read more.
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients with advanced liver dysfunction. The global rise in these conditions underscores the need for effective interventions. Natural products have attracted attention for their potential to support liver health, particularly through synergistic combinations of plant extracts. Epavin, a dietary supplement from Erbenobili S.r.l., formulated with plant extracts like Taraxacum officinale (L.), Silybum marianum (L.) Gaertn., and Cynara scolymus (L.), known for their liver-supporting properties, has been proposed as adjuvant for liver functions. The aim of this work was to evaluate of Epavin’s antioxidant, anti-inflammatory, and protective effects against heavy metal-induced toxicity. In addition, the antibacterial effect of Epavin against a panel of bacterial strains responsible for infections associated with liver injuries has been evaluated. Methods: The protection against oxidative stress induced by H2O2 was evaluated in HepG2 and BALB/3T3 cells using the dichlorofluorescein diacetate (DCFH-DA) assay. Its anti-inflammatory activity was investigated by measuring the reduction in nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using the Griess assay. Additionally, the cytoprotecting of Epavin against heavy metal-induced toxicity and oxidative stress were evaluated in HepG2 cells using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) and DCFH-DA assays. The antibacterial activity of Epavin was assessed by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against Gram-positive (Enterococcus faecalis ATCC 29212, and BS, Staphylococcus aureus 25923, 29213, 43300, and BS) and Gram-negative (Escherichia coli 25922, and BS, Klebsiella pneumoniae 13883, 70063, and BS) bacterial strains using the microdilution method in broth, following the Clinical and Laboratory Standards Institute’s (CLSI) guidelines. Results: Epavin effectively reduced oxidative stress in HepG2 and BALB/3T3 cells and decreased NO production in LPS-stimulated RAW 264.7 macrophages. Moreover, Epavin demonstrated a protective effect against heavy metal-induced toxicity and oxidative damage in HepG2 cells. Finally, it exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains, with MIC values ranging from 1.5 to 6.0 mg/mL. Conclusions: The interesting results obtained suggest that Epavin may serve as a valuable natural adjuvant for liver health by enhancing detoxification processes, reducing inflammation, and exerting antibacterial effects that could be beneficial in the context of liver-associated infections. Full article
Show Figures

Figure 1

19 pages, 6391 KiB  
Article
Assessing Antibacterial Properties of Copper Oxide Nanomaterials on Gut-Relevant Bacteria In Vitro: A Multifaceted Approach
by Tia A. Wardlaw, Abdulkader Masri, David M. Brown and Helinor J. Johnston
Nanomaterials 2025, 15(14), 1103; https://doi.org/10.3390/nano15141103 - 16 Jul 2025
Viewed by 403
Abstract
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs [...] Read more.
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs on gut-relevant, commensal bacteria has been neglected, with studies predominantly assessing NM toxicity against pathogenic bacteria. The current study investigates the antibacterial activity of copper oxide (CuO) NMs to Escherichia coli K12, Enterococcus faecalis, and Lactobacillus casei using a combination of approaches and evaluates the importance of reactive oxygen species (ROS) production as a mechanism of toxicity. The impact of CuO NMs (100, 200, and 300 μg/mL) on the growth and viability of bacterial strains was assessed via plate counts, optical density (OD) measurements, well and disc diffusion assays, and live/dead fluorescent imaging. CuO NMs reduced the viability of all bacteria in a concentration-dependent manner in all assays except the diffusion assays. The most sensitive methods were OD measurements and plate counts. The sensitivity of bacterial strains varied depending on the method, but overall, the results suggest that E. coli K12 is the most sensitive to CuO NM toxicity. The production of ROS by all bacterial strains was observed via DCFH-DA fluorescent imaging following exposure to CuO NMs (300 μg/mL). Overall, the data suggests that CuO NMs have antibacterial activity against gut-relevant bacteria, with evidence that NM-mediated ROS production may contribute to reductions in bacterial viability. Our findings suggest that the use of a combination of assays provides a robust assessment of the antibacterial properties of ingested NMs, and in particular, it is recommended that plate counts and OD measurements be prioritised in the future when screening the antibacterial properties of NMs. Full article
Show Figures

Graphical abstract

17 pages, 5038 KiB  
Article
Efficacy of Oxygen Fluid (blue®m) on Human Gingival Fibroblast Viability, Proliferation and Inflammatory Cytokine Expression: An In Vitro Study
by Rhodanne Nicole A. Lambarte, Amani M. Basudan, Marwa Y. Shaheen, Terrence S. Sumague, Fatemah M. AlAhmari, Najla M. BinShwish, Abeer S. Alzawawi, Abdurahman A. Niazy, Mohammad A. Alfhili and Hamdan S. Alghamdi
Appl. Sci. 2025, 15(13), 7459; https://doi.org/10.3390/app15137459 - 3 Jul 2025
Viewed by 339
Abstract
Human gingival fibroblasts (HGnFs) play crucial roles in periodontal wound healing. This in vitro study examined the impact of varying concentrations of topical oxygen fluid (blue®m) on HGnF morphology, viability, proliferation, oxidative stress and pro-inflammatory cytokine production. The attempt was to [...] Read more.
Human gingival fibroblasts (HGnFs) play crucial roles in periodontal wound healing. This in vitro study examined the impact of varying concentrations of topical oxygen fluid (blue®m) on HGnF morphology, viability, proliferation, oxidative stress and pro-inflammatory cytokine production. The attempt was to underscore the potential of blue®m as a less cytotoxic alternative to chlorhexidine in the context of tissue-regeneration improvement. Primary HGnF cell cultures were subjected to oxygen fluid (blue®m) at concentrations of 0.6, 1.2 and 2.4% for a duration of 1 min. The positive control was 0.12% chlorhexidine. Cell morphology as well as actin cytoskeleton were assessed using microscopy and immunofluorescence staining. Cell viability and proliferation were assessed through AlamarBlue and trypan blue assays at 1, 2, 7, 10 and 14 days. Levels of reactive oxygen species (ROS) were quantified using DCFH-DA assay. Pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, MMP-8 and TIMP-1) were assessed through ELISA. HGnF morphology and actin structure were preserved at all oxygen fluid concentrations. Cell viability and proliferation were significantly higher in the 0.6% and 1.2% groups than in the control and chlorhexidine groups (p ≤ 0.05). ROS levels were low at 0.6% and 1.2%, but increased at 2.4% and with chlorhexidine (p ≤ 0.05). Oxygen treatment reduced IL-1β, IL-6, TNF-α and TIMP-1 expression, while MMP-8 levels increased. Chlorhexidine significantly upregulated the expression of all proinflammatory cytokines (p ≤ 0.01). Oxygen fluid (blue®m) therapy improves the viability and proliferation of gingival fibroblasts and offers anti-inflammatory and preliminary antioxidative effects at the cellular level, especially at lower concentrations (0.6% and 1.2%), indicating potential application in periodontal wound management, subject to clinical validation. Full article
Show Figures

Figure 1

20 pages, 5004 KiB  
Article
Maresin1 Alleviates Ischemia Reperfusion Injury After Lung Transplantation by Inhibiting Ferroptosis via the PKA-Hippo-YAP Signaling Pathway
by Peng Deng, You Wu, Li Wan, Xiangfu Sun and Quanchao Sun
Biomedicines 2025, 13(7), 1594; https://doi.org/10.3390/biomedicines13071594 - 30 Jun 2025
Viewed by 388
Abstract
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of [...] Read more.
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of MaR1 in the ferroptosis of LIRI after LT need to be further investigated. Methods: A mouse LT model and a pulmonary vascular endothelial cell line after hypoxia reoxygenation (H/R) culture were established in our study. Histological morphology and inflammatory cytokine levels predicted the severity of LIRI. Cell viability and cell injury were determined by CCK-8 and LDH assays. Ferroptosis biomarkers, including Fe2+, MDA, 4-HNE, and GSH, were assessed by relevant assay kits. Transferrin receptor (TFRC) and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) protein levels were examined by western blotting. In vitro, lipid peroxide levels were detected by DCFH-DA staining and flow cytometry analysis. The ultrastructure of mitochondria was imaged using transmission electron microscopy. Furthermore, the potential mechanism by which MaR1 regulates ferroptosis was explored and verified with signaling pathway inhibitors using Western blotting. Results: MaR1 protected mice from LIRI after LTx, which was reversed by the ferroptosis agonist Sorafenib in vivo. MaR1 administration decreased Fe2+, MDA, 4-HNE, TFRC, and ACSL4 contents, increased GSH levels, and ameliorated mitochondrial ultrastructural injury after LTx. In vitro, Sorafenib resulted in lower cell viability and worsened cell injury and enhanced the hallmarks of ferroptosis after H/R culture, which was rescued by MaR1 treatment. Mechanistically, the protein kinase A and YAP inhibitors partly blocked the effects of MaR1 on ferroptosis inhibition and LIRI protection. Conclusions: This study revealed that MaR1 alleviates LIRI and represses ischemia reperfusion-induced ferroptosis via the PKA-Hippo-YAP signaling pathway, which may offer a promising theoretical basis for the clinical application of organ protection after LTx. Full article
(This article belongs to the Special Issue The Role of Iron in Human Diseases)
Show Figures

Figure 1

17 pages, 5473 KiB  
Article
Sivelestat-Loaded Neutrophil-Membrane-Coated Antioxidative Nanoparticles for Targeted Endothelial Protection in Sepsis
by Juexian Wei, Aijia Zhong, Yuting Zhang, Ehua Deng, Hengzong Mo, Hongyu Zhao, Jiayu Huang, Huaidong Peng, Kaiyin Zhang, Xiaohui Chen, Haifeng Mao, Yixin Chen and Yongcheng Zhu
Pharmaceutics 2025, 17(6), 766; https://doi.org/10.3390/pharmaceutics17060766 - 10 Jun 2025
Viewed by 698
Abstract
Background/Objectives: This study aims to develop and evaluate neutrophil-membrane-coated nanoparticles (Siv@NMs) encapsulating sivelestat for the treatment of sepsis-induced endothelial injury. Leveraging the intrinsic chemotactic properties of neutrophil membranes, Siv@NMs are engineered to achieve site-specific delivery of sivelestat to damaged endothelia, thereby overcoming [...] Read more.
Background/Objectives: This study aims to develop and evaluate neutrophil-membrane-coated nanoparticles (Siv@NMs) encapsulating sivelestat for the treatment of sepsis-induced endothelial injury. Leveraging the intrinsic chemotactic properties of neutrophil membranes, Siv@NMs are engineered to achieve site-specific delivery of sivelestat to damaged endothelia, thereby overcoming the limitations of conventional therapies in mitigating endothelial dysfunction and multiorgan failure associated with sepsis. Methods: Siv@NMs were synthesized through a combination of ultrasonication and extrusion techniques to encapsulate sivelestat within neutrophil-membrane-derived vesicles. Comprehensive physicochemical characterization included analysis of particle size distribution, zeta potential, and encapsulation efficiency. Stability profiles and controlled release kinetics were systematically evaluated under simulated conditions. In vitro investigations encompassed (1) endothelial cell biocompatibility assessment via cytotoxicity assays, (2) investigation of the targeting efficiency in suppressing endothelial neutrophil extracellular trap generation during inflammation, and (3) ROS-scavenging capacity quantification using flow cytometry with DCFH-DA fluorescent probes. In vivo therapeutic efficacy was validated using a cecal ligation and puncture (CLP) sepsis mouse model, with multiparametric monitoring of endothelial function, inflammatory markers, ROS levels, and survival outcomes. Results: The optimized Siv@NMs exhibited an average particle size of approximately 150 nm, and a zeta potential of −10 mV was achieved. Cellular studies revealed that (1) Siv@NMs selectively bound to inflammatory endothelial cells with minimal cytotoxicity, and (2) Siv@NMs significantly reduced ROS accumulation in endothelial cells subjected to septic stimuli. In vitro experiments demonstrated that Siv@NMs treatment markedly attenuated endothelial injury biomarkers’ expression (ICAM-1 and iNOS), suppressed formation of neutrophil extracellular traps, and improved survival rates compared to treatment with free sivelestat. Conclusions: The neutrophil-membrane-coated nanoparticles loaded with sivelestat present a breakthrough strategy for precision therapy of sepsis-associated endothelial injury. This bioengineered system synergistically combines targeted drug delivery with multimodal therapeutic effects, including ROS mitigation, anti-inflammatory action, and endothelial protection. These findings substantiate the clinical translation potential of Siv@NMs as a next-generation nanotherapeutic for sepsis management. Full article
(This article belongs to the Special Issue ROS-Mediated Nano Drug Delivery for Antitumor Therapy)
Show Figures

Figure 1

15 pages, 4724 KiB  
Article
Absorption of FD-150 in Brain Endothelial Cells by Cold Atmospheric Microplasma
by Md Jahangir Alam, Abubakar Hamza Sadiq, Jaroslav Kristof, Mahedi Hasan, Farhana Begum, Yamano Tomoki and Kazuo Shimizu
Plasma 2025, 8(2), 19; https://doi.org/10.3390/plasma8020019 - 12 May 2025
Viewed by 878
Abstract
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric [...] Read more.
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric microplasma (CAM) to enhance membrane permeability and facilitate drug delivery in bEND.3 cells. CAM generates reactive oxygen species (ROS) that modulate membrane properties. We exposed bEND.3 cells to CAM at varying voltages (3, 3.5, 4, and 4.5 kV) and measured drug uptake using the fluorescent drug FD-150, fluorescence intensity, ROS levels, membrane lipid order, and membrane potential. The results showed a significant increase in fluorescence intensity and drug concentration in the plasma-treated cells compared to controls. ROS production, measured by DCFH-DA staining, was higher in the plasma-treated cells, supporting the hypothesis that CAM enhances membrane permeability through ROS-induced changes. Membrane lipid order, assessed using the LipiORDER probe, shifted from the liquid-ordered (Lo) to liquid-disordered (Ld) phase, indicating increased membrane fluidity. Membrane depolarization was detected with DisBAC2(3) dye, showing increased fluorescence in the plasma-treated cells. Cell viability, assessed by trypan blue and LIVE/DEAD™ assays, revealed transient damage at higher voltages (≥4 kV), with recovery after 24 h. These results suggest that CAM enhances drug delivery in bEND.3 cells by modulating membrane properties via ROS production and changes in membrane potential. CAM offers a promising strategy for improving drug delivery to the brain, with potential applications in brain-targeted therapies. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

16 pages, 3661 KiB  
Article
Mechanism of Astragalus Polysaccharide in Alleviating Bovine Mammary Fibrosis Through ROS/NLRP3 Inhibition and EMT Regulation
by Jiang Zhang, Kejiang Liu, Tingji Yang, Hongwei Duan, Longfei Xiao, Quanwei Zhang, Yong Zhang, Weitao Dong and Xingxu Zhao
Antioxidants 2025, 14(5), 503; https://doi.org/10.3390/antiox14050503 - 23 Apr 2025
Viewed by 737
Abstract
Mastitis in dairy cows, typically caused by bacterial infection, is a common inflammatory condition of the mammary tissue that leads to fibrosis, adversely affecting cow health, milk production, and dairy product quality. Astragalus polysaccharide (APS) has shown effectiveness in alleviating inflammation and fibrosis [...] Read more.
Mastitis in dairy cows, typically caused by bacterial infection, is a common inflammatory condition of the mammary tissue that leads to fibrosis, adversely affecting cow health, milk production, and dairy product quality. Astragalus polysaccharide (APS) has shown effectiveness in alleviating inflammation and fibrosis in various organs. The study employed lipopolysaccharide (LPS) to induce fibrotic conditions in two experimental systems: MAC-T bovine mammary epithelial cells and Kunming mouse models. Key parameters, including relative gene mRNA expression, protein levels, and reactive oxygen species (ROS) levels, were assessed using RT-qPCR, Western blotting (WB), and 2’,7’-Dichlorofluorescin diacetate (DCFH-DA) techniques, while histological analysis of mammary tissue was performed using H&E and Masson trichrome staining. Measuring malondialdehyde (MDA) levels, assessing the enzyme activities of catalase (CAT), and superoxide dismutase (SOD) were two methods of assessing oxidative stress. These methods were also tested in mouse mammary glands. APS significantly decreased ROS concentrations (p < 0.01), restored oxidative stress balance in mice (p < 0.05), and reduced fibrosis and inflammation, as demonstrated by histological observations and analysis. It also exerted regulatory effects on fibrosis markers (E-cadherin, N-cadherin, α-SMA) and inflammation markers (NLRP3, ASC, Caspase-1, IL-1β), as demonstrated by changes in their mRNA and protein expression. These findings endorse APS’s viability as an alternative therapeutic agent for mammary fibrosis therapy by demonstrating its ability to inhibit epithelial-mesenchymal transition (EMT) in vitro and mammary fibrosis in vivo, while also mitigating ROS production and reducing inflammation. Full article
Show Figures

Figure 1

16 pages, 1167 KiB  
Article
Phenolic Acid Composition of Coffee Cascara in Connection with Antioxidant Capacity: A Geographic Assessment
by Ningjian Liang, David D. Kitts, Xiwen Wang, Ziying Hu and Maidinai Sabier
Antioxidants 2025, 14(5), 502; https://doi.org/10.3390/antiox14050502 - 22 Apr 2025
Viewed by 1289
Abstract
Coffee cascara is an underutilized byproduct of coffee processing that has the potential for value-added applications due to its rich phytochemical content and antioxidant properties. The aim of this study was to characterize the phytochemical composition and antioxidant activity of coffee cascara sourced [...] Read more.
Coffee cascara is an underutilized byproduct of coffee processing that has the potential for value-added applications due to its rich phytochemical content and antioxidant properties. The aim of this study was to characterize the phytochemical composition and antioxidant activity of coffee cascara sourced from seven geographic regions, and where possible, a variety of farms in different regions. We compared two different extraction methods: hot water/sonication-assisted extraction and methanol–water extraction to generate phytochemical content. The antioxidant capacity of extracts was assessed through different assays. Correlations between phytochemical compounds and different antioxidant activities were analyzed first using Pearson’s correlations and then substantiated further using principal component analysis (PCA). The dominant phytochemicals identified in the extracted coffee cascara included gallic acid, chlorogenic acid isomers, mangiferin, protocatechuic acid and rutin. Among the water-extracted samples, the Brazil sample exhibited the highest oxygen radical absorbance capacity (ORAC) value, whereas the Zambia sample had the highest 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) value and the Laos sample showed the greatest inhibition of 2′,7′-Dichlorofluorescein diacetate (DCFH-DA) fluorescence. For methanol extracts, the highest ORAC and ABTS values were from the Indonesia sample, and the Laos sample showed the strongest inhibition of DCFH-DA fluorescence. The results show the distinct phytochemical composition and antioxidant activity of coffee cascara according to geographical clustering using PCA. Specifically, gallic acid, p-hydroxybenzoic acid and to a lesser extent rutin correlated (p < 0.05) with ABTS and DCFH-DA assays. This study revealed significant variation in the chemical composition and antioxidant properties of coffee cascara across different geographic regions; less so with different farms associated with the location. The findings offer evidence for potential upscaling of coffee cascara waste for use in value-added functional food or nutraceutical applications. Full article
(This article belongs to the Special Issue Antioxidant Activity of Polyphenolic Extracts)
Show Figures

Graphical abstract

19 pages, 3612 KiB  
Article
COX-2 Inhibition in Glioblastoma Cells Counteracts Resistance to Temozolomide by Inducing Oxidative Stress
by Francesca Rosaria Augello, Francesca Lombardi, Valeria Ciummo, Alessia Ciafarone, Maria Grazia Cifone, Benedetta Cinque and Paola Palumbo
Antioxidants 2025, 14(4), 459; https://doi.org/10.3390/antiox14040459 - 12 Apr 2025
Cited by 2 | Viewed by 903
Abstract
Oxidative stress critically influences the pathophysiology of glioblastoma (GBM), a deadly and aggressive brain tumor. Reactive oxygen species (ROS) regulate cancer cell homeostasis, influencing the treatment response. The transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) activates antioxidant defenses, protecting GBM cells [...] Read more.
Oxidative stress critically influences the pathophysiology of glioblastoma (GBM), a deadly and aggressive brain tumor. Reactive oxygen species (ROS) regulate cancer cell homeostasis, influencing the treatment response. The transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) activates antioxidant defenses, protecting GBM cells from therapy-induced oxidative stress and contributing to Temozolomide (TMZ) resistance. Cyclooxygenase-2 (COX-2) plays a key role in GBM chemoresistance by modulating the tumor microenvironment and supporting a pro-survival phenotype. The impact of COX-2 inhibition by celecoxib (CXB), a selective COX-2 inhibitor, combined with TMZ on oxidative stress modulation linked to resistance was investigated in GBM primary cultures and cell lines. The drug combination CXB+TMZ was tested on TMZ-sensitive and -resistant cells, and ROS levels and Nrf2 activation were evaluated via a DCFH-DA probe and Western blotting, respectively. The oxidative stress marker malondialdehyde and antioxidant enzymes were assayed using standard methods. COX-2 inhibition combined with TMZ significantly increased ROS, while TMZ alone induced a compensatory antioxidant response, sustaining resistance. Drug combination reduced this response, restoring oxidative stress even in TMZ-resistant cells. Prostaglandin E2 reversed these effects, confirming the role of the COX-2/PGE2 axis in redox balance. Drug combination increased ROS, disrupted redox homeostasis and overcame TMZ resistance, supporting COX-2 inhibition as a promising GBM therapy strategy. Full article
Show Figures

Figure 1

22 pages, 1913 KiB  
Article
Investigating Bergamot Essential Oil (BEO) Properties: Cytoprotection in Neuronal Cells Exposed to Heavy Metals and Antibacterial Activities
by Alexia Barbarossa, Rosanna Mallamaci, Eleonora Spinozzi, Filippo Maggi, Maria Noemi Sgobba, Antonio Rosato, Alessia Carocci and Daniela Meleleo
Antioxidants 2025, 14(4), 400; https://doi.org/10.3390/antiox14040400 - 27 Mar 2025
Cited by 2 | Viewed by 828
Abstract
Bergamot [Citrus × limon (L.) Osbeck, syn. C. × bergamia (Risso) Risso & Poit.] is primarily cultivated in the Calabria region of Italy and exploited in the food and perfumery industry. The epicarp of its fruit is a rich source of essential [...] Read more.
Bergamot [Citrus × limon (L.) Osbeck, syn. C. × bergamia (Risso) Risso & Poit.] is primarily cultivated in the Calabria region of Italy and exploited in the food and perfumery industry. The epicarp of its fruit is a rich source of essential oil (BEO) containing mainly monoterpenes, which are known for their diverse biological activities, including antimicrobial, anti-inflammatory, antiproliferative, and neuromodulatory effects. Emerging evidence suggests that oxidative stress plays a central role in the pathogenesis of neurodegenerative diseases, particularly Alzheimer’s disease (AD), where it contributes to neuronal dysfunction and cell death. Moreover, heavy metal exposure has been identified as a key environmental factor exacerbating oxidative stress and neurodegeneration in AD. This study aimed to explore whether BEO could mitigate heavy metal (Cd2+, Hg2+, and Pb2+)-induced neurotoxicity in SH-SY5Y cells, a model system for brain cells. MTT and calcein-AM assays were performed to examine the viability of the SH-SY5Y cells after exposure to each heavy metal itself, or in combination with BEO, whereas the LDH assay was carried out to determine the effects of BEO towards necrotic cell death induced by heavy metals. Furthermore, DCFH-DA was performed to determine whether BEO could protect SH-SY5Y from heavy metal-induced oxidative stress. This study also investigated the antibacterial properties of BEO on different Gram-positive and Gram-negative bacterial strains belonging to the ATCC collection. These results suggest that BEO may help counteract heavy metal-induced neuronal damage, particularly Cd2+ toxicity, potentially reducing one of the environmental risk factors associated with AD. Additionally, its antimicrobial properties reinforce its relevance in preventing infections that may contribute to neuroinflammation in AD. Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

16 pages, 3455 KiB  
Article
Amelioration of Particulate Matter-Induced Oxidative Stress by a Bioactive Hizikia fusiformis Extract: A Functional Biomaterial for Cosmeceutical Applications
by Jeong Won Ahn, Hyun Soo Kim, So Hui Kim, Hye Soo Yang, Kongara Damodar, Yeong-Min Yoo, Jin Tae Hong and Seong Soo Joo
Mar. Drugs 2025, 23(3), 135; https://doi.org/10.3390/md23030135 - 20 Mar 2025
Viewed by 617
Abstract
Air pollution-related skin damage has heightened the demand for natural protective agents. Hizikia fusiformis, a brown seaweed rich in fucoidan and bioactive fatty acids (α-linolenic acid, eicosatetraenoic acid, and palmitic acid), possesses antioxidant and anti-inflammatory properties. This study investigated the protective effects [...] Read more.
Air pollution-related skin damage has heightened the demand for natural protective agents. Hizikia fusiformis, a brown seaweed rich in fucoidan and bioactive fatty acids (α-linolenic acid, eicosatetraenoic acid, and palmitic acid), possesses antioxidant and anti-inflammatory properties. This study investigated the protective effects of H. fusiformis ethanol extract (HFE) against particulate matter (PM)-induced oxidative stress, inflammation, and apoptosis in human keratinocytes. Antioxidant activity was assessed using DPPH and hydroxyl radical scavenging assays, while PM-induced cytotoxicity, ROS generation, inflammatory markers, and apoptotic pathways were evaluated using the WST-8 assay, DCFH2-DA, qPCR, western blotting, and Hoechst staining. HFE significantly reduced ROS levels, enhanced antioxidant enzyme activity, and mitigated PM-induced cytotoxicity. These effects were mediated by fucoidan and fatty acids, which modulated inflammatory pathways (NF-κB and MAPK), stabilized membranes, and inhibited apoptosis (Bcl-2, Bax, and caspase-3). Collectively, these findings highlight HFE’s potential as a natural anti-pollution skincare ingredient, supporting further in vivo studies and formulation development. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds for Skin Health)
Show Figures

Figure 1

20 pages, 2131 KiB  
Article
Bio-Recycling Hazelnut Shells to Improve Antioxidant Properties of Lentinus tigrinus Sporophore
by Anthea Desiderio, Mariana C. Pedrosa, Sandrina A. Heleno, Marcio Carocho, Daniele B. Rodrigues, Simone Buratti, Irene Soffientini, Daniela Ratto, Elena Savino and Paola Rossi
Agriculture 2025, 15(2), 178; https://doi.org/10.3390/agriculture15020178 - 15 Jan 2025
Viewed by 1178
Abstract
Lentinus tigrinus is a wood-decay fungus known for its nutritional, culinary, and medicinal benefits. It contains bioactive compounds like polyphenols, terpenes, and flavonoids that exhibit antioxidant, anti-microbial, and anti-inflammatory effects. These natural antioxidants are increasingly recognized for their potential to prevent oxidative damage [...] Read more.
Lentinus tigrinus is a wood-decay fungus known for its nutritional, culinary, and medicinal benefits. It contains bioactive compounds like polyphenols, terpenes, and flavonoids that exhibit antioxidant, anti-microbial, and anti-inflammatory effects. These natural antioxidants are increasingly recognized for their potential to prevent oxidative damage linked to aging and chronic diseases. This study investigates the antioxidant activity of hydroalcoholic extracts obtained from L. tigrinus sporophores cultivated on hazelnut shells (Lt1_HS), a waste material rich in phenolic compounds, and sporophores cultivated on sawdust (Lt1_S). Bioactivity tests, including DPPH, TBARS, MTT, and DCFH-DA assays, were performed to assess the hydroalcoholic extracts’ efficiency. The results showed that all the extracts contained various bioactive compounds, primarily polyphenols. Notably, the caffeoylquinic acids present in HS and Lt1_HS are linked to anti-peroxidant effects. Biological analyses demonstrated that the Lt1_HS extract has higher anti-peroxidant activity (IC50 0.77 ± 0.01 mg/mL) compared to Lt1_S (IC50 1.36 ± 0.01 mg/mL) and reduces the accumulation of reactive oxygen species in HaCaT cells by 80%. However, the specific bioactive compounds responsible for these antioxidant effects are still unclear, and further analysis will be conducted. Additionally, this study promotes recycling hazelnut shells as a valuable substrate for fungal cultivation, supporting sustainable waste management. Full article
(This article belongs to the Special Issue The Role of Edible Mushrooms in Sustainable Food Systems)
Show Figures

Figure 1

14 pages, 3397 KiB  
Article
Synthesis and Antioxidant Effects of Edaravone-Loaded MPEG-2000-DSPE Micelles in Rotenone-Induced PC12 Cell Model of Parkinson’s Disease
by Xin Luo, Linshan Luo, Rong Lai, Yan Li, Hongyan Zhou and Xiting Li
Nanomaterials 2024, 14(23), 1962; https://doi.org/10.3390/nano14231962 - 6 Dec 2024
Cited by 1 | Viewed by 1224
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder globally that lacks any disease-modifying drug for prevention or treatment. Oxidative stress has been identified as one of the key pathogenic drivers of Parkinson’s disease (PD). Edaravone, an approved free-radical scavenger, has proven [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder globally that lacks any disease-modifying drug for prevention or treatment. Oxidative stress has been identified as one of the key pathogenic drivers of Parkinson’s disease (PD). Edaravone, an approved free-radical scavenger, has proven to have potential against PD by targeting multiple key pathologies, including oxidative stress, focal mitochondria, and neuroinflammation. However, its bioavailability is potentially restricted due to its poor solubility and short half-life. This study aims to develop a simple and effective drug delivery system for edaravone to enhance its solubility, stability, and bioavailability to improve its neuroprotective efficacy. An MPEG-2000-DSPE-edaravone (MDE) micelle was prepared via solvent evaporation using MPEG-2000-DSPE as a carrier to encapsulate edaravone. The morphology, particle size, zeta potential, chemical structure, and edaravone loading of MDE were evaluated. We then investigated whether such targeted edaravone delivery could provide enhanced neuroprotection. A cell model of PD was established in PC12 cells through exposure to rotenone. The effects of MDE on PC12 cells treated with or without rotenone were evaluated using a cell counting kit-8, calcein acetoxymethyl ester (AM)–propidine iodide (PI) staining, and flow cytometry. Cell migration was evaluated using a wound healing assay. Additionally, the intracellular antioxidant study was performed using an ROS-level-detecting DCFH-DA probe, and the mitochondrial membrane potentials were evaluated using a JC-1 assay. MDE with a drug-loading content of 17.6% and an encapsulation efficiency of 92.8% was successfully prepared. The resultant MDE had a mean particle size of 112.97 ± 5.54 nm with a zeta potential of −42 mV. Cytotoxicity assays confirmed that the MDE (≤200 ug/mL) exhibited promising cytocompatibility with no significant effect on cell viability, cell cycle regulation, or apoptosis levels. Likewise, compared with the free edaravone, no effect on cell migration was noted for MDE. MDE might be able to target edaravone delivery into PC12 cells, increasing the mitochondrial membrane potential and providing a significant local antioxidant effect. The results demonstrated that MPEG-2000-DSPE could be a promising material for enhancing edaravone’s aqueous solubility, stability, and antioxidant effects. MDE could be a potential drug formulation for treating PD and other diseases in which oxidative stress plays a key role in pathogenesis. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop