Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (860)

Search Parameters:
Keywords = DC densities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2722 KB  
Article
Electric Field and Charge Characteristics at the Gas–Solid Interface of a Scaled HVDC Wall Bushing Model
by Wenhao Lu, Xiaodi Ouyang, Jinyin Zhang, Xiang Xie, Xiaoxing Wei, Feng Wang, Mingchun Hou and She Chen
Appl. Sci. 2025, 15(21), 11833; https://doi.org/10.3390/app152111833 - 6 Nov 2025
Viewed by 198
Abstract
Ultra-high-voltage direct current (UHVDC) wall bushings are critical components in DC transmission systems, ensuring insulation integrity and operational reliability. In recent years, surface discharge incidents induced by charge accumulation at the gas–solid interface have become increasingly prominent. A comprehensive understanding of the electric [...] Read more.
Ultra-high-voltage direct current (UHVDC) wall bushings are critical components in DC transmission systems, ensuring insulation integrity and operational reliability. In recent years, surface discharge incidents induced by charge accumulation at the gas–solid interface have become increasingly prominent. A comprehensive understanding of the electric field distribution and charge accumulation behavior of wall bushings under UHVDC is therefore essential for improving their safety and stability. In this work, an electrostatic field model of a ±800 kV UHVDC wall bushing core was developed using COMSOL Multiphysics 6.3. Based on this, a geometrically scaled model of the bushing core was further established to investigate charge distribution characteristics along the gas–solid interface under varying voltage amplitudes, application durations, and practical operating conditions. The results reveal that the maximum surface charge density occurs near the geometric corner of the core, with charge accumulation increasing as the applied voltage amplitude rises. Over time, the accumulation exhibits a saturation trend, approaching a steady state after approximately 480 min. Moreover, under actual operating conditions, the charge accumulation at the gas–solid interface increases by approximately 40%. These findings provide valuable insights for the design optimization of UHVDC wall bushings, thereby contributing to improved insulation performance and enhanced long-term operational reliability of DC transmission systems. Full article
Show Figures

Figure 1

12 pages, 2027 KB  
Article
A 300 mV Josephson Arbitrary Waveform Synthesizer Chip at NIM
by Weiyuan Jia, Jiuhui Song, Yuan Zhong, Kunli Zhou, Qina Han, Wenhui Cao, Jinjin Li, Jinhui Cai, Jun Wan and Ziyi Zhao
Appl. Sci. 2025, 15(21), 11811; https://doi.org/10.3390/app152111811 - 5 Nov 2025
Viewed by 175
Abstract
This paper describes the status of developing Josephson arbitrary waveform synthesizer (JAWS) chips at NIM (National Institute of Metrology, China). To obtain high junction integration density and fewer data input channels, the chip employs an on-chip Wilkinson power divider and inside/outside dc blocks, [...] Read more.
This paper describes the status of developing Josephson arbitrary waveform synthesizer (JAWS) chips at NIM (National Institute of Metrology, China). To obtain high junction integration density and fewer data input channels, the chip employs an on-chip Wilkinson power divider and inside/outside dc blocks, enabling both arrays to be driven by a single pulse-generator channel. In addition, the tapered coplanar waveguide structure is used to ensure the microwave uniformity of the long-junction array. Each array consisted of 4000 double-stack Nb/NbxSi1−x/Nb junctions, and 16,000 junctions are integrated in the chip in total. The JAWS chip demonstrates good performance, capable of synthesizing a 300 mV root mean square (rms) voltage with exceptionally low harmonic distortion. Dc and ac voltage-current characteristics measurements indicate that the junctions are with a critical current of 2.5 mA, and a normal-state resistance of 4.5 mΩ per junction. Contact aligners are manually operated to fabricate the chips, and process errors in the fabrication are estimated in this paper. Full article
(This article belongs to the Section Quantum Science and Technology)
Show Figures

Figure 1

17 pages, 4459 KB  
Article
Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors
by Chang-Ting Yang, Yu-Fang Huang, Chun-Wei Tien, Kun-Yang Wu, Hung-Shang Huang and Hsing-I Hsiang
Materials 2025, 18(21), 5016; https://doi.org/10.3390/ma18215016 - 4 Nov 2025
Viewed by 309
Abstract
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors [...] Read more.
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors (100 kHz–1 MHz). We prepared toroidal compacts at 200 MPa and characterized them by initial permeability (μi), core-loss (Pcv(f)), partitioning (Pcv(f) = Khf + Kef2, Kh, Ke: hysteresis and eddy-current loss coefficients), and EBSD (electron backscatter diffraction)-derived microstrain metrics (Kernel Average Misorientation, KAM; low-/high-angle grain-boundary fractions). Corrosion robustness was assessed using a 5 wt% NaCl, 35 °C, 24 h salt-spray protocol. Our findings reveal that FeSiCr achieves the highest μi across the frequency band, despite its lowest compaction density. This is attributed to its coarse particle size (D50 ≈ 18 µm) and the resulting lower intragranular pinning. The loss spectra are dominated by hysteresis over this frequency range, with FeSiCr exhibiting the largest Kh, while the fine, silica-insulated Fe powders (RIP/CIP) most effectively suppress Ke. EBSD analysis shows that the high coercivity and hysteresis loss in CIP (and, to a lesser extent, RIP) are correlated with dense, deformation-induced subgrain networks, as evidenced by higher mean KAM and a lower low-angle grain boundary fraction. In contrast, FeSiCr exhibits the lowest KAM, with strain confined primarily to particle contact regions. Corrosion testing ranked durability as FeSiCr ≳ CIP ≈ RIP ≫ CIP-P, which is consistent with the Cr-rich passivation of FeSiCr and the superior barrier properties of the SiO2 shells compared to low-dose phosphate. At 15 A, inductance retention ranks CIP (67.9%) > RIP (55.7%) > CIP-P (48.8%) > FeSiCr (33.2%), tracking a rise in effective anisotropy and—for FeSiCr—lower Ms that precipitate earlier roll-off. Collectively, these results provide a microstructure-informed selection map for single-powder formulations. We demonstrate that particle size and shell chemistry are the primary factors governing eddy currents (Ke), while the KAM-indexed substructure dictates hysteresis loss (Kh) and DC-bias superposition characteristics. This framework enables rational trade-offs between magnetic permeability, core loss, and environmental durability. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

19 pages, 17884 KB  
Article
Mechanism and Simulation Analysis of Acoustic Wave Excitation by Partial Discharge
by Ziqi Li, Xianmei Wu, Tao Leng, Bingwen An and Wei Dong
Appl. Sci. 2025, 15(21), 11611; https://doi.org/10.3390/app152111611 - 30 Oct 2025
Viewed by 167
Abstract
Partial discharge serves as a typical indicator of insulation defects in high-voltage electrical equipment and is often accompanied by acoustic emission. The online monitoring of partial discharge via acoustic signals makes it essential to investigate the underlying mechanism of acoustic wave excitation by [...] Read more.
Partial discharge serves as a typical indicator of insulation defects in high-voltage electrical equipment and is often accompanied by acoustic emission. The online monitoring of partial discharge via acoustic signals makes it essential to investigate the underlying mechanism of acoustic wave excitation by partial discharge. However, experimental investigation is often prohibitively expensive and struggles to capture key discharge parameters. Numerical simulation thus provides a valuable alternative for microscopic analysis. In this study, a typical needle-plane corona discharge model is employed. Based on the theory that acoustic waves are generated by gas disturbances caused by collisions between charged and neutral particles in weakly ionized gases, a numerical model for acoustic wave excitation by positive corona discharge is developed. Simulations and analyses are performed on the acoustic source characteristics and the acoustic field distribution. The results demonstrate that the spatiotemporal evolution of electron density plays a dominant role in the generation of acoustic waves during positive DC corona discharge. The characteristics of the simulated acoustic field agree well with experimental results from relevant studies, validating the effectiveness of the proposed electroacoustic coupling numerical model and providing a new tool for further research into the acoustic features of partial discharge. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

26 pages, 10008 KB  
Article
Study on the Deterioration of Reinforced Concrete Under Stray Currents and Chloride-Ion Coupling Effects
by Yongkang Ning, Wanqing Zhou and Liangcheng Wang
Buildings 2025, 15(21), 3913; https://doi.org/10.3390/buildings15213913 - 29 Oct 2025
Viewed by 406
Abstract
This study examined the combined effects of chloride ions and stray DC on reinforced concrete (RC) using electromigration and impressed-current methods under varying current densities (0.5, 3.0, 5.0 mA/cm2) and chloride concentrations (50, 1350, 5500 mg/kg). Chloride was identified as the [...] Read more.
This study examined the combined effects of chloride ions and stray DC on reinforced concrete (RC) using electromigration and impressed-current methods under varying current densities (0.5, 3.0, 5.0 mA/cm2) and chloride concentrations (50, 1350, 5500 mg/kg). Chloride was identified as the dominant deterioration factor. At 3.0 mA/cm2, cracking times in moderate and severe chloride environments decreased by 48.75% and 52.62%, respectively, compared to mild conditions. At 0.5 mA/cm2 in severe conditions, the corrosion rate reached 1.317% after 20, 2.75 times that in moderate conditions. Electromigration specimens showed delayed cracking but deeper chloride penetration, while impressed-current specimens exhibited pronounced strip-shaped pitting corrosion. A quadratic polynomial model predicting cracking time based on current density and chloride concentration achieved high accuracy (R2 = 0.95, mean relative error = 7.%). Actual corrosion mass loss was lower than theoretical Faraday values, with current efficiency increasing from 0.3–0.8% to 16.5–18.1% as current density and chloride content rose. These findings highlight the synergistic effect of stray current and chloride attack, emphasizing chloride concentration’s greater impact on service life. The model provides a scientific basis for RC durability design in urban rail transit and coastal engineering. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 2742 KB  
Article
Fabrication and Computational Study of pH-Responsive Chitosan/Poly(HEMA-co-2-HMBA) Microparticles for Controlled, Site-Specific Doxorubicin Delivery
by Sivagangi Reddy Nagella, Ramesh Kumar Chitumalla, Jiun Choi, Joonkyung Jang, Hyung Il Seo and Ildoo Chung
Int. J. Mol. Sci. 2025, 26(21), 10460; https://doi.org/10.3390/ijms262110460 - 28 Oct 2025
Viewed by 305
Abstract
As a chitosan (CTS)-based drug carrier (DC) for doxorubicin (DOX) delivery, poly(2-hydroxyethyl methacrylate-co-2-hydroxy-4-N-methacrylamidobenzoic acid) [poly(HEMA-co-2-HMBA)] (PHCH) was successfully grafted onto chitosan to fabricate DOX-loaded microparticles, and their in vitro release behavior was systematicaly investigated. Morphological characteristics were analyzed using scanning electron microscopy (SEM) [...] Read more.
As a chitosan (CTS)-based drug carrier (DC) for doxorubicin (DOX) delivery, poly(2-hydroxyethyl methacrylate-co-2-hydroxy-4-N-methacrylamidobenzoic acid) [poly(HEMA-co-2-HMBA)] (PHCH) was successfully grafted onto chitosan to fabricate DOX-loaded microparticles, and their in vitro release behavior was systematicaly investigated. Morphological characteristics were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while DOX loading was validated through Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA), comparing pure and drug-loaded microparticles. The maximum loading capacity (~91%) was attributed to the presence of abundant carboxylic acid groups, which imparted pH responsiveness during in vitro DOX release. Furthermore, density functional theory (DFT) calculations revealed that hydrogen bonding interactions between DOX and the functional groups of the microparticles strongly influenced encapsulation efficiency (EE%), drug loading (DL%), and release behavior. The fabricated microparticles exhibited pH-dependent DOX release, with accelerated and more complete release at tumor microenvironment pH 5.5 compared to physiological pH 7.4. These results demonstrate that PHCH grafted CTS microparticles are promising candidates for controlled and site-specific anticancer drug delivery. Full article
Show Figures

Graphical abstract

12 pages, 3041 KB  
Article
Characteristics of Stray Current Distribution in the Power Supply System of Subway Tunnels with a Hollow Circular Section Structure
by Junyang Ma, Zihao Wang, Gen Qian, Weihe Lin and Yadong Fan
Energies 2025, 18(21), 5626; https://doi.org/10.3390/en18215626 - 26 Oct 2025
Viewed by 208
Abstract
The DC traction power system adopts the track as the return rail. When the track-to-earth insulation in the subway tunnel deteriorates, stray currents will cause electrochemical corrosion to tunnel steel structures and seriously affect the service life and safety of metro tunnels. Stray [...] Read more.
The DC traction power system adopts the track as the return rail. When the track-to-earth insulation in the subway tunnel deteriorates, stray currents will cause electrochemical corrosion to tunnel steel structures and seriously affect the service life and safety of metro tunnels. Stray currents cannot be directly measured and can only be calculated. Therefore, a calculation model with a hollow circular cross-section structure was proposed, and the stray current distribution in tunnel steel structures was calculated. In addition, the effects of different rail-to-ground transition resistances and adjacent buried metallic pipelines on the stray current distribution of the tunnel steel structures were taken into account. The results show that the total amount of stray current dispersed into the tunnel steel structures and soil is similar. The stray current density distribution in each steel tunnel is related to its location. The total stray current carried by the steel structures of the bottom tunnel segment is 102, 15.7 and 3.1 times higher than that of the top, upper and lower side tunnel segments, respectively. The reduction in the transition resistance and increase in the distance of the train from the traction substation increase the total rail leakage current and have a small effect on the percentage distribution of stray current in tunnel structures. The buried metal pipeline parallel to the tunnel has a lower impact on the total stray current leakage, but can reduce the total stray current in steel structures and drainage net, enlarging the positive stray current scope of some tunnel steel bars, further increasing the stray current density on tunnel steel bars. The results of this study can be used to determine the degree of corrosion of the underground steel tunnels and thereby provide support for corrosion prevention. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 1286 KB  
Article
Influence of Isolation Techniques on the Quality of Plasma Samples: Implications for Cancer Biobanking
by Francesca Piccotti, Fiorella Treviso, Carlo Morasso, Nadia Pittatore Leone, Antonella Navarra, Sara Albasini, Arianna Bonizzi, Ilaria Tagliolini, Francesca Gorgoglione, Fabio Corsi and Marta Truffi
Int. J. Mol. Sci. 2025, 26(21), 10281; https://doi.org/10.3390/ijms262110281 - 22 Oct 2025
Viewed by 292
Abstract
Biobanks are essential for precision oncology, providing high-quality materials for biomedical research. Liquid biopsy has become a key tool for non-invasive detection of tumor-derived biomarkers, including circulating tumor DNA, proteins, and extracellular vesicles. However, the reliability of these assays critically depends on standardized [...] Read more.
Biobanks are essential for precision oncology, providing high-quality materials for biomedical research. Liquid biopsy has become a key tool for non-invasive detection of tumor-derived biomarkers, including circulating tumor DNA, proteins, and extracellular vesicles. However, the reliability of these assays critically depends on standardized preanalytical procedures. In this study, we evaluated the impact of two plasma isolation methods—direct centrifugation (DC) and density gradient centrifugation (DGC)—on the overall quality of breast cancer samples collected at the Bruno Boerci Biobank (Maugeri, Italy). Plasma obtained with the two methods was analyzed by spectrometry for hemolysis and lipemia, biochemical analysis for protein and lipoprotein composition, flow cytometry for cellular debris and platelet contamination. Preanalytical nonconformities due to hemolysis, icterus, and lipemia were comparable between methods. However, DGC was associated with a higher platelet contamination and reduced albumin and cholesterol levels. Inter-individual variability was preserved, supporting the robustness of patient-specific molecular signatures, despite absolute discrepancies. This study highlights the pivotal role of the isolation techniques in shaping the quality and overall composition of plasma samples. Harmonized, “fit-for-purpose” biobanking protocols are required to ensure reproducibility of downstream analyses, support biomarker discovery, and ultimately advance the identification of novel therapeutic targets in cancer. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 3rd Edition)
Show Figures

Figure 1

18 pages, 9828 KB  
Article
Study on Surface Charge Inversion and Accumulation Characteristics of DC Pillar Insulators Based on B-Spline Basis Functions
by Xi Yang, Houde Xu, Jie Wang, Jian Zhang, Shun Li and Xinran Fang
Energies 2025, 18(20), 5531; https://doi.org/10.3390/en18205531 - 21 Oct 2025
Viewed by 268
Abstract
Surface charge accumulation is an important cause of flashover accidents for DC pillar insulators and the failure of DC gas insulation equipment. In this paper, the DC pillar insulator is taken as the research object, and a surface potential measurement system is built. [...] Read more.
Surface charge accumulation is an important cause of flashover accidents for DC pillar insulators and the failure of DC gas insulation equipment. In this paper, the DC pillar insulator is taken as the research object, and a surface potential measurement system is built. The surface potential distribution of the pillar insulator under different voltages is measured. An inversion algorithm based on the B-spline basis function is proposed. The electric field simulation model of the DC pillar insulator considering the gas’s weak ionization and surface conductance is established. The surface charge accumulation characteristics of the pillar insulator under different DC voltages are studied. The results show that the surface potential of the DC pillar insulator presents an oscillating distribution in the axial direction, and the potential distribution is approximately mirror symmetry under positive and negative voltages. The surface charge density is non-uniform in the axial direction, and the surface charge distribution is different under different voltages. In addition, the current density on the solid side gradually approaches and exceeds the current density on the gas side with the increase in the applied voltage, which promotes the accumulation of charges on the insulator surface with the same symbol as the electrode to weaken the field strength and balance the normal electric field components on both sides. Full article
Show Figures

Figure 1

35 pages, 8289 KB  
Article
Tuning Optical and Photoelectrochemical Properties of TiO2/WOx Heterostructures by Reactive Sputtering: Thickness-Dependent Insights
by Lucas Diniz Araujo, Bianca Sartori, Matheus Damião Machado Torres, David Alexandro Graves, Benedito Donizeti Botan-Neto, Mariane Satomi Weber Murase, Nilton Francelosi Azevedo Neto, Douglas Marcel Gonçalves Leite, Rodrigo Sávio Pessoa, Argemiro Soares da Silva Sobrinho and André Luis Jesus Pereira
Nanomanufacturing 2025, 5(4), 15; https://doi.org/10.3390/nanomanufacturing5040015 - 15 Oct 2025
Viewed by 375
Abstract
Metal-oxide heterostructures represent an effective strategy to overcome the limitations of pristine TiO2, including its ultraviolet-only light absorption and rapid electron–hole recombination, which hinder its performance in solar-driven applications. Among various configurations, coupling TiO2 with tungsten oxide (WOx) [...] Read more.
Metal-oxide heterostructures represent an effective strategy to overcome the limitations of pristine TiO2, including its ultraviolet-only light absorption and rapid electron–hole recombination, which hinder its performance in solar-driven applications. Among various configurations, coupling TiO2 with tungsten oxide (WOx) forms a favorable type-II band alignment that enhances charge separation. However, a comprehensive understanding of how WOx overlayer thickness affects the optical and photoelectrochemical (PEC) behavior of device-grade thin films remains limited. In this study, bilayer TiO2/WOx heterostructures were fabricated via reactive DC magnetron sputtering, with controlled variation in WOx thickness to systematically investigate its influence on the structural, optical, and PEC properties. Adjusting the WOx deposition time enabled precise tuning of light absorption, interfacial charge transfer, and donor density, resulting in markedly distinct PEC responses. The heterostructure obtained with 30 min of WOx deposition demonstrated a significant enhancement in photocurrent density under AM 1.5G illumination, along with reduced charge-transfer resistance and improved capacitive behavior, indicating efficient charge separation and enhanced charge storage at the electrode–electrolyte interface. These findings underscore the potential of sputtered TiO2/WOx bilayers as advanced photoanodes for solar-driven hydrogen generation and light-assisted energy storage applications. Full article
Show Figures

Graphical abstract

13 pages, 2155 KB  
Article
Analysis of Stator Material Influence on BLDC Motor Performance
by Daniel Ziemiański, Gabriela Chwalik-Pilszyk and Grzegorz Dudzik
Materials 2025, 18(19), 4630; https://doi.org/10.3390/ma18194630 - 7 Oct 2025
Viewed by 483
Abstract
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials [...] Read more.
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials such as M19 electrical steel, 1010 low-carbon steel, magnetic PLA, and ABS, and analyzes their impact using FEMM 4.2 finite element simulations. Key electromagnetic characteristics—including flux linkage, Back-EMF, torque, and torque ripple—were compared across configurations. The reference motor with M19 steel stator and 1010 steel rotor achieved ~7 mWb flux linkage, ~39 V pk–pk Back-EMF, and 1.44 Nm torque with ~49% ripple, confirming the suitability of laminated steels for high-power-density designs. Substituting M19 with 1010 steel in the stator reduced torque by less than 10%, indicating material interchangeability with minimal performance loss. By contrast, polymer-based designs exhibited drastic degradation: magnetic PLA yielded only 3.5% of the baseline torque with sixfold ripple increase, while ABS delivered nearly zero torque and >700% ripple. Hybrid configurations improved PLA-based results by 15–20%, though they remained far below ferromagnetic cores. Overall, results demonstrate a nearly linear relationship between material permeability and both flux linkage and Back-EMF, alongside a sharp rise in torque ripple at low permeability. The findings highlight the advantages of ferromagnetic and laminated steel cores for efficiency and stability, while polymer and hybrid cores are limited to lightweight demonstrator applications. Full article
Show Figures

Figure 1

19 pages, 20112 KB  
Article
A Comparison of High-Impulse and Direct-Current Magnetron Sputtering Processes for the Formation of Effective Bactericidal Oxide Coatings on Polymer Substrates
by Joanna Kacprzyńska-Gołacka, Piotr Wieciński, Bogusława Adamczyk-Cieślak, Sylwia Sowa, Wioletta Barszcz, Monika Łożyńska, Marek Kalbarczyk, Andrzej Krasiński, Halina Garbacz and Jerzy Smolik
Materials 2025, 18(19), 4591; https://doi.org/10.3390/ma18194591 - 3 Oct 2025
Viewed by 586
Abstract
In this paper, silver oxide (AgO) and copper oxide (CuO) coatings are placed on a single sputtering target with the direct-current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HIPIMS) methods. All the tested coatings are obtained in a reactive process using a [...] Read more.
In this paper, silver oxide (AgO) and copper oxide (CuO) coatings are placed on a single sputtering target with the direct-current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HIPIMS) methods. All the tested coatings are obtained in a reactive process using a metallic target made by the Kurt Lesker company. The investigated coatings are deposited at room temperature on substrates made of pure iron (ARMCO) and polypropylene (PP) without substrate polarization. The deposition time for all the coatings is the same. The results of SEM and TEM investigations clearly show that using the HIPIMS method for the deposition of AgO and CuO coatings reduces their thickness and increases their structure density. Coatings produced with the HIPIMS method are characterized by a higher hardness and Young’s modulus. The value of hardness for AgO and CuO coatings deposited by the HIPIMS method is around 50% higher for AgO coatings and around 24% higher for CuO coatings compared to the coatings obtained by the DC method. This is also true of Young’s modulus values, which are around 30% higher for AgO coatings and 15% higher for CuO coatings produced by the HIPIMS method compared to those of coatings obtained with the DC method. AgO and CuO coatings deposited with both the methods (HIPIMS and DCMS) showed 100% reduction in the viability of two reference laboratory bacteria strains—Escherichia coli (Gram−) and Staphylococcus aureus (Gram+)—on both types of substrates. Additionally, these coatings are characterized by their hydrophobic properties, which means that they can create a protective barrier, making it difficult for bacteria to stick to the surface, limiting their development and preventing the phenomenon of biofouling. The HIPIMS technology allows for the deposition of coatings with better mechanical properties than those produced with the DCMS method, which means that they are more resistant to brittle fractures and wear and have very good antimicrobial properties. Full article
(This article belongs to the Special Issue Surface Modification of Materials for Multifunctional Applications)
Show Figures

Graphical abstract

19 pages, 2327 KB  
Article
Chondrogenic Maturation Governs hMSC Mechanoresponsiveness to Dynamic Compression
by Farhad Chariyev-Prinz, Ross Burdis and Daniel J. Kelly
Bioengineering 2025, 12(10), 1075; https://doi.org/10.3390/bioengineering12101075 - 3 Oct 2025
Viewed by 744
Abstract
Dynamic compression (DC) bioreactors are widely used to mimic joint loading and study how human mesenchymal stem cells (hMSCs) respond to mechanical cues. However, it remains unclear whether DC alone is sufficient to induce chondrogenesis or how such cues interact during construct maturation. [...] Read more.
Dynamic compression (DC) bioreactors are widely used to mimic joint loading and study how human mesenchymal stem cells (hMSCs) respond to mechanical cues. However, it remains unclear whether DC alone is sufficient to induce chondrogenesis or how such cues interact during construct maturation. In this study, hMSCs were encapsulated in fibrin hydrogels at different cell densities and subjected to DC without, during, or after TGF-β3-mediated chondrogenic induction. DC alone modestly increased SOX9 expression but failed to upregulate key cartilage matrix genes such as ACAN and COL2A1, indicating that mechanical stimulation alone is insufficient to initiate chondrogenesis. When mechanical stimulation was coupled with TGF-β3, a more mature chondrogenic phenotype was observed for high cell seeding densities (HD). To simulate a post-implantation scenario, we applied DC following growth factor withdrawal and observed marked downregulation of SOX9, ACAN, and COL2A1 in low-density (LD) constructs. This reduction was not observed in HD constructs, which maintained a more stable chondrogenic phenotype under loading. These findings show that construct maturation critically influences mechanoresponsiveness and suggest that immature grafts may not tolerate mechanical stimulation. DC bioreactors may therefore serve not only to support cartilage engineering but also to predict in vivo graft performance. Full article
Show Figures

Graphical abstract

13 pages, 3051 KB  
Article
Leakage Current Equalization via Thick Semiconducting Coatings Suppresses Pin Corrosion in Disc Insulators
by Cong Zhang, Hongyan Zheng, Zikui Shen, Junbin Su, Yibo Yang, Heng Zhong and Xiaotao Fu
Energies 2025, 18(19), 5246; https://doi.org/10.3390/en18195246 - 2 Oct 2025
Viewed by 360
Abstract
In coastal hot and humid regions, the steel pin of AC porcelain insulators often suffers from severe electrochemical corrosion due to surface contamination and moisture, leading to insulator string breakage. Contrary to the common belief that AC corrosion is negligible, this study reveals [...] Read more.
In coastal hot and humid regions, the steel pin of AC porcelain insulators often suffers from severe electrochemical corrosion due to surface contamination and moisture, leading to insulator string breakage. Contrary to the common belief that AC corrosion is negligible, this study reveals the significant role of the DC component in leakage currents and the synergy of this DC component with localized high current densities in accelerating corrosion, based on field investigations and experiments. Using a simulation model based on the Suwarno equivalent circuit, it is shown that non-linear contamination causes highly non-sinusoidal leakage currents, with total harmonic distortion up to 40% and a DC component of approximately 22%. To mitigate this, a conductive silicone rubber coating is proposed to block moisture and distribute leakage current evenly, keeping surface current density below the critical threshold of 100 A/m2. Simulations indicate that a 2 mm thick coating with conductivity around 10−4 S/m effectively reduces current density to a safe level. Accelerated corrosion tests confirm that this conductive coating significantly suppresses pitting corrosion caused by high current densities, outperforming traditional insulating coatings. This study presents a practical and effective approach for protecting AC insulators in harsh environments, contributing to improved transmission line reliability in high-temperature and high-humidity regions. Full article
(This article belongs to the Special Issue Advances in High-Voltage Engineering and Insulation Technologies)
Show Figures

Figure 1

50 pages, 6411 KB  
Article
AI-Enhanced Eco-Efficient UAV Design for Sustainable Urban Logistics: Integration of Embedded Intelligence and Renewable Energy Systems
by Luigi Bibbò, Filippo Laganà, Giuliana Bilotta, Giuseppe Maria Meduri, Giovanni Angiulli and Francesco Cotroneo
Energies 2025, 18(19), 5242; https://doi.org/10.3390/en18195242 - 2 Oct 2025
Viewed by 815
Abstract
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic [...] Read more.
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic components and artificial intelligence (AI), with the aim of reducing environmental impact and enabling autonomous navigation in complex urban environments. The UAV platform incorporates brushless DC motors, high-density LiPo batteries and perovskite solar cells to improve energy efficiency and increase flight range. The Deep Q-Network (DQN) allocates energy and selects reference points in the presence of wind and payload disturbances, while an integrated sensor system monitors motor vibration/temperature and charge status to prevent failures. In urban canyon and field scenarios (wind from 0 to 8 m/s; payload from 0.35 to 0.55 kg), the system reduces energy consumption by up to 18%, increases area coverage by 12% for the same charge, and maintains structural safety factors > 1.5 under gust loading. The approach combines sustainable materials, efficient propulsion, and real-time AI-based navigation for energy-conscious flight planning. A hybrid methodology, combining experimental design principles with finite-element-based structural modelling and AI-enhanced monitoring, has been applied to ensure structural health awareness. The study implements proven edge-AI sensor fusion architectures, balancing portability and telemonitoring with an integrated low-power design. The results confirm a reduction in energy consumption and CO2 emissions compared to traditional delivery vehicles, confirming that the proposed system represents a scalable and intelligent solution for last-mile delivery, contributing to climate resilience and urban sustainability. The findings position the proposed UAV as a scalable reference model for integrating AI-driven navigation and renewable energy systems in sustainable logistics. Full article
Show Figures

Figure 1

Back to TopTop