Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = CyHV-2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1232 KiB  
Article
Investigation of β-Carboline Alkaloid Harmaline Against Cyvirus cyprinidallo3 Infection In Vitro and In Vivo
by Clement Manes, Kristen Larson, Shelby Matsuoka, Xisheng Wang, Ruth Milston-Clements and Ling Jin
Viruses 2025, 17(5), 687; https://doi.org/10.3390/v17050687 - 9 May 2025
Viewed by 474
Abstract
Cyvirus cyprinidallo3, also known as Cyprinid herpesvirus 3 (CyHV-3), is a common pathogen of koi and common carp (Cyprinus carpio). Infection of CyHV-3 can lead to high mortality in fry under 4 months of age. CyHV-3 can become latent in [...] Read more.
Cyvirus cyprinidallo3, also known as Cyprinid herpesvirus 3 (CyHV-3), is a common pathogen of koi and common carp (Cyprinus carpio). Infection of CyHV-3 can lead to high mortality in fry under 4 months of age. CyHV-3 can become latent in recovered fish, and latent CyHV-3 can reactivate under stress conditions and spread the virus. Reactivation of CyHV-3 can also lead to mortality and diseases in latently infected fish. No effective drugs are available to prevent CyHV-3 infection or reactivation from latency. There is a need for the discovery of anti-CyHV-3 drugs. Harmine (HAR) and harmaline (HAL) are β-carboline alkaloids found in the medicinal plant Peganum harmala with antiviral activities against many viruses, including HSV. Here, HAL was evaluated against CyHV-3 infection in vitro and in vivo, respectively. Immediately after a one-hour infection exposure of ~1000 FPU/plate or ~500 PFU/plate, cells treated with 5 µM HAL for 2 h can block nearly 50% or 90% plaque formation in vitro. Only around 50% inhibition was observed in cells treated with the common anti-herpesvirus drug acyclovir (ACV) at 10 or 20 µM for 2 h following 1 h post-infection of ~500 PFU/plate. Cells treated with 10 µM HAL for 30 min, 60 min, 2 h, and 6 h can reduce 60%, 65%, 85.5%, and 85% CyHV-3 replication in vitro, respectively. HAL at 20 µM is still effective against CyHV-3 DNA replication and virion production when the treatment started at 3 and 5 days post-infection for 1 or 2 h, respectively. HAL under 50 µM has little toxicity to cells treated for 24 h. Immersion treatment with 10 µM HAL for 3–4 h daily within the first 5 days post-infection can increase the survival of fry by 60%. In addition, IM injection of HAL at 20 µM can reduce the rate of CyHV-3 reactivation induced by heat stress in latently infected koi. This study demonstrated that HAL could potentially be used to prevent CyHV-3 infection or reactivation from latency. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

16 pages, 3860 KiB  
Article
Genome-Wide Identification and Cold Stress Response Mechanism of Barley Di19 Gene Family
by Wenbo Chai, Chao Yuan, Shufen Li, Hanyuan Xu, Qing Zhu, Hongtao Li, Wei Ji and Jun Wang
Biology 2025, 14(5), 508; https://doi.org/10.3390/biology14050508 - 6 May 2025
Viewed by 481
Abstract
The Di19 (Drought-induced 19) gene family encodes Cys2/His2-type zinc finger proteins that are known to be involved in plant responses to various abiotic stresses, including drought, salinity, and temperature extremes. However, little is known about their roles in barley (Hordeum vulgare), [...] Read more.
The Di19 (Drought-induced 19) gene family encodes Cys2/His2-type zinc finger proteins that are known to be involved in plant responses to various abiotic stresses, including drought, salinity, and temperature extremes. However, little is known about their roles in barley (Hordeum vulgare), particularly in cold stress adaptation. This study aimed to conduct a comprehensive genome-wide analysis of the barley genome to identify Di19 gene family members and examine their expression patterns under cold stress, providing theoretical support for stress-resistant barley breeding. By aligning Di19 gene sequences from Arabidopsis and rice and using BLASTp, seven HvDi19 genes were identified in barley. Bioinformatics analysis revealed that all members contain a conserved Cys2/His2-type zinc finger domain and nuclear localization signals. Phylogenetic analysis grouped the HvDi19 genes into four subfamilies, with three homologous gene pairs, and Ka/Ks analysis indicated strong purifying selection. Tissue-specific expression analysis showed significant variation in HvDi19 expression across barley organs. Under cold stress, different barley varieties exhibited distinct HvDi19 gene expression profiles: for instance, HvDi19-1 was downregulated in cold-tolerant varieties, whereas HvDi19-7 showed increased expression in a cold-tolerant mutant, suggesting their potential roles in modulating cold response. These findings reveal the evolutionary conservation and cold-responsive expression characteristics of the HvDi19 gene family, laying a foundation for future functional studies. The results also provide important molecular resources for the genetic improvement of cold tolerance in barley, contributing to the development of stress-resilient crop varieties under climate change. Full article
Show Figures

Figure 1

29 pages, 8947 KiB  
Article
Genomic and Phenotypic Characterization of a Novel Virulent Strain of Cyvirus cyprinidallo2 Originating from an Outbreak in The Netherlands
by Bo He, Arun Sridhar, Marc Thiry, Olga Haenen, Alain F. C. Vanderplasschen and Owen Donohoe
Viruses 2025, 17(5), 658; https://doi.org/10.3390/v17050658 - 30 Apr 2025
Viewed by 521
Abstract
Cyvirus cyprinidallo2 (CyHV-2) is the causative agent of herpesviral hematopoietic necrosis in several economically important farmed freshwater fish species of the genus Carassius. Despite several CyHV-2 strains being isolated and fully sequenced, there is a lack of detailed characterization and consistent [...] Read more.
Cyvirus cyprinidallo2 (CyHV-2) is the causative agent of herpesviral hematopoietic necrosis in several economically important farmed freshwater fish species of the genus Carassius. Despite several CyHV-2 strains being isolated and fully sequenced, there is a lack of detailed characterization and consistent information on strains that exhibit high virulence in adult goldfish through viral challenge by immersion, particularly in the context of European strains and host populations. Strains that can cause highly virulent disease via this inoculation route are much more compatible with experimental designs that are representative of natural infection; thus, their utilization provides greater biological relevance. Consequently, in this study, we isolated three novel strains of CyHV-2 (designated NL-1, NL-2, and NL-3), originating from outbreaks in The Netherlands. Full-length genome sequencing and phylogenetic analyses revealed that these newly isolated strains are distinct from known strains and from each other. Significant differences were observed between the strains, in terms of in vitro growth kinetics, with NL-2 exhibiting stable passaging and superior fitness in vitro. Importantly, the challenge of adult Shubunkin goldfish with the NL-2 strain via immersion (2000 PFU/mL) induced an average mortality of ~40%, while parallel experiments with the CyHV-2 reference strain ST-J1 resulted in no mortality. Taken together, this study represents the characterization of a new CyHV-2 in vivo infection model, much more compatible with experimental designs that are required to be representative of natural infection. This model will be extremely useful in many aspects of CyHV-2 research in the future. Importantly, the genetic and phenotypic characterization performed in this study generates hypotheses on the potential roles of CyHV-2 genes in adaptation of the virus in vitro or in vivo. Full article
(This article belongs to the Special Issue Aquatic Animal Viruses and Antiviral Immunity)
Show Figures

Figure 1

11 pages, 4183 KiB  
Article
Cyprinid herpesvirus 2 ORF41 Protein Degrades Pyruvate Dehydrogenase (PDH)-E1β to Promote Viral Replication in Gibel Carp Brain (GiCB) Cells
by Mingyang Xue, Chen Xu, Zhenyu Huang, Yan Meng, Nan Jiang, Yuding Fan and Yong Zhou
Fishes 2025, 10(3), 107; https://doi.org/10.3390/fishes10030107 - 3 Mar 2025
Viewed by 502
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a major pathogen posing a serious threat to crucian carp farming and has led to major economic losses in China’s aquaculture industry. This research aimed to explore how the CyHV-2-ORF41 protein influences viral replication. Firstly, we found that [...] Read more.
Cyprinid herpesvirus 2 (CyHV-2) is a major pathogen posing a serious threat to crucian carp farming and has led to major economic losses in China’s aquaculture industry. This research aimed to explore how the CyHV-2-ORF41 protein influences viral replication. Firstly, we found that ORF41 overexpression in Gibel carp brain (GiCB) cells significantly enhanced CyHV-2 replication. Subsequently, GST pull-down and LC-MS/MS analyses were conducted to identify ORF41’s protein interactions. The results showed that ORF41 might interact with pyruvate dehydrogenase (PDH)-E1β, an enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle. Furthermore, ORF41 expression decreased the PDH-E1β levels, leading to pyruvate and lactic acid accumulation. Molecular docking and dynamics simulations confirmed a stable interaction between ORF41 and PDH-E1β. This research not only deepens our understanding of CyHV-2’s mechanisms of infection but also suggests potential targets for therapeutic strategies in aquaculture. Full article
(This article belongs to the Special Issue Prevention and Control of Aquatic Animal Diseases)
Show Figures

Figure 1

20 pages, 9291 KiB  
Article
Development Using Bioluminescence Imaging of a Recombinant Anguillid Herpesvirus 1 Vaccine Candidate Associated with Normal Replication In Vitro but Abortive Infection In Vivo
by Haiyan Zhang, Arun Sridhar, Natacha Delrez, Bo He, Sophie Fourny, Yuan Gao, Owen Donohoe and Alain F. C. Vanderplasschen
Vaccines 2024, 12(12), 1423; https://doi.org/10.3390/vaccines12121423 - 17 Dec 2024
Cited by 2 | Viewed by 1276
Abstract
Background/Objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic [...] Read more.
Background/Objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic loss within the eel aquaculture sector. To date, no vaccines are available against AngHV-1. Recently, we developed a safe and efficacious live attenuated recombinant vaccine against Cyprinid herpesvirus 3 (CyHV-3). This CyHV-3 recombinant vaccine encodes a deletion of ORF57. Orthologues of CyHV-3 ORF57 exist in Cyprinid herpesvirus 2 (CyHV-2, ORF57) and AngHV-1 (ORF35). Methods: In the present study, using recombinant strains and bioluminescent in vivo imaging, we investigated the effect of AngHV-1 ORF35 deletion on virus replication in vitro, virulence in vivo, and the potential of an AngHV-1 ORF35-deleted recombinant as a vaccine candidate for the mass vaccination of eels by immersion. With this goal in mind, we produced ORF35-deleted recombinants using two parental strains: a UK strain and a recombinant derived from the former strain by insertion of a Luciferase–GFP reporter cassette into a non-coding intergenic region. Results: Analyses of ORF35-deleted recombinants led to the following observations: (i) AngHV-1 ORF35 is not essential for viral growth in cell culture, and its deletion does not affect the production of extracellular virions despite reducing the size of viral plaque. (ii) In contrast to what has been observed for CyHV-3 ORF57 and CyHV-2 ORF57, in vivo bioluminescent analyses revealed that AngHV-1 ORF35 is an essential virulence factor and that its deletion led to abortive infection in vivo. (iii) Inoculation of the AngHV-1 ORF35-deleted recombinant by immersion induced a protective immune response against a wild-type challenge. This protection was shown to be dose-dependent and to rely on the infectivity of AngHV-1 ORF35-deleted virions. Conclusions: This study suggests that the AngHV-1 ORF35 protein has singular properties compared to its orthologues encoded by CyHV-2 and CyHV-3. It also supports the potential of AngHV-1 ORF35-deleted recombinants for the mass vaccination of eels by immersion. Full article
(This article belongs to the Special Issue Animal Herpesviruses)
Show Figures

Graphical abstract

13 pages, 1425 KiB  
Article
Sequence Analysis of microRNAs Encoded by Simian Lymphocryptoviruses
by Yan Chen, Devin N. Fachko, Helen L. Wu, Jonah B. Sacha and Rebecca L. Skalsky
Viruses 2024, 16(12), 1923; https://doi.org/10.3390/v16121923 - 16 Dec 2024
Cited by 2 | Viewed by 678
Abstract
Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) [...] Read more.
Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) present in lymphoblastoid cell lines (LCLs) derived from a Mauritian cynomolgus macaque (Macaca fascicularis) with cyLCV-associated post-transplant lymphoproliferative disease (PTLD) as well as the viral miRNAs expressed in a baboon (Papio hamadryas) LCL that harbors CeHV12. Via sequence comparisons, we further predicted viral miRNAs encoded by LCVs that infect two additional NHP species: stump-tailed macaques (Macaca arctoides) and bonobos (Pan paniscus). Together, these species represent two arms of the primate phylogeny: Hominoids (Pan) and Old-World monkeys (Macaca, Papio). Through our analysis, we defined sequences for >95 viral miRNAs encoded by these four NHP LCVs. Our study provides the most comprehensive annotation of NHP LCV miRNAs to date, yielding a resource for developing sequence-specific reagents to detect these molecules. Importantly, we further demonstrate that cyLCV miRNAs can be detected in circulation in vivo and have biomarker potential for LCV-related PTLD. Full article
(This article belongs to the Special Issue Herpesvirus Latency 2024)
Show Figures

Figure 1

15 pages, 9809 KiB  
Article
Cloning and Identification of Common Carp (Cyprinus carpio) PI3KC3 and Its Expression in Response to CyHV-3 Infection
by Xiaona Jiang, Lijing Tian, Wanying Ren, Chitao Li, Xuesong Hu, Yanlong Ge, Lei Cheng, Xiaodan Shi and Zhiying Jia
Curr. Issues Mol. Biol. 2024, 46(10), 11714-11728; https://doi.org/10.3390/cimb46100696 - 21 Oct 2024
Viewed by 1332
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a class of key regulatory factors in eukaryotes that can inhibit viral replication by influencing autophagy. Currently, cyprinid herpesvirus 3 (CyHV-3) poses a serious threat to common carp culture. However, PI3K has not yet been identified in common carp. [...] Read more.
Phosphoinositide 3-kinases (PI3Ks) are a class of key regulatory factors in eukaryotes that can inhibit viral replication by influencing autophagy. Currently, cyprinid herpesvirus 3 (CyHV-3) poses a serious threat to common carp culture. However, PI3K has not yet been identified in common carp. In this study, full-length PI3KC3 from common carp (CcPI3KC3), consisting of an open reading frame (ORF) of 2664 bp encoding a polypeptide of 887 amino acids, with a predicted molecular mass of 101.19 kDa and a theoretical isoelectric point (pI) of 5.97, was cloned. The amino acid and nucleotide sequences of CcPI3KC3 displayed high similarity to yellow catfish’s (Tachysurus fulvidraco) PI3KC3. The tissue expression profile revealed that the mRNA levels of CcPI3KC3 in the liver, spleen, and head kidney were significantly greater than those in the brain, heart, intestines, gills, eyes, testes, and ovaries of common carp. We compared the expression patterns of CcPI3KC3 between “Longke-11” mirror carp (CyHV-3-resistant carp) and German mirror carp (non-resistant to CyHV-3) at different times (0, 48, 96, 144 h, 192, 240, 288 h post-infection (hpi)) after CyHV-3 infection. The results revealed that CcPI3KC3 mRNA expression significantly increased in the early infection stage. In the CyHV-3-resistant mirror carp variety, the relative expression of CcPI3KC3 was significantly greater at 48, 96, and 144 hpi compared with the nonbreeding strain groups after infection (p < 0.001). These results indicate that the full-length CcPI3KC3 sequence was successfully cloned from common carp for the first time, and it might play an important role in the immune system of common carp against CyHV-3 infection. This study provides a theoretical basis for the molecular mechanism of CyHV-3 resistance. Full article
(This article belongs to the Special Issue Research on Virus-Induced Cellular and Molecular Responses)
Show Figures

Figure 1

22 pages, 4043 KiB  
Article
Transcriptomic Responses to Koi Herpesvirus in Isolated Blood Leukocytes from Infected Common Carp
by Irene Cano, Ellen Blaker, David Hartnell, Audrey Farbos, Karen A. Moore, Adele Cobb, Eduarda M. Santos and Ronny van Aerle
Viruses 2024, 16(3), 380; https://doi.org/10.3390/v16030380 - 28 Feb 2024
Viewed by 2590
Abstract
Koi herpesvirus (KHV, CyHV-3) causes severe economic losses in carp farms. Its eradication is challenging due to the establishment of latency in blood leukocytes and other tissues. To understand the molecular mechanisms leading to KHV infection in leukocytes, common carp were bath-exposed to [...] Read more.
Koi herpesvirus (KHV, CyHV-3) causes severe economic losses in carp farms. Its eradication is challenging due to the establishment of latency in blood leukocytes and other tissues. To understand the molecular mechanisms leading to KHV infection in leukocytes, common carp were bath-exposed to KHV at 17 °C. After confirming the presence of viral transcripts in blood leukocytes at ten days post infection, RNA-Seq was performed on peripheral blood leukocytes on the Illumina NovaSeq. KHV infection triggered a robust immune response mediated by pattern recognition receptors, mainly toll-like receptors (tlr2, tlr5, tlr7, and tlr13), urokinase plasminogen activator surface receptor-like, galectin proteins, and lipid mediators such as leukotriene B4 receptor 1. Enriched pathways showed increased mitochondria oxidative phosphorylation and the activation of signalling pathways such as mitogen-activated protein kinases (MAPKs) and vascular endothelial growth factor (VEGF). KHV-infected leukocytes showed low production of reactive oxygen species (ROS) and glutathione metabolism, high iron export and phagocytosis activity, and low autophagy. Macrophage polarization was deduced from the up-regulation of genes such as arginase non-hepatic 1-like, macrophage mannose receptor-1, crem, il-10, and il-13 receptors, while markers for cytotoxic T cells were observed to be down-regulated. Further work is required to characterise these leukocyte subsets and the molecular events leading to KHV latency in blood leukocytes. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 4188 KiB  
Article
Generation and Characterization of ORF55/ORF57-Deleted Recombinant Cyprinid herpesvirus 2 Mutants with Chimeric Capsid Protein Gene of Grouper Nervous Necrosis Virus
by Zizhao Feng, Wenjie Cheng, Mingyang Ma, Chenwei Yu, Ye Zhang, Liqun Lu, Hao Wang, Lang Gui, Dan Xu and Chuanfu Dong
Vaccines 2024, 12(1), 43; https://doi.org/10.3390/vaccines12010043 - 30 Dec 2023
Cited by 2 | Viewed by 1905
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a pathogen that causes significant losses to the global aquaculture industry due to mass mortality in crucian carp and goldfish. This study demonstrates that the ORF55/ORF57 deletion mutants CyHV-2-Δ55-CP and CyHV-2-Δ57-CP obtained through homologous recombination replicate effectively within [...] Read more.
Cyprinid herpesvirus 2 (CyHV-2) is a pathogen that causes significant losses to the global aquaculture industry due to mass mortality in crucian carp and goldfish. This study demonstrates that the ORF55/ORF57 deletion mutants CyHV-2-Δ55-CP and CyHV-2-Δ57-CP obtained through homologous recombination replicate effectively within the caudal fin of Carassius auratus gibelio (GiCF) cells and exhibit morphologies similar to the CyHV-2 wild-type strain. Both mutants demonstrated a decrease in virulence, with CyHV-2-Δ57-CP exhibiting a more significant reduction. This serves as a reference for the subsequent development of recombinant attenuated vaccines against CyHV-2. Additionally, both mutants expressed the inserted RGNNV-CP (capsid protein of Redspotted grouper nervous necrosis virus) fusion protein gene, and inoculation with CyHV-2-Δ57-CP-infected GiCF cell lysates elicited an antibody response in the grouper. These results indicate that, while ORF55 and ORF57 genes of CyHV-2 are not required for viral replication in vitro, they do play a role in virulence in vivo. Additionally, expression of foreign protein in CyHV-2 suggests that the fully attenuated mutant of CyHV-2 could potentially function as a viral vector for developing subunit vaccines or multivalent recombinant attenuated vaccines. Full article
(This article belongs to the Special Issue Animal Herpesviruses)
Show Figures

Figure 1

16 pages, 11515 KiB  
Article
Study of Wear of an Alloyed Layer with Chromium Carbide Particles after Plasma Melting
by Antonina I. Karlina, Yuliya I. Karlina, Viktor V. Kondratiev, Roman V. Kononenko and Alexander D. Breki
Crystals 2023, 13(12), 1696; https://doi.org/10.3390/cryst13121696 - 18 Dec 2023
Cited by 11 | Viewed by 2041
Abstract
Depending on operating conditions, metals and alloys are exposed to various factors: wear, friction, corrosion, and others. Plasma surface alloying of machine and tool parts is now an effective surface treatment process of commercial and strategic importance. The plasma surface alloying process involves [...] Read more.
Depending on operating conditions, metals and alloys are exposed to various factors: wear, friction, corrosion, and others. Plasma surface alloying of machine and tool parts is now an effective surface treatment process of commercial and strategic importance. The plasma surface alloying process involves adding the required elements (carbon, chromium, titanium, silicon, nickel, etc.) to the surface layer of the metal during the melting process. A thin layer of the compound is pre-applied to the substrate, then melted and intensively mixed under the influence of a plasma arc, and during the solidification process, a new surface layer with optimal mechanical properties is formed. Copper-based alloys—Cu-X, where X is Fe, Cr, V, Nb, Mo, Ta, and W—belong to an immiscible binary system with high mechanical strength, electrical conductivity, and magnetism (for Fe-Cu) and also high thermal characteristics. At the same time, copper-based alloys have low hardness. In this article, wear tests were carried out on coatings obtained by plasma alloying of CuSn10 and CrxCy under various friction conditions. The following were chosen as a modifying element: chromium carbide to increase hardness and iron to increase surface tension. It is noted that an increase in the chromium carbide content to 20% leads to the formation of a martensitic structure. As a result, the microhardness of the layer increased to 700 HV. The addition of CuSn10 + 20% CrxCy and an additional 5% iron to the composition of the coating improves the formation of the surface layer. Friction tests on fixed abrasive particles were carried out at various loads of 5, 10, and 50 N. According to the test results, the alloy layer of the Fe-Cr-C-Cu-Sn system has the greatest wear resistance under abrasive conditions and dry sliding friction conditions. Full article
(This article belongs to the Special Issue Advances in Surface Modification of Metals and Alloys)
Show Figures

Figure 1

15 pages, 2798 KiB  
Article
Alterations of Plasma Biochemical and Immunological Parameters and Spatiotemporal Expression of TLR2 and TLR9 in Gibel Carp (Carassius auratus gibelio) after CyHV-2 Infection
by Jinwei Gao, Yiwen Hu, Min Xie, Hao Wu, Jiayu Wu, Bingwen Xi, Rui Song and Dongsheng Ou
Pathogens 2023, 12(11), 1329; https://doi.org/10.3390/pathogens12111329 - 8 Nov 2023
Viewed by 1822
Abstract
Cyprinid herpesvirus II (CyHV-2), a highly contagious pathogen of gibel carp (Carassius auratus gibelio), causes herpesviral hematopoietic necrosis disease (HVHND) and enormous financial losses. However, there is limited information available regarding the changes in plasma biochemical and immunological parameters and the [...] Read more.
Cyprinid herpesvirus II (CyHV-2), a highly contagious pathogen of gibel carp (Carassius auratus gibelio), causes herpesviral hematopoietic necrosis disease (HVHND) and enormous financial losses. However, there is limited information available regarding the changes in plasma biochemical and immunological parameters and the response characteristics of Toll-like receptor 2 (TLR2) and Toll-like receptor 9 (TLR9) in gibel carp after CyHV-2 infection. To address this knowledge gap, a sub-lethal CyHV-2 infection was conducted in gibel carp, and the sample was collected daily from 1 to 7 days post infection. The plasma biochemical analyses showed significant decreases in the content of glucose, total cholesterol (TCHO), and total protein (TP), along with marked increases in the level of uric acid, urea, creatinine (CREA), Complement 3 (C3), immunoglobulin D (IgD), and immunoglobulin M (IgM) as well as in the activity of alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in the infected group. Compared with the control group, the concentration of cortisol, triglyceride (TG), and Complement 4 (C4) had no noticeable alterations in the infected group. Real-time quantitative PCR analysis showed significant upregulation of TLR2 and TLR9 mRNA expression in the spleen, kidney, brain, liver, intestine, and gill post CyHV-2 infection. Interestingly, a time- and tissue-dependent expression profile has been comparatively observed for TLR2 and TLR9 in the above tissues of gibel carp after CyHV-2 infection, suggesting distinct roles between TLR2 and TLR9 in antiviral response to CyHV-2 infection. Overall, our results demonstrated that CyHV-2 infection led to the disruption of the physiological metabolic process and damage to the liver and kidney, and induced different spatiotemporal expression patterns of TLR2 and TLR9, ultimately stimulating antiviral response via innate and adaptive immune system. These findings may provide a deeper understanding of the host immunity response to CyHV-2 infection and offer novel perspectives for the prevention and treatment and therapeutic drug development against CyHV-2. Full article
(This article belongs to the Special Issue Host Immune Responses to Intracellular Pathogens)
Show Figures

Figure 1

30 pages, 17669 KiB  
Article
In Vivo Imaging Sheds Light on the Susceptibility and Permissivity of Carassius auratus to Cyprinid Herpesvirus 2 According to Developmental Stage
by Bo He, Arun Sridhar, Cindy Streiff, Caroline Deketelaere, Haiyan Zhang, Yuan Gao, Yunlong Hu, Sebastien Pirotte, Natacha Delrez, Andrew J. Davison, Owen Donohoe and Alain F. C. Vanderplasschen
Viruses 2023, 15(8), 1746; https://doi.org/10.3390/v15081746 - 15 Aug 2023
Cited by 8 | Viewed by 2445 | Correction
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a virus that causes mass mortality in economically important Carassius spp. However, there have been no comprehensive studies into host susceptibility or permissivity with respect to developmental stage, and the major portal of viral entry into the host [...] Read more.
Cyprinid herpesvirus 2 (CyHV-2) is a virus that causes mass mortality in economically important Carassius spp. However, there have been no comprehensive studies into host susceptibility or permissivity with respect to developmental stage, and the major portal of viral entry into the host is still unclear. To help bridge these knowledge gaps, we developed the first ever recombinant strain of CyHV-2 expressing bioluminescent and fluorescent reporter genes. Infection of Carassius auratus hosts with this recombinant by immersion facilitated the exploitation of various in vivo imaging techniques to establish the spatiotemporal aspects of CyHV-2 replication at larval, juvenile, and adult developmental stages. While less susceptible than later developmental stages, larvae were most permissive to CyHV-2 replication, leading to rapid systemic infection and high mortality. Permissivity to CyHV-2 decreased with advancing development, with adults being the least permissive and, thus, also exhibiting the least mortality. Across all developmental stages, the skin was the most susceptible and permissive organ to infection at the earliest sampling points post-infection, indicating that it represents the major portal of entry into these hosts. Collectively these findings provide important fundamental insights into CyHV-2 pathogenesis and epidemiology in Carassius auratus with high relevance to other related economically important virus-host models. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 929 KiB  
Article
Impact of Global Warming on the Severity of Viral Diseases: A Potentially Alarming Threat to Sustainable Aquaculture Worldwide
by Marine Combe, Miriam Reverter, Domenico Caruso, Elodie Pepey and Rodolphe Elie Gozlan
Microorganisms 2023, 11(4), 1049; https://doi.org/10.3390/microorganisms11041049 - 17 Apr 2023
Cited by 26 | Viewed by 5254
Abstract
With an ever-increasing human population, food security remains a central issue for the coming years. The magnitude of the environmental impacts of food production has motivated the assessment of the environmental and health benefits of shifting diets, from meat to fish and seafood. [...] Read more.
With an ever-increasing human population, food security remains a central issue for the coming years. The magnitude of the environmental impacts of food production has motivated the assessment of the environmental and health benefits of shifting diets, from meat to fish and seafood. One of the main concerns for the sustainable development of aquaculture is the emergence and spread of infectious animal diseases in a warming climate. We conducted a meta-analysis to investigate the influence of global warming on mortality due to viral infections in farmed aquatic animals. We found a positive trend between increasing temperature and increasing viral virulence, with an increase in water temperature of 1 °C resulting in an increase in mortality of 1.47–8.33% in OsHV-1 infected oysters, 2.55–6.98% in carps infected with CyHV-3 and 2.18–5.37% in fishes infected with NVVs. We suggest that global warming is going to pose a risk of viral disease outbreaks in aquaculture and could compromise global food security. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

36 pages, 16874 KiB  
Article
Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses
by Cindy Streiff, Bo He, Léa Morvan, Haiyan Zhang, Natacha Delrez, Mickael Fourrier, Isabelle Manfroid, Nicolás M. Suárez, Stéphane Betoulle, Andrew J. Davison, Owen Donohoe and Alain Vanderplasschen
Viruses 2023, 15(3), 768; https://doi.org/10.3390/v15030768 - 17 Mar 2023
Cited by 8 | Viewed by 4318
Abstract
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that [...] Read more.
The zebrafish (Danio rerio) represents an increasingly important model organism in virology. We evaluated its utility in the study of economically important viruses from the genus Cyprinivirus (anguillid herpesvirus 1, cyprinid herpesvirus 2 and cyprinid herpesvirus 3 (CyHV-3)). This revealed that zebrafish larvae were not susceptible to these viruses after immersion in contaminated water, but that infections could be established using artificial infection models in vitro (zebrafish cell lines) and in vivo (microinjection of larvae). However, infections were transient, with rapid viral clearance associated with apoptosis-like death of infected cells. Transcriptomic analysis of CyHV-3-infected larvae revealed upregulation of interferon-stimulated genes, in particular those encoding nucleic acid sensors, mediators of programmed cell death and related genes. It was notable that uncharacterized non-coding RNA genes and retrotransposons were also among those most upregulated. CRISPR/Cas9 knockout of the zebrafish gene encoding protein kinase R (PKR) and a related gene encoding a protein kinase containing Z-DNA binding domains (PKZ) had no impact on CyHV-3 clearance in larvae. Our study strongly supports the importance of innate immunity-virus interactions in the adaptation of cypriniviruses to their natural hosts. It also highlights the potential of the CyHV-3-zebrafish model, versus the CyHV-3-carp model, for study of these interactions. Full article
(This article belongs to the Special Issue Fish Virology)
Show Figures

Figure 1

15 pages, 3954 KiB  
Article
Aflatoxin B1 Induced Oxidative Stress and Gut Microbiota Disorder to Increase the Infection of Cyprinid Herpesvirus 2 in Gibel Carp (Carassius auratus gibelio)
by Mingyang Xue, Miao Fu, Mengwei Zhang, Chen Xu, Yan Meng, Nan Jiang, Yiqun Li, Wenzhi Liu, Yuding Fan and Yong Zhou
Antioxidants 2023, 12(2), 306; https://doi.org/10.3390/antiox12020306 - 28 Jan 2023
Cited by 11 | Viewed by 2773
Abstract
Aflatoxin contamination of food and water is a serious problem worldwide. This study investigated the defensive ability of gibel carp exposed to aflatoxin B1 (AFB1) by challenging it with cyprinid herpesvirus 2 (CyHV-2) infection. The data showed that AFB1 exposure significantly increased the [...] Read more.
Aflatoxin contamination of food and water is a serious problem worldwide. This study investigated the defensive ability of gibel carp exposed to aflatoxin B1 (AFB1) by challenging it with cyprinid herpesvirus 2 (CyHV-2) infection. The data showed that AFB1 exposure significantly increased the mortality of CyHV-2-infected gibel carp, and enhanced the viral load in the fish liver, kidney, and spleen. The oxidative-antioxidant balance suggested that AFB1 induced severe oxidative stress, including increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the AFB1 exposed group, and the reduced activity of superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in the AFB1 exposed group. Meanwhile, the related expression of nuclear factor erythroid 2-related factor 2 (Nrf2), interferon regulatory factor 3 (IRF3) and the type 1 interferon (IFN1) were noticeably down-regulated, but caspase-1 was up-regulated, after exposure to AFB1, demonstrating that fish are unable to avoid the virus infection. It should be noted that the intestinal microbiota diversity and richness were lower in the AFB1 exposed group, and the composition of intestinal microbiota was affected by AFB1, resulting in the higher abundance of bacteria (such as Aeromonas and Bacteroides) and the lower abundance of potentially beneficial bacteria (such as Cetobacterium and Clostridium) in the AFB1 exposed group. This research provides insight into the possibility that AFB1 may increase the susceptibility of C. gibelio to CyHV-2 infection, and thus amplify the viral outbreak to endanger ecological safety in aquatic environment. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

Back to TopTop