Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (213)

Search Parameters:
Keywords = CuO nanomaterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6025 KiB  
Article
Solar-Activated Titanium-Based Cu4O3/ZrO2/TiO2 Ternary Nano-Heterojunction for Rapid Photocatalytic Degradation of the Textile Dye Everzol Yellow 3RS
by Saira, Wesam Abd El-Fattah, Muhammad Shahid, Sufyan Ashraf, Zeshan Ali Sandhu, Ahlem Guesmi, Naoufel Ben Hamadi, Mohd Farhan and Muhammad Asam Raza
Catalysts 2025, 15(8), 751; https://doi.org/10.3390/catal15080751 - 6 Aug 2025
Abstract
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption [...] Read more.
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption onto natural or modified clays and zeolites, and no photocatalytic pathway employing engineered nanomaterials has been documented to date. This study reports the synthesis, characterization, and performance of a visible-active ternary nanocomposite, Cu4O3/ZrO2/TiO2, prepared hydrothermally alongside its binary (Cu4O3/ZrO2) and rutile TiO2 counterparts. XRD, FT-IR, SEM-EDX, UV-Vis, and PL analyses confirm a heterostructured architecture with a narrowed optical bandgap of 2.91 eV, efficient charge separation, and a mesoporous nanosphere-in-matrix morphology. Photocatalytic tests conducted under midsummer sunlight reveal that the ternary catalyst removes 91.41% of 40 ppm EY-3RS within 100 min, markedly surpassing the binary catalyst (86.65%) and TiO2 (81.48%). Activity trends persist across a wide range of operational variables, including dye concentrations (20–100 ppm), catalyst dosages (10–40 mg), pH levels (3–11), and irradiation times (up to 100 min). The material retains ≈ 93% of its initial efficiency after four consecutive cycles, evidencing good reusability. This work introduces the first nanophotocatalytic strategy for EY-3RS degradation and underscores the promise of multi-oxide heterojunctions for solar-driven remediation of colored effluents. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Viewed by 139
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 219
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

15 pages, 2469 KiB  
Review
Recent Developments of Nanomaterials in Crop Growth and Production: The Case of the Tomato (Solanum lycopersicum)
by Eric G. Echeverría-Pérez, Vianii Cruz-López, Rosario Herrera-Rivera, Mario J. Romellón-Cerino, Jesusita Rosas-Diaz and Heriberto Cruz-Martínez
Agronomy 2025, 15(7), 1716; https://doi.org/10.3390/agronomy15071716 - 16 Jul 2025
Viewed by 521
Abstract
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. [...] Read more.
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. Therefore, it is necessary to develop alternatives to conventional agrochemical products. Applying nanomaterials as fertilizers in tomato production is emerging as a promising approach, with documented improvements in germination, vegetative development, and fruit yield. Therefore, we present a comprehensive review of recent developments (2015–2024) in the application of nanomaterials in tomato crops, with a particular emphasis on the significance of nanomaterial characteristics in their role as fertilizers. Several types of nanomaterials, such as ZnO, Ag, TiO2, Si, hydroxyapatite, P, Zn, Se, CuO, Cu, Fe, Fe2O3, CaO, CaCO3, and S, have been evaluated as fertilizers for tomato crops, with ZnO nanoparticles being the most extensively studied. However, it is pertinent to conduct further research on the less-explored nanomaterials to gain a deeper understanding of their effects on seed germination, plant growth, and fruit quality and quantity. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Agricultural Food Engineering)
Show Figures

Figure 1

19 pages, 6391 KiB  
Article
Assessing Antibacterial Properties of Copper Oxide Nanomaterials on Gut-Relevant Bacteria In Vitro: A Multifaceted Approach
by Tia A. Wardlaw, Abdulkader Masri, David M. Brown and Helinor J. Johnston
Nanomaterials 2025, 15(14), 1103; https://doi.org/10.3390/nano15141103 - 16 Jul 2025
Viewed by 424
Abstract
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs [...] Read more.
Due to the growth in the application of antibacterial nanomaterials (NMs), there is an increased potential for ingestion by humans. Evidence shows that NMs can induce dysbiosis in the gut microbiota in vivo. However, in vitro investigation of the antibacterial activity of NMs on gut-relevant, commensal bacteria has been neglected, with studies predominantly assessing NM toxicity against pathogenic bacteria. The current study investigates the antibacterial activity of copper oxide (CuO) NMs to Escherichia coli K12, Enterococcus faecalis, and Lactobacillus casei using a combination of approaches and evaluates the importance of reactive oxygen species (ROS) production as a mechanism of toxicity. The impact of CuO NMs (100, 200, and 300 μg/mL) on the growth and viability of bacterial strains was assessed via plate counts, optical density (OD) measurements, well and disc diffusion assays, and live/dead fluorescent imaging. CuO NMs reduced the viability of all bacteria in a concentration-dependent manner in all assays except the diffusion assays. The most sensitive methods were OD measurements and plate counts. The sensitivity of bacterial strains varied depending on the method, but overall, the results suggest that E. coli K12 is the most sensitive to CuO NM toxicity. The production of ROS by all bacterial strains was observed via DCFH-DA fluorescent imaging following exposure to CuO NMs (300 μg/mL). Overall, the data suggests that CuO NMs have antibacterial activity against gut-relevant bacteria, with evidence that NM-mediated ROS production may contribute to reductions in bacterial viability. Our findings suggest that the use of a combination of assays provides a robust assessment of the antibacterial properties of ingested NMs, and in particular, it is recommended that plate counts and OD measurements be prioritised in the future when screening the antibacterial properties of NMs. Full article
Show Figures

Graphical abstract

16 pages, 2807 KiB  
Review
Research on the Rapid Curing Mechanism and Technology of Chinese Lacquer
by Jiangyan Hou, Tianyi Wang, Yao Wang, Xinhao Feng and Xinyou Liu
Polymers 2025, 17(12), 1596; https://doi.org/10.3390/polym17121596 - 7 Jun 2025
Viewed by 605
Abstract
Chinese lacquer, a historically significant bio-based coating, has garnered increasing attention in sustainable materials research due to its outstanding corrosion resistance, thermal stability, and environmental friendliness. Its curing process relies on the laccase-catalyzed oxidation and polymerization of urushiol to form a dense lacquer [...] Read more.
Chinese lacquer, a historically significant bio-based coating, has garnered increasing attention in sustainable materials research due to its outstanding corrosion resistance, thermal stability, and environmental friendliness. Its curing process relies on the laccase-catalyzed oxidation and polymerization of urushiol to form a dense lacquer film. However, the stringent temperature and humidity requirements (20–30 °C, 70–80% humidity) and a curing period that can extend over several weeks severely constrain its industrial application. Recent studies have significantly enhanced the curing efficiency through strategies such as pre-polymerization control, metal ion catalysis (e.g., Cu2+ reducing drying time to just one day), and nanomaterial modification (e.g., nano-Al2O3 increasing film hardness to 6H). Nevertheless, challenges remain, including the sensitivity of laccase activity to environmental fluctuations, the trade-off between accelerated curing and film performance, and issues related to toxic pigments and VOC emissions. Future developments should integrate enzyme engineering (e.g., directed evolution to broaden laccase tolerance), intelligent catalytic systems (e.g., photo-enzyme synergy), and green technologies (e.g., UV curing), complemented by multiscale modeling and circular design strategies, to drive the innovative applications of Chinese lacquer in high-end fields such as aerospace sealing and cultural heritage preservation. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

2 pages, 611 KiB  
Correction
Correction: Altynbaeva et al. A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials 2022, 12, 1724
by Liliya Sh. Altynbaeva, Murat Barsbay, Nurgulim A. Aimanova, Zhanar Ye. Jakupova, Dinara T. Nurpeisova, Maxim V. Zdorovets and Anastassiya A. Mashentseva
Nanomaterials 2025, 15(11), 808; https://doi.org/10.3390/nano15110808 - 28 May 2025
Viewed by 268
Abstract
In the original publication [...] Full article
Show Figures

Figure 13

14 pages, 3093 KiB  
Article
Gas-Sensing Study and Applications of Triboelectric Nanogenerator-Powered CuO-Modified CeO2 Nanomaterials for Ammonia Sensor at Room Temperature
by Junsheng Ding, Yingang Gui and Hua Huang
Sensors 2025, 25(9), 2753; https://doi.org/10.3390/s25092753 - 26 Apr 2025
Viewed by 629
Abstract
Ammonia (NH3) is a common agricultural gas, and its accurate detection is critical to agricultural production. In this study, nano-CuO/CeO2 composites were prepared to achieve a wide range of ammonia detection at room temperature. Characterization data verified the composite heterojunction [...] Read more.
Ammonia (NH3) is a common agricultural gas, and its accurate detection is critical to agricultural production. In this study, nano-CuO/CeO2 composites were prepared to achieve a wide range of ammonia detection at room temperature. Characterization data verified the composite heterojunction structure of CuO/CeO2, which demonstrates an outstanding large specific surface area for ammonia detection. It provides more active sites for NH3 molecules, which brings a very high response to ammonia (70.3% @100 ppm NH3), a large detection range (0.5–200 ppm NH3), and a fast response/recovery time (13 s/17 s @20 ppm NH3). Systematic testing showed that the nano-CuO/CeO2 composites also exhibit excellent extended-term stability and selectivity. Further studies showed that the p-n heterojunction structure of CuO/CeO2 allowed the composite to retain its gas-sensitive properties to ammonia, in addition to the improved ammonia-detection range of the composite based on the synergistic effect of these two materials. The mechanism of CuO/CeO2 heterojunction nanocomposites towards ammonia detection was also elucidated from a microscopic perspective at the molecular level. Finally, a triboelectric nanogenerator (TENG) that can be driven by wind power has been prepared, upon which the feasibility of the combination of the TENG and the ammonia sensor to realize environmental monitoring was investigated. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

1 pages, 449 KiB  
Correction
Correction: Wang et al. Ethynylation of Formaldehyde over CuO/SiO2 Catalysts Modified by Mg Species: Effects of the Existential States of Mg Species. Nanomaterials 2019, 9, 1137
by Zhipeng Wang, Lijun Ban, Pingfan Meng, Haitao Li and Yongxiang Zhao
Nanomaterials 2025, 15(8), 599; https://doi.org/10.3390/nano15080599 - 14 Apr 2025
Viewed by 277
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

22 pages, 6000 KiB  
Article
Identifying the Phytotoxicity of Biosynthesized Metal Oxide Nanoparticles and Their Impact on Antioxidative Enzymatic Activity in Maize Under Drought Stress
by Hafiz Muhammad Rizwan, Usman Shafqat, Aneeza Ishfaq, Fatima Batool, Faisal Mahmood, Qitao Su, Nimra Yaseen, Tehziba Raza and Faizah Amer Altihani
Plants 2025, 14(7), 1075; https://doi.org/10.3390/plants14071075 - 1 Apr 2025
Cited by 1 | Viewed by 1011
Abstract
Maize (Zea mays L.), an important crop used for animal feed and human consumption, is currently threatened by water shortage. Recently, the usage of nanomaterials has attracted worldwide attention due to their applications in various fields. This research aimed to evaluate the [...] Read more.
Maize (Zea mays L.), an important crop used for animal feed and human consumption, is currently threatened by water shortage. Recently, the usage of nanomaterials has attracted worldwide attention due to their applications in various fields. This research aimed to evaluate the comparative efficacy of different metal oxide nanoparticles for mitigating drought stress in maize. Iron oxide, manganese oxide, and copper nanoparticles were biosynthesized from the leaf extract of Conocarpus erectus L. and characterized via UV-Vis, XRD, FTIR, and SEM. The synthesized nanomaterials were initially optimized at different concentrations (0, 25, 50, 75, and 100 ppm). The optimized doses of each nanoparticle were then applied to maize plants under different drought stress levels (50% FC, 75% FC, and 100% FC). Compared to the control, the application of nanomaterials significantly improved the growth parameters of the maize by 30% at 50% FC, 27% at 75% FC, and 26% at 100% FC. The chlorophyll content also improved significantly at different levels of drought stress by 35%, 32%, and 29% as compared to the control, respectively. The antioxidants (CAT, POD, SOD, and APX) also improved significantly at different levels of drought by 37%, 34%, and 31%, as compared to control, respectively. Moreover, the use of nanoparticles resulted in a significant decrease in cellular oxidative stress (MDA, H2O2) parameters by 23% at 50%FC, 26% at 75% FC, and 27% at 100% FC. Biosynthesized FeO NPs, MnO NPs, and Cu NPs have demonstrated significant potential in mitigating drought stress in maize, suggesting a promising approach to enhance crop performance under water-limited conditions. Further research is recommended to explore the long-term impacts and practical applications of these findings in sustainable agriculture. Full article
Show Figures

Figure 1

18 pages, 11715 KiB  
Article
Interaction of Manganese-Doped Copper Oxide Nano-Platelets with Cells: Biocompatibility and Anticancer Activity Assessment
by Ioan-Ovidiu Pană, Alexandra Ciorîță, Sanda Boca, Simona Guțoiu, Irina Kacso, Maria Olimpia Miclăuș, Oana Grad, Ana Maria Raluca Gherman, Cristian Leostean and Maria Suciu
Biomimetics 2025, 10(4), 203; https://doi.org/10.3390/biomimetics10040203 - 26 Mar 2025
Viewed by 717
Abstract
Understanding cellular interaction with nanomaterials represents a subject of great interest for the validation of new diagnostic and therapeutic tools. A full characterization of a designed product includes the evaluation of its impact on specific biological systems, including the study of cell behavior [...] Read more.
Understanding cellular interaction with nanomaterials represents a subject of great interest for the validation of new diagnostic and therapeutic tools. A full characterization of a designed product includes the evaluation of its impact on specific biological systems, including the study of cell behavior as a response to that particular interaction. Copper and copper-based nanoparticles (CuO NPs) have emerged as valuable building blocks for various biomedical applications such as antibacterial and disinfecting agents for infectious diseases, and the evaluation of the metabolism of food, including the iron required for proteins and enzymes or as drug delivery systems in cancer therapy. In this study, the biological impact of manganese-doped crystalline copper oxide (CuO:Mn) nano-platelets on human normal BJ fibroblasts and human A375 skin melanoma was assessed. The particles were synthesized at room temperature via the hydrothermal method. A complete physicochemical characterization of the materials was performed by employing various techniques including X-ray diffraction, electron microscopy, X-Ray photoelectron spectroscopy, and dynamic light scattering. Morphological investigations revealed a flat structure with nearly straight edges, with sizes spanning in the nanometer range. XRD analysis confirmed the formation of the CuO phase with good crystallinity, while XPS provided insights into the Mn doping. The findings indicate that nano-platelets interact with cells actively by mediating essential molecular processes. The exogenous manganese triggers increased MnSOD production in mitochondria, compensating ROS produced by external stress factors (Cu2+ ions), and mimics the endogenous SODs production, which compensates internal ROS production as it normally results from cell biochemistry. The effect is differentiated in normal cells compared to malignant cells and deserves investigation. Full article
Show Figures

Figure 1

19 pages, 2262 KiB  
Article
Green Synthesis and Comparative Analysis of Silver, Copper Oxide, and Bimetallic Ag/CuO Nanoparticles Using Cistus creticus L. Extract: Physicochemical Properties, Stability, and Antioxidant Potential
by Chrysi Chaikali, Nicole Dora Stola, Paraskevi Lampropoulou, Dimitrios Papoulis, Fotini N. Lamari, Malvina Orkoula, Michail Lykouras, Konstantinos Avgoustakis and Sophia Hatziantoniou
Int. J. Mol. Sci. 2025, 26(6), 2518; https://doi.org/10.3390/ijms26062518 - 11 Mar 2025
Cited by 3 | Viewed by 2232
Abstract
This study investigates silver (Ag), copper oxide (CuO), and bimetallic Ag/CuO nanoparticles (NPs) synthesized using Cistus creticus L. extract, focusing on their synthesis, physicochemical characteristics, and antioxidant activity. Green synthesis methods utilizing plant extracts offer environmentally benign routes for nanoparticle fabrication, attracting significant [...] Read more.
This study investigates silver (Ag), copper oxide (CuO), and bimetallic Ag/CuO nanoparticles (NPs) synthesized using Cistus creticus L. extract, focusing on their synthesis, physicochemical characteristics, and antioxidant activity. Green synthesis methods utilizing plant extracts offer environmentally benign routes for nanoparticle fabrication, attracting significant interest across multiple fields. NP formation was confirmed by UV/Vis and total X-ray fluorescence (TXRF) spectroscopy, while dynamic and electrophoretic light scattering (DLS, ELS) characterized particle size and ζ-potential, respectively. AgNPs exhibited the smallest particle size (30.8 ± 8.81 nm), while CuONPs had the largest (44.07 ± 19.19 nm). For Ag/CuONPs, the ζ-potential value was −77.9 ± 2.99 mV. Morphological and structural analyses performed using transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) revealed that AgNPs were spherical, while CuONPs and Ag/CuONPs exhibited spherical and polymorphic structures. Colloidal stability studies over 60 days demonstrated that the NPs were highly stable, indicating their suitability for pharmaceutical and cosmetic applications. Antioxidant activity, assessed via the DPPH assay, demonstrated that CuONPs had the highest free radical scavenging activity. By systemically comparing Ag, CuO, and bimetallic Ag/CuONPs synthesized from Cistus creticus L. extract, this study provides valuable insights for the development of tailored nanomaterials with diverse applications in pharmaceutics and cosmetics. Full article
(This article belongs to the Special Issue Metal Nanoparticles: From Fundamental Studies to New Applications)
Show Figures

Graphical abstract

25 pages, 10472 KiB  
Article
Nanoparticle-Enhanced Collagen Hydrogels for Chronic Wound Management
by Alexandra Cătălina Bîrcă, Mihai Alexandru Minculescu, Adelina-Gabriela Niculescu, Ariana Hudiță, Alina Maria Holban, Adina Alberts and Alexandru Mihai Grumezescu
J. Funct. Biomater. 2025, 16(3), 91; https://doi.org/10.3390/jfb16030091 - 5 Mar 2025
Cited by 9 | Viewed by 2683
Abstract
Chronic wound infections present a persistent medical challenge; however, advancements in wound dressings and antimicrobial nanomaterials offer promising solutions for improving healing outcomes. This study introduces a hydrothermal synthesis approach for producing zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, subsequently incorporated into [...] Read more.
Chronic wound infections present a persistent medical challenge; however, advancements in wound dressings and antimicrobial nanomaterials offer promising solutions for improving healing outcomes. This study introduces a hydrothermal synthesis approach for producing zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, subsequently incorporated into PLGA microspheres and embedded within collagen hydrogels. The nanoparticles’ physicochemical properties were characterized using X-ray diffraction (XRD) to confirm crystalline structure, scanning electron microscopy (SEM) for surface morphology, and Fourier-transform infrared spectroscopy (FT-IR) to verify functional groups and successful hydrogel integration. The hydrogels were tested for antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, which are key pathogens in chronic wounds. Biocompatibility was assessed using the human HaCat keratinocyte cell line. Both ZnO- and CuO-loaded hydrogels exhibited broad-spectrum antimicrobial efficacy. Cytocompatibility tests demonstrated that both ZnO- and CuO-loaded hydrogels sustain cell viability and proliferation, highlighting their biocompatibility and suitability for chronic wound healing applications, with superior biological performance of ZnO-loaded hydrogels. Furthermore, the distinct antimicrobial profiles of ZnO and CuO hydrogels suggest their tailored use based on wound microbial composition, with CuO hydrogels excelling in antibacterial applications and ZnO hydrogels showing potential for antifungal treatments. These results underscore the potential of nanoparticle-based collagen hydrogels as innovative therapeutic tools for managing chronic wounds. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

21 pages, 3074 KiB  
Article
Enhancing Phase Change Characteristics of Hybrid Nanocomposites for Latent Heat Thermal Energy Storage
by Jidhesh Perumalsamy, Swami B. M. Punniakodi, Chandrasekaran Selvam and Ramalingam Senthil
J. Compos. Sci. 2025, 9(3), 120; https://doi.org/10.3390/jcs9030120 - 4 Mar 2025
Cited by 1 | Viewed by 2303
Abstract
Thermal energy storage systems store intermittent solar energy to supply heat during non-solar hours. However, they often exhibit poor thermal conductivity, hindering efficient energy storage and release. The purpose of this study is to enhance the phase change characteristics of a paraffin wax-based [...] Read more.
Thermal energy storage systems store intermittent solar energy to supply heat during non-solar hours. However, they often exhibit poor thermal conductivity, hindering efficient energy storage and release. The purpose of this study is to enhance the phase change characteristics of a paraffin wax-based latent heat energy storage system using a hybrid nanocomposite while increasing its thermal conductivity. Present heat storage systems integrate nanomaterials into a phase change material (paraffin wax) for faster energy storage and release in the form of heat. Steatite and copper oxide are chosen as nanomaterial additives in this experimental investigation. The charging and discharging characteristics of latent heat energy storage systems are studied using four different cases involving pure paraffin wax (case 1), paraffin wax with 10 wt% steatite (case 2), paraffin wax with 10 wt% copper oxide (case 3), and 5 wt% steatite with 5 wt% copper oxide (case 4). The charging and discharging rates were studied. The solidification rate of the nanocomposite improved with the addition of nanomaterials. The paraffin wax with 10 wt% copper oxide (case 3) outperformed the other cases, showing the best heat transfer ability and achieving an overall fusion time of 90 min. Case 3 was found to be the most thermally effective among the other cases. A significant finding of this study is the enhanced thermal performance of paraffin wax-based LHS systems using CuO and steatite nanocomposites, which hold great potential for practical applications. These include solar thermal systems, where efficient energy storage is critical, and industrial heat recovery systems, where optimizing heat transfer and storage can significantly improve energy utilization and sustainability. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
Show Figures

Figure 1

28 pages, 5565 KiB  
Article
Artificial Visible Light-Driven Photodegradation of Orange G Dye Using Cu-Ti-Oxide (Cu3TiO5) Deposited Bentonite Nanocomposites
by Abdulrahman Al-Ameri, Kahina Bentaleb, Zohra Bouberka, Nesrine Dalila Touaa and Ulrich Maschke
Catalysts 2025, 15(1), 88; https://doi.org/10.3390/catal15010088 - 18 Jan 2025
Cited by 1 | Viewed by 931
Abstract
Bentonite-supported TiO2 (Montmorillonite (MMT)-TiO2) and Cu3TiO5 oxides (MMT-Cu3TiO5) nanomaterials were synthesized via a facile and sustainable sol–gel synthesis approach. The XRD results indicate the presence of mixed phases, namely, TiO2 anatase and [...] Read more.
Bentonite-supported TiO2 (Montmorillonite (MMT)-TiO2) and Cu3TiO5 oxides (MMT-Cu3TiO5) nanomaterials were synthesized via a facile and sustainable sol–gel synthesis approach. The XRD results indicate the presence of mixed phases, namely, TiO2 anatase and a new semiconductor, Cu3TiO5, in the material. The specific surface area (SBET) exhibits a notable increase with the incorporation of TiO2 and Cu3TiO5, rising from 85 m2/g for pure montmorillonite to 245 m2/g for MMT-TiO2 and 279 m2/g for MMT-Cu3TiO5. The lower gap energy of MMT-Cu3TiO5 (2.15 eV) in comparison to MMT-TiO2 (2.7 eV) indicates that MMT-Cu3TiO5 is capable of more efficient absorption of visible light with longer wavelengths. The immobilization of TiO2 and Cu3TiO5 on bentonite not only enhances the textural properties of the samples but also augments their visible light absorption capabilities, rendering them potentially more efficacious for adsorption and photocatalytic applications. The photocatalytic efficacy of both MMT-TiO2 and MMT-Cu3TiO5 was evaluated through the monitoring of the degradation of Orange G, an anionic azo dye. The MMT-Cu3TiO5 photocatalyst was observed to induce complete degradation (100%) of the Orange G dye in 120 min when tested in an optimized reaction medium with a pH of 3 and a catalyst concentration of 2 g/L. MMT-Cu3TiO5 was demonstrated to be an exceptionally effective catalyst for the degradation of Orange G. Following the synthesis of the catalyst, it can be simply washed with the same recovered solution and reused multiple times for the photocatalytic process without the need for any chemical additives. Full article
(This article belongs to the Special Issue Commemorative Special Issue for Prof. Dr. Dion Dionysiou)
Show Figures

Figure 1

Back to TopTop