Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = Cu6Sn5 intermetallic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6147 KB  
Article
Reliability of Fine-Pitch Cu-Microbumps for 3D Heterogeneous Integration: Effect of Solder, Pitch Scaling and Substrate Materials
by Haohan Guo and Shubhra Bansal
Electron. Mater. 2025, 6(4), 18; https://doi.org/10.3390/electronicmat6040018 - 3 Nov 2025
Viewed by 1749
Abstract
A new and transformative era in semiconductor packaging is underway, wherein, there is a shift from transistor scaling to system scaling and integration through advanced packaging. For advanced packaging, interconnect scaling is a key driver, with interconnect density requirements for chip-to-substrate microbump pitch [...] Read more.
A new and transformative era in semiconductor packaging is underway, wherein, there is a shift from transistor scaling to system scaling and integration through advanced packaging. For advanced packaging, interconnect scaling is a key driver, with interconnect density requirements for chip-to-substrate microbump pitch below 5 μm and half-line pitch below 1 μm for Cu redistribution layer (RDL). Here, we present a comprehensive theoretical comparison of thermal cycling behavior in accordance with JESD22-A104D standard, intermetallic thickness evolution, and steady-state thermal analysis of Cu-microbump assembly for different bonding materials and substrates. Bonding materials studied include solder caps such as SAC105 (Sn98.5Ag1.0Cu0.5), eutectic Sn-Pb (Sn63Pb37), eutectic Sn-Bi (Sn42Bi58), Pb95Sn5, Indium, and Cu-Cu TCB structure. Effect of substrates including Si, glass and FR-4 is evaluated for various microbump structures with varying pitches (85 µm, 40 µm, 10 µm, and 5 µm) on their fatigue life. Results indicate that for Cu-microbump assemblies at an 85 µm pitch. The Pb95Sn5 exhibits the longest predicted fatigue life (3267 cycles by Engelmaier and 452 cycles by Darveaux), while SAC105 shows the shortest (320 and 103 cycles). Additionally, the Cu-Cu TCB structure achieves an estimated lifetime of approximately 7800 cycles, which is significantly higher than all solder-based Cu-microbump assemblies. The findings contribute to advanced packaging applications by providing valuable theoretical references for optimizing solder materials and structural configurations. Full article
Show Figures

Figure 1

21 pages, 3692 KB  
Article
First-Principles Investigation of Pressure-Induced Structural, Elastic, and Vibrational Properties of In3Sc
by Yazid Hedjar, Salima Saib and Alfonso Muñoz
Crystals 2025, 15(11), 946; https://doi.org/10.3390/cryst15110946 - 31 Oct 2025
Viewed by 590
Abstract
This study reports a first-principles investigation of the structural, mechanical, electronic, and vibrational properties of In3Sc in several crystal structures: AuCu3 (Pm3¯m), Al3Ti (I4/mmm), Ni3Sn (P63/mmc), and BiF3 (Fm [...] Read more.
This study reports a first-principles investigation of the structural, mechanical, electronic, and vibrational properties of In3Sc in several crystal structures: AuCu3 (Pm3¯m), Al3Ti (I4/mmm), Ni3Sn (P63/mmc), and BiF3 (Fm3¯m), with a focus on pressure effects. Calculated equilibrium lattice constants, bulk, shear, and Young’s moduli show good agreement with experimental and theoretical data, especially for the cubic AuCu3 phase. Elastic constants, examined with the Born stability criteria, reveal that the cubic (SG 221), tetragonal (SG 139), and hexagonal (SG 194) phases are mechanically stable at zero pressure, while the BiF3-type cubic (SG 225) is unstable. Pressure-dependent variations in lattice parameters, bulk modulus, and elastic moduli, captured by polynomial fits, demonstrate stiffening effects and pressure-induced phase transitions. Band structures and density of states confirm metallicity in all stable phases, with In–Sc hybridization governing bonding. Phonon dispersions and Grüneisen parameters, calculated under compression, establish the dynamical stability of the mechanically stable structures and provide insight into vibrational and thermal behavior. Debye temperature and sound velocities highlight favorable thermal-transport features. Altogether, the results clarify the intrinsic mechanical and thermodynamic response of In3Sc, supporting its potential as a promising intermetallic for structural and functional use under extreme conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 4578 KB  
Article
Corrosion Behavior Analysis of Novel Sn-2.5Ag-1.0Bi-0.8Cu-0.05Ni and Sn-1.8Bi-0.75Cu-0.065Ni Pb-Free Solder Alloys via Potentiodynamic Polarization Test
by Sang Hoon Jung and Jong-Hyun Lee
Metals 2025, 15(6), 670; https://doi.org/10.3390/met15060670 - 17 Jun 2025
Viewed by 1345
Abstract
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A [...] Read more.
The corrosion behaviors of newly developed solder alloys with excellent mechanical properties, Sn-2.5 Ag-1.0 Bi-0.8 Cu-0.05 Ni (SABC25108N) and Sn-1.5 Bi-0.75 Cu-0.065 Ni (SBC15075N), are analyzed to supplement the corrosion behavior of the limited corrosion data in Pb- and Zn-free solder compositions. A potentiodynamic polarization test is conducted on these compositions in a NaCl electrolyte solution, the results of which are compared with those of conventional Sn-3.0 (wt%) Ag-0.5Cu and Sn-1.2Ag-0.5Cu-0.05Ni alloys. The results indicate that SBC15075N exhibits the lowest corrosion potential and highest corrosion current density, thus signifying the lowest corrosion resistance. By contrast, SABC25108N exhibits the lowest corrosion current density and highest corrosion resistance. Notably, SABC25108N shows a slower corrosion progression in the active state and exhibits the longest passive state. The difference in corrosion resistance is affected more significantly by the formation and distribution of the Ag3Sn intermetallic compound phase owing to the high Ag content instead of by the presence of Bi or Ni. This uniform dispersion of Ag3Sn IMC phases in the SABC25108N alloy effectively suppressed corrosion propagation along the grain boundaries and reduced the formation of corrosion products, such as Sn3O(OH)2Cl2, thereby enhancing the overall corrosion resistance. These findings provide valuable insights into the optimal design of solder alloys and highlight the importance of incorporating sufficient Ag content into multicomponent compositions to improve corrosion resistance. Full article
(This article belongs to the Special Issue New Welding Materials and Green Joint Technology—2nd Edition)
Show Figures

Figure 1

14 pages, 8312 KB  
Article
Influence of Reflow Cycles of the Pb–Free/Pb Hybrid Assembly Process on the IMCs Growth Interface of Micro-Solder Joints
by Xinyuan He, Qi Zhang, Qiming Cui, Yifan Bai, Lincheng Fu, Zicong Zhao, Chuanhang Zou and Yong Wang
Crystals 2025, 15(6), 516; https://doi.org/10.3390/cryst15060516 - 28 May 2025
Cited by 1 | Viewed by 820
Abstract
Under the dual impetus of environmental regulations and reliability requirements, the Pb–free/Pb hybrid assembly process in aerospace-grade ball grid array (BGA) components has become an unavoidable industrial imperative. However, constrained process compatibility during single or multiple reflow protocols amplifies structural heterogeneity in solder [...] Read more.
Under the dual impetus of environmental regulations and reliability requirements, the Pb–free/Pb hybrid assembly process in aerospace-grade ball grid array (BGA) components has become an unavoidable industrial imperative. However, constrained process compatibility during single or multiple reflow protocols amplifies structural heterogeneity in solder joints and accelerates dynamic microstructural evolution, thereby elevating interfacial reliability risks at solder joint interfaces. This paper systematically investigated phase composition, grain dimensions, thickness evolution, and crystallographic orientation patterns of interfacial intermetallic compounds (IMCs) in hybrid micro-solder joints under multiple reflows, employing electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The result shows that the first reflow induces prismatic Cu6Sn5 grain formation driven by Pb aggregation zones and elevated Cu concentration gradients. Surface-protruding fine grains significantly increase kernel average misorientation (KAMave) of 0.68° while minimizing crystallographic orientation preference density (PFmax) of 15.5. Higher aspect ratios correlate with elongated grain morphology, consequently elevating grain size of 5.3 μm and IMC thickness of 5.0 μm. Subsequent reflows fundamentally alter material dynamics: Pb redistribution transitions from clustered to randomized spatial configurations, while grains develop pronounced in-plane orientation preferences that reciprocally influence Sn crystal alignment. The second reflow produces scallop-type grains with minimized dimensions of 4.0 μm and a thickness of 2.1 μm, with a KAMave of 0.37° and PFmax of 20.5. The third reflow initiates uniform growth of scalloped grains of 7.0 μm with a stable population density, whereas the fifth reflow triggers a semicircular grain transformation of 9.1 μm through conspicuous coalescence mechanisms. This work elucidates multiple reflow IMC growth mechanisms in Pb–free/Pb hybrid solder joints, providing critical theoretical and practical insights for optimizing hybrid technologies and reliability management strategies in high-reliability aerospace electronics. Full article
(This article belongs to the Special Issue Surface Modification Treatments of Metallic Materials (2nd Edition))
Show Figures

Figure 1

14 pages, 8387 KB  
Article
Liquid-State Interfacial Reactions of Lead-Free Solders with FeCoNiCr and FeCoNiMn Medium-Entropy Alloys at 250 °C
by Chao-Hong Wang and Yue-Han Li
Materials 2025, 18(10), 2379; https://doi.org/10.3390/ma18102379 - 20 May 2025
Viewed by 851
Abstract
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. [...] Read more.
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. In the Sn/FeCoNiCr system, a faceted (Fe,Cr,Co)Sn2 layer initially forms at the interface. Upon aging, the significant spalling of large (Fe,Cr,Co)Sn2 particulates into the solder matrix occurs. Additionally, an extremely large, plate-like (Co,Ni)Sn4 phase forms at a later stage. In contrast, the Sn/FeCoNiMn reaction produces a finer-grained (Fe,Co,Mn)Sn2 phase dispersed in the solder, accompanied by the formation of the large (Co,Ni)Sn4 phase. This observation suggests that Mn promotes the formation of finer intermetallic compounds (IMCs), while Cr facilitates the spalling of larger IMC particulates. The Sn/FeCoNiCrMn system exhibits stable interfacial behavior, with the (Fe,Cr,Co)Sn2 layer showing no significant changes over time. The interfacial behavior and microstructure are primarily governed by the dissolution of the constituent elements and composition ratio of the HEAs, as well as their interactions with Sn. Similar trends are observed in the SAC305 solder reactions, where a larger amount of fine (Fe,Co,Cu)Sn2 particles spall from the interface. This behavior is likely attributed to Cu doping, which enhances nucleation and stabilizes the IMC phases, promoting the formation of finer particles. The wettability of SAC305 solder on MEA/HEA substrates was further evaluated by contact angle measurements. These findings suggest that the presence of Mn in the substrate enhances the wettability of the solder. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

12 pages, 7004 KB  
Article
Bonding Characteristics in Air of a Decomposable Composite Sheet Containing Sn-3.0Ag-0.5Cu Particles for Formation of a Robust Metallic Solder Joint in Die Attachment
by Hye-Min Lee and Jong-Hyun Lee
J. Manuf. Mater. Process. 2025, 9(5), 161; https://doi.org/10.3390/jmmp9050161 - 15 May 2025
Viewed by 996
Abstract
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers [...] Read more.
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers on the solder and copper finish surfaces during heating. Subsequently, the resin component (polymethyl methacrylate) began to decompose thermally and gradually dissipated. Ultimately, the resulting joint formed a solder interconnection with a small amount of residual resin. This joint is expected to exhibit superior thermal conductivity compared with composite joints with a polymer matrix structure. Die-attach tests were conducted in air using the fabricated sheet between Cu finishes. Results showed that joints formed at 300 °C for 30 s and 350 °C for 10 s provided excellent shear strength values of 48.0 and 44.3 MPa, respectively, along with appropriately developed intermetallic compound (IMC) layers at the bonding interface. In contrast, bonding at 350 °C for 60 s resulted in excessive growth of IMC layers at the interface. When comparing size effects of solder particles, type 6 particles exhibited superior shear strength along with a relatively thinner total IMC layer thickness compared to when type 7 particles were used. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

18 pages, 3919 KB  
Article
Wear Characterization and Coefficient of Friction Prediction Using a Convolutional Neural Network Model for Chromium-Coated SnSb11Cu6 Alloy
by Mihail Kolev, Vladimir Petkov, Veselin Petkov, Rositza Dimitrova, Shaban Uzun and Boyko Krastev
Lubricants 2025, 13(5), 200; https://doi.org/10.3390/lubricants13050200 - 29 Apr 2025
Cited by 2 | Viewed by 1539
Abstract
Enhancing the durability and tribological performance of babbitt alloys is critical for high-stress applications in automotive, marine, and industrial machinery. The present study explores the electrodeposition of chromium coatings on SnSb11Cu6 alloys to improve their microstructural, mechanical, and tribological properties. The coatings were [...] Read more.
Enhancing the durability and tribological performance of babbitt alloys is critical for high-stress applications in automotive, marine, and industrial machinery. The present study explores the electrodeposition of chromium coatings on SnSb11Cu6 alloys to improve their microstructural, mechanical, and tribological properties. The coatings were applied through an electrolytic process and systematically characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate their morphology, composition, and wear performance. The chromium coating exhibited a uniform thickness of 20.2 µm and significantly improved the surface hardness to 715.2 HV, far surpassing the matrix and intermetallic phases of the uncoated alloy. Tribological testing under dry sliding conditions demonstrated a 44% reduction in the coefficient of friction (COF) and a 54% decrease in mass wear for the coated alloy, highlighting the protective role of the chromium layer against abrasive and adhesive wear. To further analyze the frictional behavior, a deep learning model based on a one-dimensional convolutional neural network was employed to predict COF trends over time, achieving excellent accuracy with R2 values of 0.9971 for validation and 0.9968 for testing. Feature importance analysis identified coating hardness as the most critical factor influencing COF and wear resistance, followed by matrix hardness near the coating. These findings underscore the effectiveness of chromium coatings in mitigating wear damage and improving the operational lifespan of SnSb11Cu6 alloys in high-stress applications. This study not only advances the understanding of chromium coatings for babbitt materials but also demonstrates the potential of machine learning in optimizing tribological performance. Full article
(This article belongs to the Special Issue New Horizons in Machine Learning Applications for Tribology)
Show Figures

Figure 1

45 pages, 60152 KB  
Article
Realization of a Novel FeSiAlCuSn Multicomponent Alloy and Characterization of Intermetallic Phases Formed at Different Temperatures During Cooling
by Pradeep Padhamnath, Filip Kuśmierczyk, Mateusz Kopyściański, Łukasz Gondek, Piotr Migas and Mirosław Karbowniczek
Metals 2025, 15(5), 479; https://doi.org/10.3390/met15050479 - 24 Apr 2025
Cited by 1 | Viewed by 886
Abstract
Ferrosilicon (FeSi) is a commercially important material with multiple uses in metallurgical processes. Recently, in an attempt to reduce the carbon impact of the FeSi production process, researchers have proposed using recycled Si recovered from electronic waste in the production of FeSi. However, [...] Read more.
Ferrosilicon (FeSi) is a commercially important material with multiple uses in metallurgical processes. Recently, in an attempt to reduce the carbon impact of the FeSi production process, researchers have proposed using recycled Si recovered from electronic waste in the production of FeSi. However, Si recovered from electronic waste usually contains Al, Cu, and Sn as impurities. Hence, FeSi alloys produced with recycled Si from electronic waste may contain all these elements in varying proportions. Al, Cu, and Sn have been explored as alloying elements to produce alloys with Fe. FeSiAl alloys have also been studied recently for their superior properties. In this work, a multicomponent FeSiAlCuSn alloy is produced, and the phases formed at different temperatures are analyzed using different phase identification techniques. We also analyze the hardness of the multicomponent alloy to find any deviation from the standard FeSi alloy without the additional alloying elements. Understanding the phases and the composition of such alloys may help design future multi-component or high-entropy alloys involving Fe, Si, Al, Cu, and Sn for specific applications. Full article
(This article belongs to the Special Issue Processing Technology and Properties of Light Metals)
Show Figures

Graphical abstract

14 pages, 10029 KB  
Article
Microstructural and Mechanical Characterization of Cu/SnAg Pillar Bumps with Ni-Less Surface Finish Utilizing Laser-Assisted Bonding (LAB)
by Sang-Eun Han, Dong-Gyu Choi, Seonghui Han, Tae-Young Lee, Deok-Gon Han, Hoo-Jeong Lee and Sehoon Yoo
Materials 2025, 18(8), 1834; https://doi.org/10.3390/ma18081834 - 16 Apr 2025
Viewed by 1132
Abstract
In this study, an interconnection was formed between a Cu/SnAg pillar bump and an Ni-less surface-treated Cu pad through laser-assisted bonding (LAB), and its bonding characteristics were evaluated. The LAB process influences the bond quality and mechanical strength based on the laser irradiation [...] Read more.
In this study, an interconnection was formed between a Cu/SnAg pillar bump and an Ni-less surface-treated Cu pad through laser-assisted bonding (LAB), and its bonding characteristics were evaluated. The LAB process influences the bond quality and mechanical strength based on the laser irradiation time and laser power density. The growth of the intermetallic compound (IMC) in the joint cross-section was observed via FE-SEM analysis. Under optimized LAB conditions, minimal IMC growth and high bonding strength were achieved compared to conventional thermo-compression bonding (TCB) and mass reflow (MR) processes. As the laser irradiation time and laser power density increased, solder splashing was observed at bump temperatures above 300 °C. This is hypothesized to be due to the rapid temperature rise causing the flux to vaporize explosively, resulting in simultaneous solder splashing. With increasing laser power density, the failure mode transitioned from the solder to the IMC. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

18 pages, 9400 KB  
Article
Influence of Alloying Elements on the Phase Structure, Stress–Strain Behavior, and Fracture Toughness of Ni3Sn: A First-Principles Study
by Haotian Zhang, Jiaoyan Dai, Yinwen Cao, Yanjie Zhang, Mingdong Bao and Yanping Yin
Materials 2025, 18(8), 1792; https://doi.org/10.3390/ma18081792 - 14 Apr 2025
Viewed by 843
Abstract
Transient liquid-phase bonding (TLPB) enables the low-temperature fabrication of encapsulated solder joints with high-temperature resistance and electromigration resilience; yet, Ni-Sn TLPB joints suffer from brittle fracture due to intermetallic compounds (IMCs). This study investigates the Co, Cu, and Pt alloying effects on Ni [...] Read more.
Transient liquid-phase bonding (TLPB) enables the low-temperature fabrication of encapsulated solder joints with high-temperature resistance and electromigration resilience; yet, Ni-Sn TLPB joints suffer from brittle fracture due to intermetallic compounds (IMCs). This study investigates the Co, Cu, and Pt alloying effects on Ni3Sn via formation energy, molecular dynamics, and first-principles calculations. Occupancy models of Ni6−xMxSn2 (M = Co, Cu, and Pt) were established, with the lattice parameters, B/G ratios, fracture toughness (KIC), and stress–strain behaviors analyzed. The results reveal that Co enhances fracture toughness and reduces Ni3Sn anisotropy, mitigating microcrack risks, while Cu/Pt introduce antibonding interactions (Cu–Sn and Pt–Sn), weakening the bonding strength. The classical B/G brittleness criterion proves inapplicable in Ni–M–Sn systems due to mixed bonding (metallic/covalent) and the hexagonal structure’s limited slip systems. The Ni6−xCoxSn2 formation improves toughness with a low Co content, supported by an electronic structure analysis (density of states and Bader charges). The thermodynamic stability and reduced molar shrinkage (Ni + Sn → Ni3Sn) confirm Co’s efficacy in optimizing Ni–Sn solder joints. Full article
Show Figures

Figure 1

14 pages, 12375 KB  
Article
Effect of Ni Content on the Dissolution Behavior of Hot-Dip Tin-Coated Copper Wire and the Evolution of a Cu–Sn Intermetallic Compound Layer
by Qi Wang, Jinhan Zhang, Song Niu, Jinjin Fan, Shijun Tang, Shihong Tang, Ningkang Yin, Jingxuan Liu and Mingmao Li
Materials 2025, 18(8), 1714; https://doi.org/10.3390/ma18081714 - 9 Apr 2025
Cited by 1 | Viewed by 1133
Abstract
The traditional hot-dip tinning processes face challenges in controlling excessive copper dissolution and interfacial instability. This study involved designing a dissolution experiment using the hot-dip tin plating process. Through microscopic characterization and dissolution kinetics analysis, it systematically revealed the regulatory mechanism of trace [...] Read more.
The traditional hot-dip tinning processes face challenges in controlling excessive copper dissolution and interfacial instability. This study involved designing a dissolution experiment using the hot-dip tin plating process. Through microscopic characterization and dissolution kinetics analysis, it systematically revealed the regulatory mechanism of trace Ni addition (0–0.5 wt.%) on the dissolution behavior and interfacial reaction of copper wire in a tin alloy melt. The experiment showed that Ni atoms formed a (Cu1−x,Nix)6Sn5 ternary phase by replacing Cu in the Cu6Sn5 lattice, resulting in a transformation of the grain morphology of the IMC layer from equiaxed to fibrous. At the same time, the addition of Ni changed the kinetics of the interfacial reaction, effectively increasing the activation energy from 40.84 kJ/mol in the pure Sn system to 54.21 kJ/mol in the Sn-0.5Ni system, which extended the complete dissolution time of the copper wire at 573 K by three times. Full article
Show Figures

Figure 1

13 pages, 12886 KB  
Article
Investigation of the Microstructures and Mechanical Properties of Sn-Cu-Bi-In-Ni Solders
by Xiaochun Lv, Chenghao Zhang, Yang Liu, Zhen Pan, Zhiyuan Wang and Fenglian Sun
Materials 2025, 18(4), 858; https://doi.org/10.3390/ma18040858 - 16 Feb 2025
Cited by 1 | Viewed by 1625
Abstract
The development of Ag-free Sn solders has attracted significant attention due to the requirement of high-density electronic packaging. In this study, we investigate the Ni element on the microstructures and mechanical properties of Ag-free Sn-Cu-Bi-In solders. This paper details the microstructures and phases [...] Read more.
The development of Ag-free Sn solders has attracted significant attention due to the requirement of high-density electronic packaging. In this study, we investigate the Ni element on the microstructures and mechanical properties of Ag-free Sn-Cu-Bi-In solders. This paper details the microstructures and phases of the as-prepared Sn-Cu-Bi-In-Ni solders, as well as its mechanical properties. Specifically, the intermetallic compound (IMC) Cu6Sn5 is observed to be distributed in the Sn matrix, forming near-eutectic structures. The incorporation of Ni into Sn-Cu-Bi-In enhances the mechanical properties of the solder joints, including the shear strength and vibrational stability. In the joint obtained using the as-prepared Sn-Cu-Bi-In-Ni solders, a (Cu,Ni)6Sn5 IMC layer forms at the interface between Sn ball and Cu pad. The beneficial effects of Ni can be primarily attributed to its ability to adjust the mechanical properties and thermal expansion, enhancing the stability of solder joints. A TEM analysis reveals the closely packed atomic interface of Cu/(Cu,Ni)6Sn5 and (Cu,Ni)6Sn5/Sn, elucidating the joining mechanism involved. Full article
Show Figures

Figure 1

21 pages, 4920 KB  
Article
Influence of the Structure and Mechanisms of Intermetallic Phase Formation on the Strength Properties of a Newly Developed Solder Joint
by Bożena Szczucka-Lasota, Tomasz Węgrzyn and Bogusław Łazarz
Materials 2025, 18(3), 489; https://doi.org/10.3390/ma18030489 - 22 Jan 2025
Cited by 2 | Viewed by 1948
Abstract
The current development of soldering materials focuses on the properties of the solder itself, while the reliability of the joints formed after soldering is evaluated to a lesser extent. It is essential to understand the relationship between the structure and the strength of [...] Read more.
The current development of soldering materials focuses on the properties of the solder itself, while the reliability of the joints formed after soldering is evaluated to a lesser extent. It is essential to understand the relationship between the structure and the strength of the solder joint obtained. This article shows that the properties of the material used for soldering only to a certain extent largely translate into the mechanical properties of the joint. The aim of this article is to emphasize the importance of the problem of the selection of the chemical composition of the solder with the simultaneous selection of the parameters of the soldering process, including the width of the solder gap for the selected strength properties of the connection. The purpose of this article is to emphasize that the selection of a chemical composition solder with a simultaneous selection of parameters of the soldering process, including the dimensions of the gaps of the soldered materials, are affected properties of the soldered joint. In this article, the main importance was focused on the chemical composition of a tin-based solder. The influence was analyzed, and the most favorable content of elements, such as Al and Cu, which create intermetallic phases, strengthening the soldered joint, was determined. The properties of the newly developed solder joint for alternator applications due to the specified conditions of the soldering process, including the width of the solder gap permissible for alternators, ensured the correct connections, the strength properties of which differed despite the use of the same soldering material and substrate material, as well as the soldering time and tip temperature. This article presents a change in the cracking model of a solder joint made using a newly developed material due to the width of the permissible solder gap in the production process of alternators. Full article
(This article belongs to the Special Issue Advances in Dissimilar Welding)
Show Figures

Graphical abstract

17 pages, 7431 KB  
Article
Study on the Electromigration Organization and Mechanical Properties of Sn2.5Ag0.7Cu0.1RE/Cu Solder Joints
by Yuming Wang, Keke Zhang, Chao Zhang, Fupeng Huo and Yijie Gao
Metals 2025, 15(1), 75; https://doi.org/10.3390/met15010075 - 16 Jan 2025
Cited by 1 | Viewed by 1451
Abstract
In this study, we designed and manufactured an ideal electromigration testing device for soldering joints to solve the reliability problems caused by temperature and current density changes in the electromigration processes of micro solder joints. We analyzed the effects of temperature and current [...] Read more.
In this study, we designed and manufactured an ideal electromigration testing device for soldering joints to solve the reliability problems caused by temperature and current density changes in the electromigration processes of micro solder joints. We analyzed the effects of temperature and current density on the electromigration β-Sn (single-crystal β-Sn grain) of Sn2.5Ag0.7Cu0.1RE/Cu solder joints, the relationship between the grain orientation and interfacial IMC (intermetallic compound) growth of Sn2.5Ag0.7Cu0.1RE/Cu solder joints, and the mechanical properties of solder joints. The results showed that the angle θ between the c-axis of the β-Sn grain and the current direction for the Sn2.5Ag0.7Cu0.1RE/Cu solder joint gradually decreased to 8.2° when the temperature increased to 150 °C, which accelerated the diffusion of Cu atoms and Cu substrate dissolution. The recrystallization and grain growth of Cu6Sn5 (An intermetallic compound formed by the fusion of copper and tin in a ratio of six to five) grains in the anode region promoted electromigration polarity. Compared with the initial state, the shear strength decreased to 11 MPa, a decrease of 61.3%, the fracture position shifted from the top of the IMC at the cathode interface to the root of the IMC at the cathode interface, and the fracture mode changed from ductile fracture to brittle fracture. With an increase in the current density to 1.1 × 104 A/cm2, θ decreased to 3.2°. In addition, we observed the recrystallization of Cu6Sn5 grains in the anode region and an increase in the grain length and diameter to 6.8–31.9 μm, which further promoted electromigration polarity. Compared with the initial state, the shear strength decreased by 72.5% to 7.8 MPa, and the fracture position shifted from the top of the IMC at the cathode interface to the root of the IMC at the cathode interface. Additionally, the fracture mode changed from ductile to brittle fracture. Full article
Show Figures

Figure 1

15 pages, 28740 KB  
Article
Effect of Hot-Dipped Tin Coating Treatment on Metallurgical Bonds Between AZ91D and Cu by Composite Casting
by Haochuan Wan, Jiahong Dai, Jianyue Zhang and Bin Jiang
Metals 2024, 14(12), 1404; https://doi.org/10.3390/met14121404 - 8 Dec 2024
Cited by 1 | Viewed by 1354
Abstract
Mg-Cu bimetallic materials have been widely studied because of their low density, good electrical conductivity, and excellent hydrogen storage properties. However, the interface bonding strength of Mg/Cu is low. In this study, we examined the effect of hot-dip tin coating (HDTC) with copper [...] Read more.
Mg-Cu bimetallic materials have been widely studied because of their low density, good electrical conductivity, and excellent hydrogen storage properties. However, the interface bonding strength of Mg/Cu is low. In this study, we examined the effect of hot-dip tin coating (HDTC) with copper (Cu) on the interfacial metallurgical bonds between AZ91D Magnesium (Mg) alloy and Cu composite casting. A transition layer composed of Mg2Cu and MgCu2 intermetallic compounds (IMCs) formed at the interface of the AZ91D/HDTC-Cu composite casting. However, the transition layer was about 1 μm at the AZ91D/Cu interface, mainly comprising Mg(Al, Cu)2 IMC. Both the AZ91D/Cu and AZ91D/HDTC-Cu interfaces exhibited many labyrinthine Mg(Al, Cu)2 IMCs and layer-like Mg2(Al, Cu) IMCs. Moreover, the interfacial shear strength of the AZ91D/Cu was changed from 12.6 MPa to 52.4 MPa due to the solid solution of Sn atom and the precipitation of Mg2Sn IMC at the interface after HDTC treatment. Meanwhile, the shear fracture surfaces are characterized by brittle fractures. Full article
Show Figures

Figure 1

Back to TopTop