error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = Cre-loxp

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6105 KB  
Article
Disruption of the Placenta–Brain Axis in Transgenic Mice Lacking Serotonin Transporter (SERT) in Trophoblast Cells
by David T. Ellenberger, Zhen Lyu, Rosalind T. B. Herrington, Jessica A. Kinkade, Gustavo W. Leone, Ji Ying Sze, Nathan J. Bivens, R. Frank Baker, R. Michael Roberts, Trupti Joshi and Cheryl S. Rosenfeld
Int. J. Mol. Sci. 2026, 27(1), 436; https://doi.org/10.3390/ijms27010436 - 31 Dec 2025
Viewed by 371
Abstract
Serotonin reuptake inhibitors (SSRIs) are commonly prescribed to pregnant women experiencing depression. Such drugs, however, might adversely affect placenta and fetal brain development. Parietal trophoblast giant cells (pTGCs) in the mouse placenta are postulated to internalize maternal serotonin (5-HT) via transport through SERT, [...] Read more.
Serotonin reuptake inhibitors (SSRIs) are commonly prescribed to pregnant women experiencing depression. Such drugs, however, might adversely affect placenta and fetal brain development. Parietal trophoblast giant cells (pTGCs) in the mouse placenta are postulated to internalize maternal serotonin (5-HT) via transport through SERT, encoded by Slc6a4, and to provide the initial source of 5-HT to the emerging brain via the placental–brain axis. Genetic deletion of Slc6a4 in pTGCs has been hypothesized to impact placental and fetal brain development. A transgenic mouse line with high-affinity SERT, encoded by Slc6a4, was selectively deleted by pairing mice with Cre recombinase linked to Prl2c2, with LoxP sites flanking the Slc6a4 gene. PRL2C2 is solely expressed by pTGCs and other giant cells of the placenta. To compare placental and fetal brain development in selective Slc6a4 KO and WT mice, 5-HT content in the placenta and fetal brains of conceptuses was measured. No significant differences in 5-HT content were evident between knockout (KO) and wild-type (WT) placentas or fetal brains. However, there were significantly fewer pTGCs in KO placentas compared to WT (p ≤ 0.05). Sexually dimorphic differences in gene expression were evident in the placenta and fetal brain between KO and WT counterparts, with female conceptuses showing the most dramatic responses, including decrease in Prl7a2, Prl5a1, Prl3a1, Slc28a3, and Ceacam 15 in female placental samples. These findings suggest that ablation of Slc6a4 in pTGC disrupts the placenta–brain axis in a sex-dependent manner. The results might have important clinical ramifications for pregnant women being treated with SSRIs. Full article
(This article belongs to the Special Issue Molecular Insights into Placental Pathology)
Show Figures

Figure 1

29 pages, 3549 KB  
Article
Physiological Muscle Function Is Controlled by the Skeletal Endocannabinoid System in Murine Skeletal Muscles
by Nyamkhuu Ganbat, Zoltán Singlár, Péter Szentesi, Elena Lilliu, Zoltán Márton Kohler, László Juhász, Anikó Keller-Pintér, Xaver Koenig, Fabio Arturo Iannotti, László Csernoch and Mónika Sztretye
Int. J. Mol. Sci. 2025, 26(11), 5291; https://doi.org/10.3390/ijms26115291 - 30 May 2025
Cited by 2 | Viewed by 1773
Abstract
The endocannabinoid system (ECS) is known to regulate crucial bodily functions, including healthy muscle activity. However, its precise roles in normal skeletal muscle function and the development of muscle disorders remain unclear. Previously, we developed a tamoxifen-inducible, skeletal muscle-specific CB1 receptor knockdown [...] Read more.
The endocannabinoid system (ECS) is known to regulate crucial bodily functions, including healthy muscle activity. However, its precise roles in normal skeletal muscle function and the development of muscle disorders remain unclear. Previously, we developed a tamoxifen-inducible, skeletal muscle-specific CB1 receptor knockdown (skmCB1-KD) mouse model using the Cre/LoxP system. In this study, we aimed to clarify the mechanisms behind the observed reduction in muscle force generation in these mice. To investigate this, we analyzed calcium dynamics following electrical stimulation-induced muscle fatigue, assessed store-operated calcium entry (SOCE), and performed functional analysis of mitochondrial respiration. Our findings suggest that the reduced muscle performance observed in vivo likely arises from interconnected alterations in ATP production by mitochondria. Moreover, in skmCB1-KD mice, we detected a significant decrease in a component of the respiratory chain (complex IV) and a slowed dissipation of mitochondrial membrane potential upon the addition of an un-coupler (FCCP). Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Graphical abstract

15 pages, 8400 KB  
Article
Hydrogen Sulfide (H2S) Mitigates Sepsis-Induced Adrenal Dysfunction via Inhibition of TNFα-Mediated Necroptosis
by Kai Ma, Jingwen Huang, Jin Zhang, Yuan Tian, Jing Hu, Linhao Ma and Changnan Wang
Pathogens 2025, 14(5), 439; https://doi.org/10.3390/pathogens14050439 - 30 Apr 2025
Cited by 1 | Viewed by 1102
Abstract
Background: Sepsis is a life-threatening condition that is characterized by systemic inflammation and organ dysfunction, with adrenal dysfunction being a significant complication. This study aimed to investigate the role of necroptosis and hydrogen sulfide (H2S) in sepsis-induced adrenal dysfunction. Methods: A [...] Read more.
Background: Sepsis is a life-threatening condition that is characterized by systemic inflammation and organ dysfunction, with adrenal dysfunction being a significant complication. This study aimed to investigate the role of necroptosis and hydrogen sulfide (H2S) in sepsis-induced adrenal dysfunction. Methods: A cecal ligation and puncture (CLP)-induced sepsis mouse model was employed. Adrenocortical-specific mixed lineage kinase domain-like pseudokinase (MLKL) knockout (MLKL-KO) and cystathioneine β-synthase (CBS) knockout (CBS-KO) mice were generated using Cre-loxP technology and adrenocortical-specific Cre tool mice. In vitro experiments utilized TNFα-stimulated Y1 adrenocortical cells. The treatments included the H2S donor NaHS, TNFα inhibitor R-7050, necroptosis inhibitor NSA and CBS inhibitor AOAA. Pathological assessment involved hematoxylin–eosin (H&E) staining and a Western blot analysis of necroptosis markers (the phosphorylation of MLKL (p-MLKL) and phosphorylation of receptor-interacting protein kinases 1 (p-RIPK1)). Results: Sepsis induced adrenal congestion, elevated TNFα levels, and activated necroptosis (increased p-MLKL/p-RIPK1) in wild-type mice. H2S treatment attenuated adrenal damage, reduced TNFα, and suppressed necroptosis. MLKL knockout reduced septic adrenal dysfunction, whereas CBS knockout exacerbated septic adrenal dysfunction. In vitro, TNFα induced Y1 cell necroptosis, which was reversed by H2S or NSA. AOAA exacerbated TNFα-induced necroptosis in Y1 cells. Conclusions: H2S inhibits TNFα-mediated necroptosis, thereby preserving adrenal integrity in sepsis. Targeting the TNFα–necroptosis axis and enhancing endogenous H2S production may represent novel therapeutic strategies for sepsis-associated adrenal dysfunction. Full article
(This article belongs to the Special Issue Sepsis and Group A Streptococcus)
Show Figures

Figure 1

24 pages, 3877 KB  
Review
Revolutionizing Implantation Studies: Uterine-Specific Models and Advanced Technologies
by Shu-Yun Li and Francesco John DeMayo
Biomolecules 2025, 15(3), 450; https://doi.org/10.3390/biom15030450 - 20 Mar 2025
Cited by 4 | Viewed by 3999
Abstract
Implantation is a complex and tightly regulated process essential for the establishment of pregnancy. It involves dynamic interactions between a receptive uterus and a competent embryo, orchestrated by ovarian hormones such as estrogen and progesterone. These hormones regulate proliferation, differentiation, and gene expression [...] Read more.
Implantation is a complex and tightly regulated process essential for the establishment of pregnancy. It involves dynamic interactions between a receptive uterus and a competent embryo, orchestrated by ovarian hormones such as estrogen and progesterone. These hormones regulate proliferation, differentiation, and gene expression within the three primary uterine tissue types: myometrium, stroma, and epithelium. Advances in genetic manipulation, particularly the Cre/loxP system, have enabled the in vivo investigation of the role of genes in a uterine compartmental and cell type-specific manner, providing valuable insights into uterine biology during pregnancy and disease. The development of endometrial organoids has further revolutionized implantation research. They mimic the native endometrial structure and function, offering a powerful platform for studying hormonal responses, implantation, and maternal-fetal interactions. Combined with omics technologies, these models have uncovered the molecular mechanisms and signaling pathways that regulate implantation. This review provides a comprehensive overview of uterine-specific genetic tools, endometrial organoids, and omics. We explore how these advancements enhance our understanding of implantation biology, uterine receptivity, and decidualization in reproductive research. Full article
Show Figures

Figure 1

17 pages, 3123 KB  
Article
Loss of ING3 in the Prostate Leads to Activation of DNA Damage Repair Markers
by Viktor Lang, Lisa Barones, ShiTing Misaki Hu, Fatemeh Hashemi, Karen Blote, Karl Riabowol and Dieter Fink
Cancers 2025, 17(6), 1037; https://doi.org/10.3390/cancers17061037 - 20 Mar 2025
Viewed by 3090
Abstract
Background/Objectives: The inhibitor of growth family member 3 (ING3) acts as an epigenetic reader through physical interactions with histone-modifying enzymes and subsequent chromatin remodelling processes. It is involved in various cellular functions, such as cell cycle control, cell growth, and apoptosis. Although ING3 [...] Read more.
Background/Objectives: The inhibitor of growth family member 3 (ING3) acts as an epigenetic reader through physical interactions with histone-modifying enzymes and subsequent chromatin remodelling processes. It is involved in various cellular functions, such as cell cycle control, cell growth, and apoptosis. Although ING3 was assigned tumour suppressor candidate status in some types of cancers, including prostate cancer, some studies suggest it acts to promote growth. To address these contradictory reports regarding its role in the initiation and progression of prostate cancer, we specifically addressed the question of whether ablation of ING3 in the mouse prostate is sufficient to initiate malignant transformation of the prostate and support its (candidate) tumour suppressor status. Methods: To generate the prostate-specific Ing3 knockout mouse, paternal inheritance of the PB-Cre4 transgene was used, while for the generation of a global knockout control, a female mouse harbouring the PB-Cre4 transgene was utilized. To determine the recombination efficiency of the Cre-LoxP system in the prostate at the Ing3 locus, a duplex probe-based digital PCR assay capable of counting undisrupted Ing3 copies was designed. The impact of DNA recombination on the protein level was investigated by immunohistochemical staining of prostate tissue samples. Results: In the prostate-specific knockout, digital PCR analysis revealed mosaic gene deletion. We found recombination efficiencies in the anterior, dorsolateral, and ventral prostate lobes ranging from approximately 15 to 30%. ING3 staining in the prostate was faint with no detectable differences in signal intensity between the knockout specimen and wild-type controls. This low ING3 expression in the prostate is consistent with observations of X-gal staining of an Ing3-LacZ reporter allele. Immunohistochemistry showed increased expression of DNA-damage-associated markers γH2AX and 53BP1. However, no gross anatomical abnormalities or prostate intraepithelial neoplasia (PIN) lesions in the prostate of tissue-specific knockout animals compared to wild-type controls were observed. Conclusions: Altogether, our data provide evidence that disruption of ING3 expression in prostate cells does not lead to malignant transformation and challenges the idea that ING3 acts primarily in a tumour-suppressive manner. Furthermore, this work supports the crucial role of ING3 in maintaining genomic stability, and we confirmed the embryonic lethal phenotype of homozygous Ing3 null mice that is rescued by ectopic expression of ING3. Full article
Show Figures

Figure 1

15 pages, 2992 KB  
Article
Conditional Knockout Kdm2a Reveals Crucial Involvement in Development and Function of Kidney Collecting Ducts
by Xianrong Xiong, Hailing Yu, Xupeng Li, Yuan Li, Ruilan Zeng, Yufan Wang, Chunhai Zhang, Yan Xiong, Wei Fu, Honghong He, Shi Yin and Jian Li
Int. J. Mol. Sci. 2025, 26(3), 1230; https://doi.org/10.3390/ijms26031230 - 30 Jan 2025
Cited by 1 | Viewed by 1375
Abstract
Lysine-specific histone demethylase 2 (Kdm2a) is essential for histone modifications involved in development and associated diseases. Nevertheless, the specific functions of Kdm2a in renal development and pathology remain largely unexplored. This study aimed to elucidate the roles of Kdm2a in sustaining [...] Read more.
Lysine-specific histone demethylase 2 (Kdm2a) is essential for histone modifications involved in development and associated diseases. Nevertheless, the specific functions of Kdm2a in renal development and pathology remain largely unexplored. This study aimed to elucidate the roles of Kdm2a in sustaining the biological functions of the kidney by generating mutant mice with Kdm2a deletion using the Aqp2-cre/Loxp system. Our findings showed that Kdm2a is widely expressed across various mouse tissues, with particularly high expression in the kidney’s cortex and medulla, surpassing that in other tissues. Despite no observable effects on morphology or survival following the conditional knockout of Kdm2a, there was a significant reduction in body weight and bilateral kidney weight compared to controls, most pronounced at the 5-week-old stage (p < 0.05). Post Kdm2a deletion, kidney metabolic functions were impaired, evidenced by altered levels of creatinine, urea, total cholesterol, and low-density lipoprotein. Histological examination revealed that Kdm2a-null kidneys exhibited signs of dysfunction, characterized by macrophage infiltration, fibrosis, inflammatory cell infiltration, and mild thrombosis. Further studies revealed that the expression of chemokine- and pro-inflammatory cytokine-related genes Il-6, Il-8, Tnf-a, and Il-1β was significantly increased in the kidneys of Kdm2a cKO mice compared with controls (p < 0.05). Additionally, the expression of reabsorption-related genes (Aqp-3, Aqp-5, and Aqp-8) was markedly downregulated in Kdm2a-deficient kidneys compared with controls (p < 0.05). Collectively, these findings suggest that Kdm2a is crucial for maintaining kidney function and development, partly through the suppression of inflammation and regulation of gene expression. However, the underlying molecular mechanisms of Kdm2a in kidney development warrant further investigation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 5172 KB  
Article
Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia
by Benjamin Cull, Nicole Y. Burkhardt, Benedict S. Khoo, Jonathan D. Oliver, Xin-Ru Wang, Lisa D. Price, Kamil Khanipov, Rong Fang and Ulrike G. Munderloh
Vaccines 2025, 13(2), 109; https://doi.org/10.3390/vaccines13020109 - 22 Jan 2025
Viewed by 2032
Abstract
Background/Objectives: Incidence of vector-borne diseases, including rickettsioses and anaplasmosis, has been increasing in many parts of the world. The obligate intracellular nature of rickettsial pathogens has hindered the development of robust genetic tools for the study of gene function and the identification of [...] Read more.
Background/Objectives: Incidence of vector-borne diseases, including rickettsioses and anaplasmosis, has been increasing in many parts of the world. The obligate intracellular nature of rickettsial pathogens has hindered the development of robust genetic tools for the study of gene function and the identification of therapeutic targets. Transposon mutagenesis has contributed to recent progress in the identification of virulence factors in this important group of pathogens. Methods: Combining the efficiency of the himar1 transposon method with a recombinase-mediated system, we aimed to develop a genetic tool enabling the exchange of the transposon with a cassette encoding non-native sequences. Results: This approach was used in Rickettsia parkeri to insert a himar1 transposon encoding fluorescent protein and antibiotic resistance genes for visualization and selection, flanked by mismatched loxP sites to enable subsequent recombinase-mediated cassette exchange (RMCE). RMCE mediated by a plasmid-encoded Cre recombinase was then employed to replace the transposon with a different cassette containing alternate fluorescent and selection markers and epitopes of Anaplasma phagocytophilum antigens. The resulting genetically modified R. parkeri was trialed as a live-attenuated vaccine against spotted fever rickettsiosis and anaplasmosis in mice. Conclusions: The use of this system provides a well-established and relatively efficient way of inserting non-native sequences into the rickettsial genome, with applications for the study of gene function and vaccine development. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

20 pages, 8986 KB  
Article
Sanguinarine Induces Necroptosis of HCC by Targeting PKM2 Mediated Energy Metabolism
by Rui Kong, Nan Wang, Chunli Zhou, Yuqing Zhou, Xiaoyan Guo, Dongyan Wang, Yihai Shi, Rong Wan, Yuejuan Zheng and Jie Lu
Cancers 2024, 16(14), 2533; https://doi.org/10.3390/cancers16142533 - 13 Jul 2024
Cited by 4 | Viewed by 2599
Abstract
Backgrounds: Abnormal metabolism is the hallmark of hepatocellular carcinoma. Targeting energy metabolism has become the major focus of cancer therapy. The natural product, sanguinarine, displays remarkable anti-tumor properties by disturbing energy homeostasis; however, the underlying mechanism has not yet been elucidated. Methods: The [...] Read more.
Backgrounds: Abnormal metabolism is the hallmark of hepatocellular carcinoma. Targeting energy metabolism has become the major focus of cancer therapy. The natural product, sanguinarine, displays remarkable anti-tumor properties by disturbing energy homeostasis; however, the underlying mechanism has not yet been elucidated. Methods: The anticancer activity of sanguinarine was determined using CCK-8 and colony formation assay. Morphological changes of induced cell death were observed under electron microscopy. Necroptosis and apoptosis related markers were detected using western blotting. PKM2 was identified as the target by transcriptome sequencing. Molecular docking assay was used to evaluate the binding affinity of sanguinarine to the PKM2 molecule. Furthermore, Alb-CreERT2; PKM2loxp/loxp; Rosa26RFP mice was used to construct the model of HCC—through the intervention of sanguinarine in vitro and in vivo—to accurately explore the regulation effect of sanguinarine on cancer energy metabolism. Results: Sanguinarine inhibited tumor proliferation, metastasis and induced two modes of cell death. Molecular docking of sanguinarine with PKM2 showed appreciable binding affinity. PKM2 kinase activity and aerobic glycolysis rate declined, and mitochondrial oxidative phosphorylation was inhibited by sanguinarine application; these changes result in energy deficits and lead to necroptosis. Additionally, sanguinarine treatment prevents the translocation of PKM2 into the nucleus and suppresses the interaction of PKM2 with β-catenin; the transcriptional activity of PKM2/β-catenin signaling and its downstream genes were decreased. Conclusions: Sanguinarine showed remarkable anti-HCC activity via regulating energy metabolism by PKM2/β-catenin signaling. On the basis of these investigations, we propose that sanguinarine might be considered as a promising compound for discovery of anti-HCC drugs. Full article
Show Figures

Figure 1

18 pages, 3794 KB  
Article
Implications of Genetic Factors Underlying Mouse Hydronephrosis: Cautionary Considerations on Phenotypic Interpretation in Genetically Engineered Mice
by Shino Nemoto, Kazuyo Uchida and Hiroshi Ohno
Int. J. Mol. Sci. 2024, 25(13), 7203; https://doi.org/10.3390/ijms25137203 - 29 Jun 2024
Cited by 1 | Viewed by 2215
Abstract
Hydronephrosis, the dilation of kidneys due to abnormal urine retention, occurs spontaneously in certain inbred mouse strains. In humans, its occurrence is often attributed to acquired urinary tract obstructions in adults, whereas in children, it can be congenital. However, the genetic factors underlying [...] Read more.
Hydronephrosis, the dilation of kidneys due to abnormal urine retention, occurs spontaneously in certain inbred mouse strains. In humans, its occurrence is often attributed to acquired urinary tract obstructions in adults, whereas in children, it can be congenital. However, the genetic factors underlying hydronephrosis pathogenesis remain unclear. We investigated the cause of hydronephrosis by analyzing tetraspanin 7 (Tspan7) gene-modified mice, which had shown a high incidence of hydronephrosis-like symptoms. We found that these mice were characterized by low liver weights relative to kidney weights and elevated blood ammonia levels, suggesting liver involvement in hydronephrosis. Gene expression analysis of the liver suggested that dysfunction of ornithine transcarbamylase (OTC), encoded by the X chromosome gene Otc and involved in the urea cycle, may contribute as a congenital factor in hydronephrosis. This OTC dysfunction may be caused by genomic mutations in X chromosome genes contiguous to Otc, such as Tspan7, or via the genomic manipulations used to generate transgenic mice, including the introduction of Cre recombinase DNA cassettes and cleavage of loxP by Cre recombinase. Therefore, caution should be exercised in interpreting the hydronephrosis phenotype observed in transgenic mice as solely a physiological function of the target gene. Full article
Show Figures

Figure 1

15 pages, 2122 KB  
Article
Long-Term Protection against Virulent Newcastle Disease Virus (NDV) in Chickens Immunized with a Single Dose of Recombinant Turkey Herpesvirus Expressing NDV F Protein
by Bin Shi, Guifu Yang, Yue Xiao, Kun Qian, Hongxia Shao, Moru Xu and Aijian Qin
Vaccines 2024, 12(6), 604; https://doi.org/10.3390/vaccines12060604 - 31 May 2024
Cited by 8 | Viewed by 3000
Abstract
Newcastle disease (ND) is a significant infectious disease in poultry, causing substantial economic losses in developing countries. To control ND, chickens must be vaccinated multiple times a year. In order to develop an improved vaccine that provides long-term protection, the F gene from [...] Read more.
Newcastle disease (ND) is a significant infectious disease in poultry, causing substantial economic losses in developing countries. To control ND, chickens must be vaccinated multiple times a year. In order to develop an improved vaccine that provides long-term protection, the F gene from genotype VII NDV was inserted into the herpesvirus of turkey (HVT) vaccine virus using CRISPR/Cas9-mediated NHEJ repair and Cre/LoxP technology. The immunogenicity and protective efficacy of the resulting recombinant vaccines were evaluated through antibody assays and virus challenge experiments. Two recombinant vaccines, rHVT-005/006-F and rHVT-US2-F, were generated, both exhibiting growth rates comparable with those of HVT in vitro and consistently expressing the F protein. One-day-old specific pathogen-free (SPF) chickens immunized with 2000 PFU/bird of either rHVT-005/006-F or rHVT-US2-F developed robust humoral immunity and were completely protected against challenge with the NDV F48E8 strain at 4 weeks post-vaccination (wpv). Furthermore, a single dose of these vaccines provided sustained protection for at least 52 wpv. Our study identifies rHVT-005/006-F and rHVT-US2-F as promising ND vaccine candidates, offering long-term protection with a single administration. Moreover, HVT-005/006 demonstrates promise for accommodating additional foreign genes, facilitating the construction of multiplex vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 7308 KB  
Article
Normal Ovarian Function in Subfertile Mouse with Amhr2-Cre-Driven Ablation of Insr and Igf1r
by Jenna C. Douglas, Nikola Sekulovski, Madison R. Arreola, Yeongseok Oh, Kanako Hayashi and James A. MacLean
Genes 2024, 15(5), 616; https://doi.org/10.3390/genes15050616 - 12 May 2024
Cited by 3 | Viewed by 2672
Abstract
Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized [...] Read more.
Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants. Full article
(This article belongs to the Special Issue Genetics and Genomics of Female Reproduction)
Show Figures

Figure 1

22 pages, 2007 KB  
Review
Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines
by Pengyuan Dai, Chaoye Ma, Chen Chen, Min Liang, Shijue Dong, Hao Chen and Xiaoning Zhang
Biomolecules 2024, 14(5), 529; https://doi.org/10.3390/biom14050529 - 28 Apr 2024
Cited by 2 | Viewed by 4329
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays [...] Read more.
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system. Full article
Show Figures

Figure 1

12 pages, 5194 KB  
Article
Generation of Slco1a4-CreERT2-tdTomato Knock-in Mice for Specific Cerebrovascular Endothelial Cell Targeting
by Chengfang Xu, Shounian Li, Yunting Cai, Jinjin Lu, Yan Teng, Xiao Yang and Jun Wang
Int. J. Mol. Sci. 2024, 25(9), 4666; https://doi.org/10.3390/ijms25094666 - 25 Apr 2024
Cited by 1 | Viewed by 3280
Abstract
The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood–brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical [...] Read more.
The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood–brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 11537 KB  
Article
A Myeloid-Specific Lack of IL-4Rα Prevents the Development of Alternatively Activated Macrophages and Enhances Immunity to Experimental Cysticercosis
by Jonadab E. Olguín, Edmundo Corano-Arredondo, Victoria Hernández-Gómez, Irma Rivera-Montoya, Mario A. Rodríguez, Itzel Medina-Andrade, Berenice Arendse, Frank Brombacher and Luis I. Terrazas
Pathogens 2024, 13(2), 169; https://doi.org/10.3390/pathogens13020169 - 13 Feb 2024
Cited by 1 | Viewed by 2042
Abstract
To determine the role that the IL-4/IL13 receptor plays in the development of alternatively activated macrophages (AAM or M2) and their role in the regulation of immunity to the extraintestinal phase of the helminth parasite Taenia crassiceps, we followed the infection in [...] Read more.
To determine the role that the IL-4/IL13 receptor plays in the development of alternatively activated macrophages (AAM or M2) and their role in the regulation of immunity to the extraintestinal phase of the helminth parasite Taenia crassiceps, we followed the infection in a mouse strain lacking the IL-4Rα gene (IL-4Rα−/−) and in the macrophage/neutrophil-specific IL-4Rα-deficient mouse strain (LysMcreIL-4Rα−/lox or cre/LoxP). While 100% of T. crassiceps-infected IL-4Rα+/+ (WT) mice harbored large parasite loads, more than 50% of th eIL-4Rα−/− mice resolved the infection. Approximately 88% of the LysMcreIL-4Rα−/lox mice displayed a sterilizing immunity to the infection. The remaining few infected cre/LoxP mice displayed the lowest number of larvae in their peritoneal cavity. The inability of the WT mice to control the infection was associated with antigen-specific Th2-type responses with higher levels of IgG1, IL-4, IL-13, and total IgE, reduced NO production, and increased arginase activity. In contrast, IL-4Rα−/− semi-resistant mice showed a Th1/Th2 combined response. Furthermore, macrophages from the WT mice displayed higher transcripts for Arginase-1 and RELM-α, as well as increased expression of PD-L2 with robust suppressive activity over anti-CD3/CD28 stimulated T cells; all of these features are associated with the AAM or M2 macrophage phenotype. In contrast, both the IL-4Rα−/− and LysMcreIL-4Rα−/lox mice did not fully develop AAM or display suppressive activity over CD3/CD28 stimulated T cells, reducing PDL2 expression. Additionally, T-CD8+ but no T-CD4+ cells showed a suppressive phenotype with increased Tim-3 and PD1 expression in WT and IL-4Rα−/−, which were absent in T. crassiceps-infected LysMcreIL-4Rα−/lox mice. These findings demonstrate a critical role for the IL-4 signaling pathway in sustaining AAM and its suppressive activity during cysticercosis, suggesting a pivotal role for AAM in favoring susceptibility to T. crassiceps infection. Thus, the absence of these suppressor cells is one of the leading mechanisms to control experimental cysticercosis successfully. Full article
Show Figures

Figure 1

19 pages, 20225 KB  
Article
An Approach to Intersectionally Target Mature Enteroendocrine Cells in the Small Intestine of Mice
by Christian Vossen, Patricia Schmidt, Claudia Maria Wunderlich, Melanie Joyce Mittenbühler, Claas Tapken, Peter Wienand, Paul Nicolas Mirabella, Leonie Cabot, Anna-Lena Schumacher, Kat Folz-Donahue, Christian Kukat, Ingo Voigt, Jens C. Brüning, Henning Fenselau and F. Thomas Wunderlich
Cells 2024, 13(1), 102; https://doi.org/10.3390/cells13010102 - 4 Jan 2024
Cited by 1 | Viewed by 3950
Abstract
Enteroendocrine cells (EECs) constitute only a small proportion of Villin-1 (Vil1)-expressing intestinal epithelial cells (IECs) of the gastrointestinal tract; yet, in sum, they build the largest endocrine organ of the body, with each of them storing and releasing a distinct set of [...] Read more.
Enteroendocrine cells (EECs) constitute only a small proportion of Villin-1 (Vil1)-expressing intestinal epithelial cells (IECs) of the gastrointestinal tract; yet, in sum, they build the largest endocrine organ of the body, with each of them storing and releasing a distinct set of peptides for the control of feeding behavior, glucose metabolism, and gastrointestinal motility. Like all IEC types, EECs are continuously renewed from intestinal stem cells in the crypt base and terminally differentiate into mature subtypes while moving up the crypt–villus axis. Interestingly, EECs adjust their hormonal secretion according to their migration state as EECs receive altering differentiation signals along the crypt–villus axis and thus undergo functional readaptation. Cell-specific targeting of mature EEC subtypes by specific promoters is challenging because the expression of EEC-derived peptides and their precursors is not limited to EECs but are also found in other organs, such as the brain (e.g., Cck and Sst) as well as in the pancreas (e.g., Sst and Gcg). Here, we describe an intersectional genetic approach that enables cell type-specific targeting of functionally distinct EEC subtypes by combining a newly generated Dre-recombinase expressing mouse line (Vil1-2A-DD-Dre) with multiple existing Cre-recombinase mice and mouse strains with rox and loxP sites flanked stop cassettes for transgene expression. We found that transgene expression in triple-transgenic mice is highly specific in I but not D and L cells in the terminal villi of the small intestine. The targeting of EECs only in terminal villi is due to the integration of a defective 2A separating peptide that, combined with low EEC intrinsic Vil1 expression, restricts our Vil1-2A-DD-Dre mouse line and the intersectional genetic approach described here only applicable for the investigation of mature EEC subpopulations. Full article
(This article belongs to the Special Issue The Role of Intestinal Epithelial Cells in Health and Disease)
Show Figures

Graphical abstract

Back to TopTop