Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = CoFe-LDH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2832 KiB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 285
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

19 pages, 4090 KiB  
Article
The Behavior of Divalent Metals in Double-Layered Hydroxides as a Fenton Bimetallic Catalyst for Dye Decoloration: Kinetics and Experimental Design
by Edgar Oswaldo Leyva Cruz, Diana Negrete Godínez, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(7), 687; https://doi.org/10.3390/catal15070687 - 16 Jul 2025
Viewed by 545
Abstract
This study investigates the influence of divalent metals—(Mg(II), Co(II), and Ni(II)) in layered double hydroxides (LDHs), with a constant trivalent Fe(III) component—on the decoloration of crystal violet and methyl blue dyes via a Fenton-type oxidation reaction. The catalysts, synthesized by co-precipitation and hydrothermal [...] Read more.
This study investigates the influence of divalent metals—(Mg(II), Co(II), and Ni(II)) in layered double hydroxides (LDHs), with a constant trivalent Fe(III) component—on the decoloration of crystal violet and methyl blue dyes via a Fenton-type oxidation reaction. The catalysts, synthesized by co-precipitation and hydrothermal treatment, were tested in both hydroxide and oxide forms under varying agitation conditions (0 and 280 rpm). A 22 × 3 factorial design was used to analyze the effect of the divalent metal type, catalyst phase, and stirring. The Mg/Fe oxide, with the highest BET surface area (144 m2/g) and crystallite size (59.7 nm), showed superior performance—achieving up to 98% decoloration of crystal violet and 97% of methyl blue within 1 h. The kinetic analysis revealed pseudo-second-order and pseudo-first-order fits for crystal violet and methyl blue, respectively. These findings suggest that LDH-based catalysts provide a fast, low-cost, and effective option for dye removal in aqueous systems. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 338
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

20 pages, 5004 KiB  
Article
Maresin1 Alleviates Ischemia Reperfusion Injury After Lung Transplantation by Inhibiting Ferroptosis via the PKA-Hippo-YAP Signaling Pathway
by Peng Deng, You Wu, Li Wan, Xiangfu Sun and Quanchao Sun
Biomedicines 2025, 13(7), 1594; https://doi.org/10.3390/biomedicines13071594 - 30 Jun 2025
Viewed by 411
Abstract
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of [...] Read more.
Background: Lung ischemia reperfusion injury (LIRI) is a severe complication after lung transplantation (LT). Ferroptosis contributes to the pathogenesis of LIRI. Maresin1 (MaR1) is an endogenous pro-resolving lipid mediator that exerts protective effects against multiorgan diseases. However, the role and mechanism of MaR1 in the ferroptosis of LIRI after LT need to be further investigated. Methods: A mouse LT model and a pulmonary vascular endothelial cell line after hypoxia reoxygenation (H/R) culture were established in our study. Histological morphology and inflammatory cytokine levels predicted the severity of LIRI. Cell viability and cell injury were determined by CCK-8 and LDH assays. Ferroptosis biomarkers, including Fe2+, MDA, 4-HNE, and GSH, were assessed by relevant assay kits. Transferrin receptor (TFRC) and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) protein levels were examined by western blotting. In vitro, lipid peroxide levels were detected by DCFH-DA staining and flow cytometry analysis. The ultrastructure of mitochondria was imaged using transmission electron microscopy. Furthermore, the potential mechanism by which MaR1 regulates ferroptosis was explored and verified with signaling pathway inhibitors using Western blotting. Results: MaR1 protected mice from LIRI after LTx, which was reversed by the ferroptosis agonist Sorafenib in vivo. MaR1 administration decreased Fe2+, MDA, 4-HNE, TFRC, and ACSL4 contents, increased GSH levels, and ameliorated mitochondrial ultrastructural injury after LTx. In vitro, Sorafenib resulted in lower cell viability and worsened cell injury and enhanced the hallmarks of ferroptosis after H/R culture, which was rescued by MaR1 treatment. Mechanistically, the protein kinase A and YAP inhibitors partly blocked the effects of MaR1 on ferroptosis inhibition and LIRI protection. Conclusions: This study revealed that MaR1 alleviates LIRI and represses ischemia reperfusion-induced ferroptosis via the PKA-Hippo-YAP signaling pathway, which may offer a promising theoretical basis for the clinical application of organ protection after LTx. Full article
(This article belongs to the Special Issue The Role of Iron in Human Diseases)
Show Figures

Figure 1

14 pages, 2652 KiB  
Article
Rational Construction of Nano-Scaled FeOOH/NiFe-LDH for Efficient Water Splitting
by Juan Yu, Xiubing Fu, Haoqi Wang, Shun Lu and Bing Li
Nanomaterials 2025, 15(12), 949; https://doi.org/10.3390/nano15120949 - 18 Jun 2025
Viewed by 418
Abstract
In this paper, we use the facile approach for preparing novel, low-cost, efficient electrocatalysts for electrocatalytic water splitting. Interfacial engineering can significantly enhance the intrinsic performance of electrocatalysts. Herein, self-supporting FeOOH/NiFe-layered double hydroxide (LDH) nanosheet arrays were synthesized via hydrothermal and impregnation methods. [...] Read more.
In this paper, we use the facile approach for preparing novel, low-cost, efficient electrocatalysts for electrocatalytic water splitting. Interfacial engineering can significantly enhance the intrinsic performance of electrocatalysts. Herein, self-supporting FeOOH/NiFe-layered double hydroxide (LDH) nanosheet arrays were synthesized via hydrothermal and impregnation methods. The resulting FeOOH/NiFe-LDH can provide more active regions, which provide more active regions for co-reaction to proceed and accelerates electron transmit processes. Additionally, the amorphous FeOOH provides abundant active sites with low coordination, leading to excellent activity. The FeOOH/NiFe-LDH demonstrates remarkable two half-reaction electrocatalytic activity, along with excellent overpotentials of 168 mV (OER) and 155 mV (HER). This research introduces a sophisticated and scalable methodology for the creation of remarkably efficient and resilient alkaline conditions specifically designed for the HER and OER. Full article
Show Figures

Graphical abstract

14 pages, 3101 KiB  
Article
Construction of CuCo2O4@NiFe-LDH Core–Shell Heterostructure for High-Performance Hybrid Supercapacitors
by Yang Chen, Man Li, Chengyu Xue and Fuxiang Wei
Metals 2025, 15(6), 659; https://doi.org/10.3390/met15060659 - 13 Jun 2025
Viewed by 464
Abstract
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their [...] Read more.
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their application in supercapacitors. In this paper, core–shell heterostructures of nickel–iron layered double hydroxide (NiFe-LDH) nanosheets uniformly grown on CuCo2O4 nanoneedles were synthesized by hydrothermal and calcination methods. It is found that the novel core–shell structure of CuCo2O4@NiFe-LDH improves the electrical conductivity of the electrode materials and optimizes the charge transport path. Under the synergistic effect of the two components and the core–shell heterostructure, the CuCo2O4@NiFe-LDH electrode achieves an ultra-high specific capacity of 323.4 mAh g−1 at 1 A g−1. And the capacity retention after 10,000 cycles at 10 A g−1 is 90.66%. In addition, the assembled CuCo2O4@NiFe-LDH//RGO asymmetric supercapacitor device achieved a considerable energy density (68.7 Wh kg−1 at 856.3 W kg−1). It also has 89.36% capacity retention after 10,000 cycles at 10 A g−1. These properties indicate the great potential application of CuCo2O4@NiFe-LDH in the field of high-performance supercapacitors. Full article
Show Figures

Figure 1

20 pages, 6769 KiB  
Article
Overcoming the pH Dependence of Iron-Based Catalysts and Efficient Generation of High-Valent Ferrite by Constructing a Neutral Microenvironment
by Jingwei Chen and Kangping Cui
Appl. Sci. 2025, 15(9), 5100; https://doi.org/10.3390/app15095100 - 3 May 2025
Viewed by 494
Abstract
The reliance on acidic working environments presents a significant bottleneck in the development and widespread application of peroxymonosulfate (PMS)-activated high-valent iron-oxo systems and iron-based catalysts. In this study, we present a system of non-homogeneous activation of peroxymonosulfate that is capable of overcoming the [...] Read more.
The reliance on acidic working environments presents a significant bottleneck in the development and widespread application of peroxymonosulfate (PMS)-activated high-valent iron-oxo systems and iron-based catalysts. In this study, we present a system of non-homogeneous activation of peroxymonosulfate that is capable of overcoming the acidic environment in heterogeneous to generate continuous non-radicals for the selective degradation of organic pollutants such as sulfamethoxazole. The system takes advantage of amphiprotic hydroxides to create a homogeneous neutral pH microenvironment at the heterogeneous interface of the catalyst. The generation of the neutral pH microenvironment is capable of inducing the formation of high-valent iron-oxo species and a more stable cycling of iron ions in the iron-based material., promoting sustained catalytic activity A series of design quenching experiments, electron paramagnetic resonance (EPR) experiments, and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) which were conducted to assess the selectivity of FeCo-LDH/PMS under high salt or natural organic conditions, as well as its effectiveness in treating real wastewater. These findings offer a novel approach to overcoming pH limitations and enhancing the selectivity of target pollutants in advanced oxidation processes (AOPs). Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

17 pages, 3734 KiB  
Article
Tailoring Two-Dimensional NiFeCo-Layered Double Hydroxide onto One-Dimensional N-Doped CNTs for High-Performance Bifunctional Air Electrodes in Flexible Zinc–Air Batteries
by Yeon-Woo Kim, Ayeon Lee and Sung Hoon Ahn
Batteries 2025, 11(4), 155; https://doi.org/10.3390/batteries11040155 - 15 Apr 2025
Viewed by 979
Abstract
The development of bifunctional air electrodes with high activity and durability is essential for advancing flexible zinc–air batteries. Herein, a hierarchical electrode structure is designed by growing N-doped carbon nanotubes (CNTs) on copper foam, where CNTs serve as highly active oxygen reduction reaction [...] Read more.
The development of bifunctional air electrodes with high activity and durability is essential for advancing flexible zinc–air batteries. Herein, a hierarchical electrode structure is designed by growing N-doped carbon nanotubes (CNTs) on copper foam, where CNTs serve as highly active oxygen reduction reaction (ORR) sites. The controlled deposition of NiFeCo-layered double hydroxide (LDH) nanosheets, optimized to maintain ORR activity while enhancing oxygen evolution reaction (OER) performance, enables a finely tuned bifunctional catalyst. This architecture achieves outstanding electrochemical properties, requiring only 0.897 V vs. RHE and 1.446 V vs. RHE to reach 10 mA cm−2 in 1 M KOH, thereby minimizing overpotentials. When implemented as an air electrode in a quasi-solid-state zinc–air battery, the system demonstrates remarkable cycling stability, sustaining performance for over 300 h. Furthermore, a 16 cm2 pouch-type zinc–air battery delivers a high discharge capacity of 0.62 Ah, highlighting the scalability of this design. This work presents a robust and scalable strategy for developing high-performance bifunctional air electrodes, offering a promising route for next-generation flexible energy storage systems. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

24 pages, 3246 KiB  
Article
Layered Double Hydroxide (LDH)-Derived Mixed Oxides for Enhanced Light Hydrocarbon Production from CO2 Hydrogenation
by Evridiki Mandela, Antigoni G. Margellou, Athanasia Kotsaridou, George E. Marnellos, Michalis Konsolakis and Konstantinos S. Triantafyllidis
Catalysts 2025, 15(4), 323; https://doi.org/10.3390/catal15040323 - 27 Mar 2025
Viewed by 2280
Abstract
Layered double hydroxide (LDH)-derived mixed oxides offer a promising approach for CO2 hydrogenation to light hydrocarbons. Herein, we explore the impact of various transition metals (X = Mn, Co, Cu, and Zn) incorporated into the M-Al or M-(Al+Fe) LDH structures, with the [...] Read more.
Layered double hydroxide (LDH)-derived mixed oxides offer a promising approach for CO2 hydrogenation to light hydrocarbons. Herein, we explore the impact of various transition metals (X = Mn, Co, Cu, and Zn) incorporated into the M-Al or M-(Al+Fe) LDH structures, with the aim of exploring possible synergistic effects. Structural and compositional analyses reveal that an abundance of Fe over Al (Fe/Al ratio ~4) leads to the formation of mixed oxide crystalline phases attributed to CoFe2O4, CuFe2O4, and ZnFe2O4. Catalytic evaluation results demonstrate that the X-Al LDH-derived oxides exhibit high CO2 conversion yet are selective to CH4 or CO. In contrast, Fe incorporation shifts selectivity toward higher hydrocarbons. Specifically, the yield to higher hydrocarbons (C2+) follows the order Ζn-Al-Fe > Cu-Al-Fe > Mn-Al-Fe > Co-Al-Fe >> Mn-Al, Co-Al, Zn-Al, Cu-Al, highlighting the pivotal role of Fe. Moreover, Zn-Al-Fe and Mn-Al-Fe catalysts have been shown to be the most selective towards light olefins. Zn-based systems also exhibit high thermal and structural stability with minimal coke formation, whereas Co-, Cu-, and Mn-based catalysts, when modified with Fe, experience increased carbon deposition or structural changes that may impact long-term stability. This work provides insights into the combined role of Fe and a second transition metal in LDHs for modulating catalytic activity, phase transformations, and stability, underscoring the need for further optimization to balance selectivity and catalyst durability in CO2 hydrogenation applications. Full article
Show Figures

Graphical abstract

13 pages, 3464 KiB  
Article
Enhanced the Overall Water Splitting Performance of Quaternary NiFeCrCo LDH: Via Increasing Entropy
by Xin Liu, Li Bai, Xinrong Guo, Haoyu Li, Xiaoyan Liu, Jian Cao, Lili Yang, Maobin Wei, Yanli Chen, Huilian Liu and Qiang Tao
Molecules 2025, 30(7), 1461; https://doi.org/10.3390/molecules30071461 - 25 Mar 2025
Viewed by 698
Abstract
The construction of high-performance catalysts for overall water splitting (OWS) is crucial. Nickel–iron-layered double hydroxide (NiFe LDH) is a promising catalyst for OWS. However, the slow kinetics of the HER under alkaline conditions seriously hinder the application of NiFe LDH in OWS. This [...] Read more.
The construction of high-performance catalysts for overall water splitting (OWS) is crucial. Nickel–iron-layered double hydroxide (NiFe LDH) is a promising catalyst for OWS. However, the slow kinetics of the HER under alkaline conditions seriously hinder the application of NiFe LDH in OWS. This work presents a strategy to optimize OWS performance by adjusting the entropy of multi-metallic LDH. Quaternary NiFeCrCo LDH was constructed, which exhibited remarkable OWS activity. The OER and HER of NiFeCrCo LDH were stable for 100 h and 80 h, respectively. The OWS activity of NiFeCrCo LDH//NiFeCrCo LDH only required 1.42 V to reach 10 mA cm−2, and 100 mA cm−2 required 1.54 V. Under simulated seawater conditions, NiFeCrCo LDH//NiFeCrCo LDH required 1.57 V to reach 10 mA cm−2 and 1.71 V to reach 100 mA cm−2. The introduction of Co into the structure induced Cr to provide more electrons to Fe, which regulated the electronic state of NiFeCrCo LDH. The appropriate electronic state of the structure is essential for the remarkable performance of OWS. This work proposes a new strategy to achieve excellent OWS performance through entropy-increase engineering. Full article
Show Figures

Figure 1

19 pages, 7292 KiB  
Article
Mechanism and Pathway of Atrazine Degradation by Peroxymonosulfate Activated by CoNiFe-Layered Double Hydroxide
by Zhanmei Zhang, Xinyue Li, Yang Deng, Yi Zhang, Yunxuan Huang and Huaili Zheng
Coatings 2025, 15(3), 346; https://doi.org/10.3390/coatings15030346 - 18 Mar 2025
Viewed by 529
Abstract
Advanced oxidation processes (AOPs) based on activated persulfate (PS) are gradually being employed in the treatment of novel pollutants. In this study, an efficient and reliable CoNiFe-layered double hydroxide (LDH) was prepared by a hydrothermal method, which could effectively activate peroxomonosulfate (PMS) and [...] Read more.
Advanced oxidation processes (AOPs) based on activated persulfate (PS) are gradually being employed in the treatment of novel pollutants. In this study, an efficient and reliable CoNiFe-layered double hydroxide (LDH) was prepared by a hydrothermal method, which could effectively activate peroxomonosulfate (PMS) and cause free sulfate radical (SO4•−) oxidation to decompose atrazine (ATZ). The degradation rate of ATZ was greater than 99% within 60 min at pH 7 when the initial concentration of ATZ was 10 mg·L−1, and the dosages of PMS and activator were 0.6 mM and 80 mg·L−1. The analysis of ATZ degradation confirmed the reusability of the activator and its strong structural stability. The generation of four free radicals was analyzed and confirmed, and the influence on the degradation reaction was SO4•− > O2•− > 1O2 > •OH. The analytical results showed that the metal ions reacted with HSO5 in PMS to cause an oxidation–reduction cycle change in the valence state of the metal ions and generated the primary factor affecting the degradation reaction—SO4•−. Nine degradation intermediates with reduced toxicity were detected and possible ATZ degradation pathways were deduced, thus confirming the activation mechanism of CoNiFe-LDH. Full article
Show Figures

Figure 1

13 pages, 3773 KiB  
Article
Transition-Metal-Doped Nickel–Cobalt Layered Double Hydroxide Catalysts for an Efficient Oxygen Evolution Reaction
by Zhihan Li, Wenjing Yi, Qingqing Pang, Meng Zhang and Zhongyi Liu
Materials 2025, 18(4), 877; https://doi.org/10.3390/ma18040877 - 17 Feb 2025
Viewed by 1466
Abstract
Hydrogen plays a vital role in the global shift toward cleaner energy solutions, with water electrolysis standing out as one of the most promising techniques for generating hydrogen. Despite its potential, the oxygen evolution reaction (OER) involved in this process faces significant challenges, [...] Read more.
Hydrogen plays a vital role in the global shift toward cleaner energy solutions, with water electrolysis standing out as one of the most promising techniques for generating hydrogen. Despite its potential, the oxygen evolution reaction (OER) involved in this process faces significant challenges, including high overpotentials and slow reaction rates, which underscore the need for advanced electrocatalytic materials to enhance efficiency. Noble metal catalysts are effective but expensive, so transition-metal-based electrocatalysts like nickel–cobalt layered double hydroxides (NiCo LDHs) have become promising alternatives. In this research, a series of NiCo LDH catalysts doped with Fe, Mn, Cu, and Zn were effectively produced using a one-step hydrothermal technique. Among the catalysts, the Fe-doped NiCo LDH exhibited OER activity, achieving a lower overpotential (289 mV) at a current density of 50 mA/cm2, which was far better than the 450 mV of the undoped NiCo LDH. The Mn-, Cu-, and Zn-NiCo LDHs also exhibited lower overpotentials of 414 mV, 403 mV, and 357 mV, respectively, at this current density. The Fe-doped NiCo LDH had a 3D layered nanoflower structure, increasing the surface area for reactant adsorption. The electrochemically active surface area (ECSA), as indicated by the double-layer capacitance (Cdl), was larger in the doped samples. The Cdl value of the Fe-doped NiCo LDH was 3.72 mF/cm2, significantly surpassing the 0.82 mF/cm2 of the undoped NiCo LDH. These changes improved charge transfer and optimized reaction kinetics, enhancing the overall OER performance. This study offers significant contributions to the development of efficient electrocatalysts for the OER, advancing the understanding of key design principles for enhanced catalytic performance. Full article
Show Figures

Figure 1

21 pages, 4263 KiB  
Article
Hierarchical CoMn-LDH and Heterostructured Composites for Advanced Supercapacitors and Electrocatalysis Applications
by Ganesh T. Chavan, Deepak P. Dubal, Pritam J. Morankar, Chan-Wook Jeon, Jinsung An and Ki-Han Song
Materials 2025, 18(3), 604; https://doi.org/10.3390/ma18030604 - 28 Jan 2025
Cited by 3 | Viewed by 1664
Abstract
In the present study, self-assembled hierarchical CoMn-LDH, CoMn@CuZnS, and CoMn@CuZnFeS heterostructured composites were synthesized for bifunctional applications. As an electrode for a supercapacitor, CoMn-LDH demonstrated superior areal and specific capacitance of 5.323 F cm−2 (279.49 mAh/g) at 4 mA cm−2, [...] Read more.
In the present study, self-assembled hierarchical CoMn-LDH, CoMn@CuZnS, and CoMn@CuZnFeS heterostructured composites were synthesized for bifunctional applications. As an electrode for a supercapacitor, CoMn-LDH demonstrated superior areal and specific capacitance of 5.323 F cm−2 (279.49 mAh/g) at 4 mA cm−2, comparable to or even higher than other LDHs. The assembled AC//CoMn-LDH hybrid supercapacitor device further demonstrated better stability with 63% original capacitance over 20,000 cycles. Later, as a catalyst, CoMn-LDH, CoMn@CuZnS, and CoMn@CuZnFeS electrodes revealed better performance, with overpotentials of 340, 350, and 366 and −199, −215, and −222 mV to attain 10 mA cm−2 of current density for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. Moreover, for CoMn-LDH, small Tafel slopes of 102 and 128 mV/dec were noticed for OER and HER with good stability compared to heterostructured electrodes. Full article
Show Figures

Figure 1

22 pages, 4181 KiB  
Article
X-Ray Photoelectron Spectroscopy (XPS) Study of Layered Double Hydroxides with Different Exchangeable Anions
by J. Theo Kloprogge
Appl. Sci. 2025, 15(3), 1318; https://doi.org/10.3390/app15031318 - 27 Jan 2025
Cited by 6 | Viewed by 1774
Abstract
Layered double hydroxides (LDH) containing various exchangeable anions were studied to show how X-ray Photoelectron Spectroscopy (XPS) can provide information on the local environments of the different elements within the interlayer anionic groups and their possible influence on the LDH interlayer hydroxide surfaces. [...] Read more.
Layered double hydroxides (LDH) containing various exchangeable anions were studied to show how X-ray Photoelectron Spectroscopy (XPS) can provide information on the local environments of the different elements within the interlayer anionic groups and their possible influence on the LDH interlayer hydroxide surfaces. As such, XPS can potentially provide additional information about these systems that cannot be obtained by other common spectroscopic methods, such as infrared and Raman spectroscopy. A Mg6Al2X(OH)16. 4H2O with X representing interlayer anions CO32−, PO43−, SO42−, MoO42−, CrO43−, Fe(CN)64−, and Fe(CN)63− was studied. The hydroxide layer structure is characterized by the Mg 2p and Al 2p with a binding energy of around 50.1 and 74.5 eV for the normal CO32− containing LDH. The O 1s contained three peaks related to the layer OH-groups at 531.6 eV, interlayer CO32− at 530.5 eV and interlayer water at 532.4 eV. Similar observations were made for the other interlayer anions showing characteristic P 2p, S 2p, and Mo 3d peaks. Intercalation with CrO43− shows that a significant amount of the Cr6+ has been reduced to Cr3+. Finally, the intercalation of hexacyanoferrate in hydrotalcite showed the potential of XPS in detecting changes in the oxidation state of Fe upon intercalation in the LDH with a change in the Fe 2p peaks with a shift in binding energy and the possibility of determining the amount of reduction of Fe(III) to Fe(II). In general, the XPS high-resolution scans of P 2p, S 2p, Mo 3d, and Cr 2p show that slightly lower binding energies are observed compared to the binding energy values for the corresponding anionic groups as part of a rigid crystal structure, such as in minerals. Overall, the influence of the nature of the interlayer anion on the binding energy of the elements (Mg, Al, O) in the layered double hydroxide structure is minimal and considered to be within the experimental error of XPS. A detailed analysis of XPS data in combination with infrared and Raman spectroscopy shows how XPS can provide additional information that is not readily available via vibrational spectroscopy. XPS can simultaneously account for both surface and bulk properties of LDH that are not available through common vibrational spectroscopic methods. Full article
Show Figures

Figure 1

16 pages, 3163 KiB  
Article
Hydrogen Energy Storage via CO2 Hydrogenation over Catalysts Prepared by Layered Double Hydroxide Precursor
by Guosong Wang, Xiaosheng Wang, Ranjia Li, Changchun Yu and Tao Zhen
Catalysts 2025, 15(2), 111; https://doi.org/10.3390/catal15020111 - 23 Jan 2025
Viewed by 965
Abstract
Converting CO2 and green hydrogen into products such as methane and methanol not only has a negative carbon effect, but also stores renewable energy into energy chemicals. This represents a promising route for hydrogen energy storage technologies. The hydrogenation of CO2 [...] Read more.
Converting CO2 and green hydrogen into products such as methane and methanol not only has a negative carbon effect, but also stores renewable energy into energy chemicals. This represents a promising route for hydrogen energy storage technologies. The hydrogenation of CO2 to methane and methanol, which represent strongly exothermic reactions, are thermodynamically favored at low temperatures. However, the inherent inertness of CO2 makes it difficult to activate CO2 at low temperatures. Both reactions face the challenge of activating CO2 at low temperature, so catalysts exhibiting high activity under such conditions are a critical need. Layered double hydroxides (LDHs) have attracted considerable interest owing to their regular layered structure and uniform dispersion of multiple metallic components. However, there are few studies on the same effects of promoters over LDHs-derived catalysts. Here, we investigated the same effects of promoters on two LDHs-derived catalysts in different CO2 hydrogenation reactions to illustrate the effects of promoters on facilitating low-temperature CO2 activation in LDHs-derived catalysts. By adding promoters Fe and Mn to the catalysts NiAl-Fe and CuZnAl-Mn, the crystal lattices were expanded, surface areas were increased 38% and 25%, and the reduction temperatures were decreased to 97 °C and 10 °C, respectively. These promoters significantly enhanced the CO2 adsorption and activation of the catalysts NiAl-Fe and CuZnAl-Mn. The methanation catalyst NiAl-Fe achieved a CO2 conversion of 80.8% at 200 °C and 2 MPa, while the methanol synthesis catalyst CuZnAl-Mn exhibited a CO2 conversion of 21.3% and a methanol selectivity of 61.8% under the conditions of 250 °C and 3 MPa. The influence of the LDHs precursors’ structure and the addition of promoters Fe and Mn on the catalytic performance were studied by XRD, N2 adsorption–desorption, H2-TPR, H2-TPD, and CO2-TPD. Full article
(This article belongs to the Special Issue Catalytic Applications of Layered Double Hydroxides)
Show Figures

Graphical abstract

Back to TopTop