Enhanced the Overall Water Splitting Performance of Quaternary NiFeCrCo LDH: Via Increasing Entropy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Subsection Electrocatalysts Characterization
2.2. HER and OER Performance
2.3. OWS Performance
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subbaraman, R.; Tripkovic, D.; Chang, K.C.; Strmcnik, D.; Paulikas, A.P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N.M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557. [Google Scholar] [PubMed]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [PubMed]
- Chen, L.; Ren, J.; Yuan, Z. Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting. Green Chem. 2022, 24, 713–747. [Google Scholar]
- Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106. [Google Scholar]
- Zhao, R.; Zhang, C.; Wei, L.; Zhang, Y.; Wei, D.; Su, J.; Guo, L. Photothermally enhanced electrocatalytic water splitting with iron-doped nickel phosphide. J. Energy Chem. 2025, 102, 243–252. [Google Scholar]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003. [Google Scholar]
- Pradhan, H.; Mondal, R.; Nayak, B.; Thimmappa, R.; Mendhe, R.M.; Ottakam Thotiyl, M. Unidirectional competitive redox enabled unsegmented natural sea-water splitting for green hydrogen production. Green Chem. 2025, 27, 770–781. [Google Scholar]
- Liu, Z.; Huang, J.; Jiao, F.; Zhang, K.; Zhao, G.; Deng, X. Reinforcement of electrocatalytic overall water splitting by constructing Mo-doped NiFe LDH/NiS heterostructure. Colloids Surf. A 2025, 705, 135711. [Google Scholar]
- Nitika; Dutta, R.K. Partial Selenization Strategy for Fabrication of Ni0.85Se@NiCr-LDH Heterostructure as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2024, 21, 2407538. [Google Scholar]
- Li, X.; Zheng, L.; Liu, S.; Ouyang, T.; Ye, S.; Liu, Z. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chin. Chem. Lett. 2022, 33, 4761–4765. [Google Scholar]
- Megala, S.; Sathish, M.; Harish, S.; Navaneethan, M.; Sohila, S.; Liang, B.; Ramesh, R. Enhancement of photocatalytic H2 evolution from water splitting by construction of two dimensional g-C3N4/NiAl layered double hydroxides. Appl. Surf. Sci. 2020, 509, 144656. [Google Scholar]
- Kumar, S.; Raju, S.; Marappa, S.; Vyshak, D.R. Unlocking the Potential of Water Splitting: FeMn-LDH/MoS2 Composite with Enhanced Activity and Durability. ACS Appl. Energy Mater. 2024, 7, 9872–9881. [Google Scholar]
- De, A.; Madhu, R.; Bera, K.; Dhandapani, H.N.; Nagappan, S.; Singha Roy, S.; Kundu, S. Deciphering the amplification of dual catalytic active sites of Se-doped NiV LDH in water electrolysis: A hidden gem exposure of anion doping at the core-lattice LDH framework. J. Mater. Chem. A 2023, 11, 25055–25071. [Google Scholar]
- Nejati, K.; Akbari, A.R.; Davari, S.; Asadpour Zeynali, K.; Rezvani, Z. Zn–Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation. New J. Chem. 2018, 42, 2889–2895. [Google Scholar]
- Wang, L.; Wang, Y.; Zhou, L.; Liu, J.Y.; Wu, Z. The critical effect of different additive interlayer anions on NiFe-LDH for direct seawater splitting: A theoretical study. J. Colloid Interface Sci. 2025, 680, 43–52. [Google Scholar]
- Kim, E.; Kim, S.; Kim, Y.; Hamkins, K.; Baek, J.; Kim, M.; Liu, T.; Choi, Y.M.; Lee, J.H.; Jang, G.Y.; et al. Activation of Hidden Catalytic Sites in 2D Basal Plane via p–n Heterojunction Interface Engineering Toward Efficient Oxygen Evolution Reaction. Adv. Energy Mater. 2024, 15, 2403722. [Google Scholar]
- Song, C.; Liu, Y.; Wang, Y.; Tang, S.; Li, W.; Li, Q.; Zeng, J.; Chen, L.; Peng, H.; Lei, Y. Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Sci. China Mater. 2021, 64, 1662–1670. [Google Scholar]
- Nayak, S.; Parida, K. Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. Inorg. Chem. Front. 2020, 7, 3805–3836. [Google Scholar]
- Ding, H.; Liu, D.; Liu, X.; Zhang, L.; Xu, G. Tuning the electronic-state of metal cobalt/cobalt iron alloy hetero-interface embedded in nitrogen-doped carbon nanotube arrays for boosting electrocatalytic overall water splitting. J. Colloid Interface Sci. 2025, 682, 392–402. [Google Scholar]
- Jian, J.; Wang, Z.; Qiao, Y.; Wang, M.; Nie, P.; Chang, L. Stainless steel mesh based CoNiSe4/CoNi-layered-double-hydroxides for efficient water-splitting and durable Zn-air battery. J. Power Sources 2025, 629, 235994. [Google Scholar]
- Fathyunes, L.; Muilwijk, C.; Brabazon, D. Benchmarking overall water splitting performance of heterostructured Fe-doped NiMo/NiCo@NF bifunctional electrocatalyst. Int. J. Hydrogen Energy 2024, 91, 965–976. [Google Scholar] [CrossRef]
- Guan, W.; Zhang, C.; Zhang, Y.; Feng, Y.; Mei, Y.; Qi, Q.; Song, Y.; Hu, J. High-entropy heterostructures modulated by oxyphilic transition metals for efficient oxygen evolution reaction. Nano Energy 2025, 134, 110528. [Google Scholar] [CrossRef]
- Miao, F.; Wang, T.; Jing, Z.; Zhang, Z.; Wang, J.; Gu, T.; Yan, Z.; Liang, X. A dual-phase PtNiCuMnMo high-entropy alloy as high-performance electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2025, 684, 161865. [Google Scholar] [CrossRef]
- Wang, S.; Yan, H.; Huo, W.; Davydok, A.; Zając, M.; Stępień, J.; Feng, H.; Xie, Z.; Shang, J.K.; Camargo, P.H.C.; et al. Engineering multiple nano-twinned high entropy alloy electrocatalysts toward efficient water electrolysis. Appl. Catal. B Environ. 2025, 363, 124791. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Z.; Chu, M.; Kang, N.; Jiang, X.; Zhang, J.; Xie, G.; Liu, X. Electrochemical self-construction to fabricate NiFeCoMnSn electrocatalysts: Enhanced lattice distortion effect induced by Sn incorporation for superior hydrogen evolution performance. Appl. Mater. Today 2024, 41, 102525. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, S.; Han, G.; Bian, H.; Zhao, X.; Wang, L.; Xie, G. Hierarchical Porous Nonprecious High-entropy Alloys for Ultralow Overpotential in Hydrogen Evolution Reaction. Small Methods 2024, 8, 2301691. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Tsai, C.C.; Nguyen, V.T.; Huang, Y.J.; Su, Y.H.; Li, S.Y.; Xie, R.K.; Lin, Y.J.; Lee, J.F.; Ting, J.M. High entropy promoted active site in layered double hydroxide for ultra-stable oxygen evolution reaction electrocatalyst. Chem. Eng. J. 2023, 466, 143352. [Google Scholar] [CrossRef]
- Liu, S.; Jia, B.; Wang, Y.; Zhao, Y.; Liu, L.; Fan, F.; Qin, Y.; Liu, J.; Jiang, Y.; Liu, H.; et al. Topological Synthesis of 2D High-Entropy Multimetallic (Oxy)hydroxide for Enhanced Lattice Oxygen Oxidation Mechanism. Adv. Mater. 2024, 36, 2409530. [Google Scholar] [CrossRef]
- Xu, M.; Liu, M.; Gong, Z.; Wei, S.; Wang, H.; Zhang, K.; Li, J.; Liu, G. Iron-promoted rapid self-reconstruction of nickel-based catalysts for efficient oxygen evolution. Appl. Surf. Sci. 2024, 678, 161086. [Google Scholar] [CrossRef]
- Ai, L.; Tian, Y.; Xiao, T.; Zhang, J.; Zhang, C.; Jiang, J. Energy-saving hydrogen production from sulfion oxidation-hybrid seawater splitting enabled by superwettable corrosion-resistant NiFe layered double hydroxide/FeNi2S4 heterostructured nanoarrays. J. Colloid Interface Sci. 2024, 673, 607–615. [Google Scholar] [CrossRef]
- Surjith, K.; Harsha, D.; Vishnuraj, R.; Rangarajan, M. 0D-3D-1D nanoarchitectured CQDs modified NiFe layered double hydroxides supported with MWCNTs: Enhanced electrocatalytic performance for oxygen evolution reaction. Int. J. Hydrogen Energy 2025, 97, 798–812. [Google Scholar] [CrossRef]
- Cui, H.; Jia, S.; Du, T.; Liu, J.; Lin, X.; Zhang, X.; Yang, F. p-n-Type LaCoO3/NiFe LDH Heterostructures for Enhanced Photogenerated Carrier-Assisted Electrocatalytic Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2024, 16, 70477–70488. [Google Scholar] [PubMed]
- Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827. [Google Scholar]
- Yao, Y.; Yang, C.; Sun, S.; Zhang, H.; Geng, M.; He, X.; Dong, K.; Luo, Y.; Zheng, D.; Zhuang, W.; et al. Boosting Alkaline Seawater Oxidation of CoFe-layered Double Hydroxide Nanosheet Array by Cr Doping. Small 2024, 20, 2307294. [Google Scholar]
- Wang, Z.; Liu, W.; Hu, Y.; Guan, M.; Xu, L.; Li, H.; Bao, J.; Li, H. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B Environ. 2020, 272, 118959. [Google Scholar]
- Xin, Y.; Chen, L.; Li, Y.; Shen, K. Highly selective electrosynthesis of 3,4-dihydroisoquinoline accompanied with hydrogen production over three-dimensional hollow CoNi-based microarray electrocatalysts. Nano Res. 2024, 17, 2509–2519. [Google Scholar] [CrossRef]
- Li, M.; Deng, X.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H.; Luo, J.; Fu, X. Co P@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323. [Google Scholar] [CrossRef]
- Srividhya, G.; Sangavi, T.; Viswanathan, C.; Ponpandian, N. Cobalt–Iron Co-substituted NiV Layered Double Hydroxide as a High-Performance Electrocatalyst for Oxygen Evolution Reaction in a Neutral Saline Medium. ACS Appl. Energy Mater. 2024, 7, 154–164. [Google Scholar]
- Zhang, M.; Wang, J.; Ma, L.; Gong, Y. Spontaneous synthesis of silver nanoparticles on cobalt-molybdenum layer double hydroxide nanocages for improved oxygen evolution reaction. J. Colloid Interface Sci. 2022, 628 Pt A, 299–307. [Google Scholar]
- Zhou, Y.; Yu, W.; Cao, Y.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F.; Fan, R.; Zhou, Y.; Chai, Y. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B Environ. 2021, 292, 120150. [Google Scholar]
- Singha Roy, S.; Madhu, R.; Karmakar, A.; Kundu, S. From Theory to Practice: A Critical and Comparative Assessment of Tafel Slope Analysis Techniques in Electrocatalytic Water Splitting. ACS Mater. Lett. 2024, 6, 3112–3123. [Google Scholar] [CrossRef]
- Kawashima, K.; Marquez, R.A.; Smith, L.A.; Vaidyula, R.R.; Carrasco-Jaim, O.A.; Wang, Z.; Son, Y.J.; Cao, C.L.; Mullins, C.B. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem. Rev. 2023, 123, 12795–13208. [Google Scholar] [PubMed]
- Xiao, C.; Hong, T.; Jia, J.; Jia, H.; Li, J.; Zhu, Y.; Ge, S.; Liu, C.; Zhu, G. Unlocking the potential of hydrogen evolution: Advancements in 3D nanostructured electrocatalysts supported on nickel foam. Appl. Catal. B Environ. 2024, 355, 124197. [Google Scholar]
- Lu, X.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [PubMed]
- Sun, Q.; Dong, Y.; Wang, Z.; Yin, S.; Zhao, C. Synergistic Nanotubular Copper-Doped Nickel Catalysts for Hydrogen Evolution Reactions. Small 2018, 14, 1704137. [Google Scholar]
- Ahn, S.H.; Choi, I.; Park, H.Y.; Hwang, S.J.; Yoo, S.J.; Cho, E.; Kim, H.J.; Henkensmeier, D.; Nam, S.W.; Kim, S.K.; et al. Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chem. Commun. 2013, 49, 9323–9325. [Google Scholar]
- Su, X.; Shao, X.; Wang, Y.; Fan, W.; Song, C.; Wang, D. CoNi2S4 Nanosheets on Carbon Cloth Using a Deep Eutectic Solvent Strategy as Bifunctional Catalysts for Water/Simulated Seawater Electrolysis. ACS Appl. Nano Mater. 2023, 6, 23029–23036. [Google Scholar]
- Chen, W.; Wei, W.; Li, F.; Wang, Y.; Liu, M.; Dong, S.; Cui, J.; Zhang, Y.; Wang, R.; Ostrikov, K.; et al. Tunable Built-In Electric Field in Ru Nanoclusters-Based Electrocatalyst Boosts Water Splitting and Simulated Seawater Electrolysis. Adv. Funct. Mater. 2023, 34, 2310690. [Google Scholar]
- Xiao, W.; Chen, Y.; Ke, C.; Han, F.; Wang, C.; Yang, X. Engineering the Heterostructured Ni9S8–FeOx Nanoarrays for Electrocatalytic (Sea)Water Splitting. ACS Appl. Nano Mater. 2025, 8, 512–523. [Google Scholar]
- Hoa, V.; Austeria, M.; Thi Dao, H.; Mai, M.; Kim, D. Dual-phase cobalt phosphide/phosphate hybrid interactions via iridium nanocluster interfacial engineering toward efficient overall seawater splitting. Appl. Catal. B Environ. 2023, 327, 122467. [Google Scholar]
- Gopalakrishnan, S.; Anandha Babu, G.; Harish, S.; Kumar, E.S.; Navaneethan, M. Interface engineering of heterogeneous NiMn layered double hydroxide/vertically aligned NiCo2S4 nanosheet as highly efficient hybrid electrocatalyst for overall seawater splitting. Chemosphere 2024, 350, 141016. [Google Scholar] [PubMed]
- Ye, R.; Sheng, Z.; Yang, P.; Xu, L.; Tao, Y.; Wu, X.; Cui, X. Ni-doped CoFeP as high-efficeint electrocatalysts for water-splitting. Electrochim. Acta 2024, 507, 145152. [Google Scholar]
- Zhang, X.; Shi, X.R.; Wang, P.; Bao, Z.; Huang, M.; Xu, Y.; Xu, S. Bio-inspired design of NiFeP nanoparticles embedded in (N,P) co-doped carbon for boosting overall water splitting. Dalton Trans. 2023, 52, 6860–6869. [Google Scholar] [PubMed]
- Sun, J.; Li, J.; Li, Z.; Li, C.; Ren, G.; Zhang, Z.; Meng, X. Modulating the Electronic Structure on Cobalt Sites by Compatible Heterojunction Fabrication for Greatly Improved Overall Water/Seawater Electrolysis. ACS Sustain. Chem. Eng. 2022, 10, 9980–9990. [Google Scholar]
- Zhang, S.; Ji, Y.; Wang, S.; Zhang, P.; Shi, D.; Lu, F.; Zhang, B. Sulfur doping induces internal polarization field in NiFe-LDH for bifunctioanl HER/OER and overall water/simulated seawater splitting. J. Alloys Compd. 2024, 1002, 175323. [Google Scholar]
- McCrory, C.C.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. [Google Scholar]
- Wang, T.; Guo, X.; Zhang, J.; Xi, P.; Peng, S.; Gao, D. Electronic structure modulation of NiS2 by transition metal doping for accelerating the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 4971–4976. [Google Scholar]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Huang, G.; Wang, Y.; Hao, W.; Lu, W.; Wang, Y.; Huang, Z.; Fan, J. Accurately prepared the large-area and efficiently 3D electrodes for overall seawater splitting. J. Electroanal. Chem. 2024, 973, 118671. [Google Scholar]
- Yang, P.; Liu, B.; Zhang, X.; Li, K.; Hu, D.; Xing, H.; Zhu, Q. Synthesis of nanoflower-like NF@MoSCo/Co2P composites for overall seawater splitting. CrystEngComm 2024, 26, 5892–5906. [Google Scholar]
- Jiang, Y.; Yu, J.; Song, H.; Du, L.; Sun, W.; Cui, Y.; Su, Y.; Sun, M.; Yin, G.; Lu, S. Enhanced water-splitting performance: Interface-engineered tri-metal phosphides with carbon dots modification. Carbon Energy 2024, 6, 631. [Google Scholar] [CrossRef]
- Ma, X.; Liang, R.; Wang, Y.; Wu, L.; Lei, F.; Fan, J.; Wang, L.; Hao, W. Large-area, flexible bimetallic phosphorus-based electrodes for prolong-stable industrial grade overall seawater splitting. Chem. Eng. J. 2024, 488, 150624. [Google Scholar] [CrossRef]
- Saquib, M.; Arora, P.; Bhosale, A. Nickel molybdenum selenide on carbon cloth as an efficient bifunctional electrocatalyst for alkaline seawater splitting. Fuel 2024, 365, 131251. [Google Scholar] [CrossRef]
- Liang, R.; Fan, J.; Lei, F.; Li, P.; Fu, C.; Lu, Z.; Hao, W. Fabrication of ultra-stable and high-efficient CoP-based electrode toward seawater splitting at industrial-grade current density. J. Colloid Interface Sci. 2023, 645, 227–240. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, Z.; Jin, C.; Ren, M.; Wang, J.; Shi, T.; Xing, H.; Ji, X. Synthesis of Urchin-like Ni@NP@NCP Composites with Three Solvothermal Systems for Highly Efficient Overall Seawater Splitting. Langmuir 2023, 39, 6240–6248. [Google Scholar] [CrossRef]
- Yang, P.; Ren, M.; Jin, C.; Xing, H. Facile Synthesis of N and P Co-Doped NiMoO4 Hollow Nanowires and Electrochemical Deposition of NiFe-Layered Double Hydroxide for Boosting Overall Seawater Splitting. J. Electrochem. Soc. 2022, 169, 046511. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Tan, L.; Liu, X.; Wen, Y.; Hou, W.; Zhan, T. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 2022, 613, 349–358. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Bai, L.; Guo, X.; Li, H.; Liu, X.; Cao, J.; Yang, L.; Wei, M.; Chen, Y.; Liu, H.; et al. Enhanced the Overall Water Splitting Performance of Quaternary NiFeCrCo LDH: Via Increasing Entropy. Molecules 2025, 30, 1461. https://doi.org/10.3390/molecules30071461
Liu X, Bai L, Guo X, Li H, Liu X, Cao J, Yang L, Wei M, Chen Y, Liu H, et al. Enhanced the Overall Water Splitting Performance of Quaternary NiFeCrCo LDH: Via Increasing Entropy. Molecules. 2025; 30(7):1461. https://doi.org/10.3390/molecules30071461
Chicago/Turabian StyleLiu, Xin, Li Bai, Xinrong Guo, Haoyu Li, Xiaoyan Liu, Jian Cao, Lili Yang, Maobin Wei, Yanli Chen, Huilian Liu, and et al. 2025. "Enhanced the Overall Water Splitting Performance of Quaternary NiFeCrCo LDH: Via Increasing Entropy" Molecules 30, no. 7: 1461. https://doi.org/10.3390/molecules30071461
APA StyleLiu, X., Bai, L., Guo, X., Li, H., Liu, X., Cao, J., Yang, L., Wei, M., Chen, Y., Liu, H., & Tao, Q. (2025). Enhanced the Overall Water Splitting Performance of Quaternary NiFeCrCo LDH: Via Increasing Entropy. Molecules, 30(7), 1461. https://doi.org/10.3390/molecules30071461