Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = Clinacanthus nutans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3798 KiB  
Article
Integrative Wound-Healing Effects of Clinacanthus nutans Extract and Schaftoside Through Anti-Inflammatory, Endothelial-Protective, and Antiviral Mechanisms
by Nipitpawn Limpanich, Pattarasuda Chayapakdee, Kullanun Mekawan, Saruda Thongyim, Rujipas Yongsawas, Phanuwit Khamwong, Yingmanee Tragoolpua, Thida Kaewkod, Siriphorn Jangsutthivorawat, Jarunee Jungklang, Usawadee Chanasut, Angkhana Inta, Phatchawan Arjinajarn, Aussara Panya and Hataichanok Pandith
Int. J. Mol. Sci. 2025, 26(13), 6029; https://doi.org/10.3390/ijms26136029 - 23 Jun 2025
Viewed by 857
Abstract
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf [...] Read more.
Clinacanthus nutans (Burm.f.) Lindau is a Southeast Asian medicinal plant traditionally used for treating skin inflammation and infections. This study evaluated its wound-healing potential through anti-inflammatory, cytoprotective, and antiviral mechanisms. HPLC-DAD analysis identified schaftoside as the major flavonoid in the 95% ethanolic leaf extract. In the lipopolysaccharide (LPS)-stimulated murine macrophage cell line (RAW 264.7), both C. nutans extract (5 and 50 μg/mL) and its flavonoid schaftoside (5 and 20 μg/mL) significantly downregulated the expression of pro-inflammatory genes, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), under both pre-treatment and post-treatment conditions. ELISA confirmed dose-dependent inhibition of human COX-2 enzymatic activity, reaching up to 99.3% with the extract and 86.9% with schaftoside. In the endothelial cell models (CCL-209), the extract exhibited low cytotoxicity and effectively protected cells from LPS-induced apoptosis, preserving vascular integrity critical to tissue regeneration. Antiviral assays demonstrated suppression of HSV-2 replication, particularly during early infection, which may help prevent infection-related delays in wound healing. Collectively, these findings suggest that C. nutans and schaftoside promote wound repair by attenuating inflammatory responses, supporting endothelial survival, and controlling viral reactivation. These multifunctional properties highlight their potential as natural therapeutic agents for enhancing wound-healing outcomes. Full article
(This article belongs to the Special Issue Molecular Advances in Burn and Wound Healing)
Show Figures

Graphical abstract

19 pages, 5658 KiB  
Article
Selection and Validation of Reference Genes in Clinacanthus nutans Under Abiotic Stresses, MeJA Treatment, and in Different Tissues
by Chang An, Lin Lu, Yixin Yao, Ruoyu Liu, Yan Cheng, Yanxiang Lin, Yuan Qin and Ping Zheng
Int. J. Mol. Sci. 2025, 26(6), 2483; https://doi.org/10.3390/ijms26062483 - 11 Mar 2025
Cited by 1 | Viewed by 660
Abstract
Clinacanthus nutans is a valuable traditional medicinal plant that contains enriched active compounds such as triterpenoids and flavonoids. Understanding the accuulation process of these secondary metabolites in C. nutans requires exploring gene expression regulation under abiotic stresses and hormonal stimuli. qRT-PCR is a [...] Read more.
Clinacanthus nutans is a valuable traditional medicinal plant that contains enriched active compounds such as triterpenoids and flavonoids. Understanding the accuulation process of these secondary metabolites in C. nutans requires exploring gene expression regulation under abiotic stresses and hormonal stimuli. qRT-PCR is a powerful method for gene expression analysis, with the selection of suitable reference genes being paramount. However, reports on stably expressed reference genes in C. nutans and even across the entire family Acanthaceae are limited. In this study, we evaluated the expression stability of 12 candidate reference genes (CnUBQ, CnRPL, CnRPS, CnPTB1, CnTIP41, CnACT, CnUBC, CnGAPDH, Cn18S, CnCYP, CnEF1α, and CnTUB) in C. nutans across different tissues and under abiotic stresses and MeJA treatment using three programs (geNorm, NormFinder, and BestKeeper). The integrated ranking results indicated that CnUBC, CnRPL, and CnCYP were the most stably expressed genes across different tissues. Under abiotic stress conditions, CnUBC, CnRPL, and CnEF1α were the most stable, while under MeJA treatment, CnRPL, CnEF1α, and CnGAPDH exhibited the highest stability. Additionally, CnRPL, CnUBC, and CnEF1α were the most stable reference genes across all tested samples, whereas CnGAPDH was the least stable. CnRPL, consistently ranking among the top three most stable genes, may therefore serve as an ideal reference gene for qRT-PCR analysis in C. nutans. To further validate the selected reference genes, we assessed the expression of two key biosynthetic genes, CnPAL and CnHMGR. The results confirmed that using the most stable reference genes yielded expression patterns consistent with biological expectations, while using unstable reference genes led to significant deviations. These findings offer valuable insights for accurately quantifying target genes via qRT-PCR in C. nutans, facilitating investigations into the mechanisms underlying active compound accumulation. Full article
(This article belongs to the Special Issue Plant Response to Drought, Heat, and Light Stress)
Show Figures

Figure 1

15 pages, 1665 KiB  
Article
Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis
by Sirintip Pechroj, Thida Kaewkod, Pachara Sattayawat, Angkhana Inta, Sureeporn Suriyaprom, Teerapong Yata, Yingmanee Tragoolpua and Itthayakorn Promputtha
Biology 2024, 13(10), 815; https://doi.org/10.3390/biology13100815 - 11 Oct 2024
Cited by 2 | Viewed by 1787
Abstract
This study investigates the therapeutic potential of Clinacanthus nutans extracts, focusing on the 95% ethanol (95E) extract and its nanoemulsified form, against oral pathogens and their bioactive effects. The findings demonstrate potent antibacterial activity against Streptococcus mutans and Staphylococcus aureus, essential for [...] Read more.
This study investigates the therapeutic potential of Clinacanthus nutans extracts, focusing on the 95% ethanol (95E) extract and its nanoemulsified form, against oral pathogens and their bioactive effects. The findings demonstrate potent antibacterial activity against Streptococcus mutans and Staphylococcus aureus, essential for combating periodontal diseases, and significant anti-biofilm properties crucial for plaque management. Additionally, the extracts exhibit promising inhibitory effects on α-glucosidase enzymes, indicating potential for diabetes management through glucose metabolism regulation. Their anti-inflammatory properties, evidenced by reduced nitric oxide production, underscore their potential for treating oral infections and inflammation. Notably, the nanoemulsified 95E extract shows higher efficiency than the conventional extract, suggesting a multifunctional treatment approach for periodontal issues and metabolic disorders. These results highlight the enhanced efficacy of the nanoemulsified extract, proposing it as an effective treatment modality for periodontal disease in diabetic patients. This research offers valuable insights into the development of innovative drug delivery systems using natural remedies for improved periodontal care in diabetic populations. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Graphical abstract

18 pages, 2481 KiB  
Article
Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family
by Sureeporn Suriyaprom, Pornpimon Ngamsaard, Varachaya Intachaisri, Nitsanat Cheepchirasuk, Aussara Panya, Thida Kaewkod and Yingmanee Tragoolpua
Plants 2024, 13(18), 2622; https://doi.org/10.3390/plants13182622 - 20 Sep 2024
Cited by 1 | Viewed by 1813
Abstract
Medicinal plants have traditionally been used to treat various human diseases worldwide. In this study, we evaluated the leaf extracts of plants from the Acanthaceae family, specifically Clinacanthus nutans (Burm.f.) Lindau, Thunbergia laurifolia Lindl., and Acanthus ebracteatus Vahl., for their compounds and antioxidant [...] Read more.
Medicinal plants have traditionally been used to treat various human diseases worldwide. In this study, we evaluated the leaf extracts of plants from the Acanthaceae family, specifically Clinacanthus nutans (Burm.f.) Lindau, Thunbergia laurifolia Lindl., and Acanthus ebracteatus Vahl., for their compounds and antioxidant activity. The ethanolic extracts of A. ebracteatus showed the highest total phenolic content at 22.55 mg GAE/g extract and the strongest antioxidant activities, with IC50 values of 0.24 mg/mL and 3.05 mg/mL, as determined by DPPH and ABTS assays. The antibacterial efficacy of these extracts was also tested against Streptococcus pyogenes, Streptococcus mutans, Staphylococcus aureus, and Klebsiella pneumoniae. The diameters of the inhibition zones ranged from 14.7 to 17.3 mm using the agar well diffusion method, with MIC and MBC values ranging from 7.81 to 250 mg/mL. Anti-biofilm formation, antibacterial adhesion, and antibacterial invasion assays further demonstrated that these medicinal plant extracts can inhibit bacterial biofilm formation and prevent the adhesion and invasion of oral pathogenic bacteria on the human tongue squamous cell carcinoma-derived cell line (HSC-4 cells). The ethanolic extracts of C. nutans and A. ebracteatus were able to inhibit the gtfD and gbp genes, which facilitate biofilm formation and bacterial adherence to surfaces. These findings provide new insights into the antibacterial and antioxidant properties of plant extracts from the Acanthaceae family. These activities could enhance the clinical and pharmaceutical applications of plant extracts as an alternative therapy for bacterial infections and a dietary supplement. Full article
Show Figures

Figure 1

19 pages, 4100 KiB  
Article
Impact of Intercropping Five Medicinal Plants on Soil Nutrients, Enzyme Activity, and Microbial Community Structure in Camellia oleifera Plantations
by Azuo Bajiu, Kai Gao, Guangyu Zeng and Yuanhao He
Microorganisms 2024, 12(8), 1616; https://doi.org/10.3390/microorganisms12081616 - 8 Aug 2024
Cited by 3 | Viewed by 1574
Abstract
Intercropping medicinal plants plays an important role in agroforestry that can improve the physical, chemical, and biological fertility of soil. However, the influence of intercropping medicinal plants on the Camellia oleifera soil properties and bacterial communities remains elusive. In this study, five intercropping [...] Read more.
Intercropping medicinal plants plays an important role in agroforestry that can improve the physical, chemical, and biological fertility of soil. However, the influence of intercropping medicinal plants on the Camellia oleifera soil properties and bacterial communities remains elusive. In this study, five intercropping treatment groups were set as follows: Curcuma zedoaria/C. oleifera (EZ), Curcuma longa/C. oleifera (JH), Clinacanthus nutans/C. oleifera (YDC), Fructus Galangae/C. oleifera (HDK), and Ficus simplicissima/C. oleifera (WZMT). The soil chemical properties, enzyme activities, and bacterial communities were measured and analyzed to evaluate the effects of different intercropping systems. The results indicated that, compared to the C. oleifera monoculture group, YDC and EZ showed noticeable impacts on the soil chemical properties with a significant increase in total nitrogen (TN), nitrate nitrogen (NN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). Among them, the content of TN and AK in the rhizosphere soil of Camellia oleifera in the YDC intercropping system was the highest, which was 7.82 g/kg and 21.94 mg/kg higher than CK. Similarly, in the EZ intercropping system, the content of NN and OM in the rhizosphere soil of Camellia oleifera was the highest, which was higher than that of CK at 722.33 mg/kg and 2.36 g/kg, respectively. Curcuma longa/C. oleifera (JH) and Clinacanthus nutans/C. oleifera (YDC) had the most effect on soil enzyme activities. Furthermore, YDC extensively increased the activities of hydrogen peroxide and acid phosphatase enzymes; the increase was 2.27 mg/g and 3.21 mg/g, respectively. While JH obviously increased the urease activity, the diversity of bacterial populations in the rhizosphere soil of the intercropping plants decreased, especially the Shannon index of YDC and HDK. Compared with the monoculture group, the bacterial community abundance and structure of JH and YDC were quite different. The relative abundance of Actinobacteriota and Firmicutes was increased in YDC, and that of Acidobacteriota and Myxococcota was increased in JH. According to the redundancy analysis (RDA), pH, total potassium, and soil catalase activity were identified as the main factors influencing the microbial community structure of the intercropping systems. In conclusion, intercropping with JH and YDC increased the relative abundance of the dominant bacterial communities, improved the microbial community structure, and enhanced the soil nutrients and enzyme activities. Therefore, in the future, these two medicinal plants can be used for intercropping with C. oleifera. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 10373 KiB  
Article
Clinacanthus nutans (Burm. f.) Lindau Extract Inhibits Dengue Virus Infection and Inflammation in the Huh7 Hepatoma Cell Line
by Kanyaluck Jantakee, Suthida Panwong, Pachara Sattayawat, Ratchaneewan Sumankan, Sasithorn Saengmuang, Kiattawee Choowongkomon and Aussara Panya
Antibiotics 2024, 13(8), 705; https://doi.org/10.3390/antibiotics13080705 - 28 Jul 2024
Cited by 4 | Viewed by 2156
Abstract
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged [...] Read more.
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged activity to inhibit DENV and the liver inflammation caused by DENV infection. The study showed that treatment using C. nutans extract during DENV infection (co-infection step) showed the highest efficiency in lowering the viral antigen concentration to 22.87 ± 6.49% at 31.25 μg/mL. In addition, the virus–host cell binding assay demonstrated that C. nutans treatment greatly inhibited the virus after its binding to Huh7 cells. Moreover, it could remarkably lower the expression of cytokine and chemokine genes, including TNF-α, CXCL10, IL-6, and IL-8, in addition to inflammatory mediator COX-2 genes. Interestingly, the activation of the NF-κB signaling cascade after C. nutans extract treatment was dramatically decreased, which could be the underlying mechanism of its anti-inflammatory activity. The HPLC profile showed that gallic acid was the bioactive compound of C. nutans extract and might be responsible for the antiviral properties of C. nutans. Taken together, our results revealed the potential of C. nutans extract to inhibit DENV infection and lower inflammation in infected cells. Full article
Show Figures

Figure 1

17 pages, 1074 KiB  
Review
Antiviral and Immunomodulatory Activities of Clinacanthus nutans (Burm. f.) Lindau
by Chung-Ming Lin, Hsin-Han Chen, Chi-Wen Lung and Hui-Jye Chen
Int. J. Mol. Sci. 2023, 24(13), 10789; https://doi.org/10.3390/ijms241310789 - 28 Jun 2023
Cited by 5 | Viewed by 4579
Abstract
Clinacanthus nutans (Burm. f.) Lindau has been used as a traditional herbal medicine for treating snake bites, scalds, burns, and viral and bacterial infections. It has been attracting an increasing amount of attention because of its biological activities, including its antidiabetic, antioxidant, antibacterial, [...] Read more.
Clinacanthus nutans (Burm. f.) Lindau has been used as a traditional herbal medicine for treating snake bites, scalds, burns, and viral and bacterial infections. It has been attracting an increasing amount of attention because of its biological activities, including its antidiabetic, antioxidant, antibacterial, anticancer, anti-inflammatory, antiviral, and immunoregulatory activities. Here, we conducted a panoramic survey of the literature regarding the immunoregulatory, anti-inflammatory, and antiviral activities of C. nutans. We discovered that C. nutans extracts have virucidal activities against herpes simplex virus types 1 and 2, varicella-zoster virus, cyprinid herpesvirus 3, porcine reproductive and respiratory syndrome virus, mosquito-borne chikungunya virus, and potentially SARS-CoV-2; such activities likely result from C. nutans interfering with the entry, penetration, infection, and replication of viruses. We also reviewed the phytochemicals in C. nutans extracts that exhibit anti-inflammatory and immunoregulatory activities. This updated review of the antiviral, anti-inflammatory, and immunoregulatory activities of C. nutans may guide future agricultural practices and reveal clinical applications of C. nutans. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

12 pages, 4314 KiB  
Article
Anti-Inflammatory Activity of Glyceryl 1,3-Distearate Identified from Clinacanthus nutans Extract against Bovine Mastitis Pathogens
by Saruda Thongyim, Salinee Chiangchin, Hataichanok Pandith, Yingmanee Tragoolpua, Siriphorn Jangsutthivorawat and Aussara Panya
Antibiotics 2023, 12(3), 549; https://doi.org/10.3390/antibiotics12030549 - 9 Mar 2023
Cited by 9 | Viewed by 2382
Abstract
Clinacanthus nutans is widely used as a traditional medicine in Thailand and other countries in Southeast Asia. Although its effectiveness is well documented, its therapeutic use is limited to the treatment of only a few diseases; mostly it is used as an anti-viral [...] Read more.
Clinacanthus nutans is widely used as a traditional medicine in Thailand and other countries in Southeast Asia. Although its effectiveness is well documented, its therapeutic use is limited to the treatment of only a few diseases; mostly it is used as an anti-viral agent against varicella-zoster and herpes simplex virus infections. Herein, we demonstrate the therapeutic activity of C. nutans extracts in lowering inflammation in a model of bovine mastitis caused by bacterial infection. Lipopolysaccharide (LPS), a gram-negative bacterial component, caused inflammation activation in bovine endothelial cells (CPAE) through the upregulation of proinflammatory cytokines (IL6 and IL1β) and chemokines (CXCL3 and CXCL8) gene expression, partially leading to cell death. Treatment with C. nutans crude extract significantly diminished these responses in a dose-dependent manner. The solvent fractionation of C. nutans extract revealed that the ethyl acetate (C4H8O2) fractions had a high potential to protect against cell death and diminished IL1β, IL6, CXCL3, and CXCL8 levels to less than 0.45 folds relative to the LPS-treated control. Glyceryl 1,3-distearate (C39H76O5) was identified as a bioactive compound responsible for the anti-inflammation activity but not the anti-cell death activity of C. nutans extract. This study highlighted the efficiency of C. nutans extracts as an alternative therapeutic option for the natural-product sustainable development of bovine mastitis treatment. Full article
Show Figures

Figure 1

32 pages, 1679 KiB  
Review
Advances in Molecular Regulation of Prostate Cancer Cells by Top Natural Products of Malaysia
by Jose M. Prieto and Mohd Mukrish Mohd Hanafi
Curr. Issues Mol. Biol. 2023, 45(2), 1536-1567; https://doi.org/10.3390/cimb45020099 - 9 Feb 2023
Cited by 6 | Viewed by 5172
Abstract
Prostate cancer (PCa) remains both a global health burden and a scientific challenge. We present a review of the molecular targets driving current drug discovery to fight this disease. Moreover, the preventable nature of most PCa cases represents an opportunity for phytochemicals as [...] Read more.
Prostate cancer (PCa) remains both a global health burden and a scientific challenge. We present a review of the molecular targets driving current drug discovery to fight this disease. Moreover, the preventable nature of most PCa cases represents an opportunity for phytochemicals as chemopreventive when adequately integrated into nutritional interventions. With a renovated interest in natural remedies as a commodity and their essential role in cancer drug discovery, Malaysia is looking towards capitalizing on its mega biodiversity, which includes the oldest rainforest in the world and an estimated 1200 medicinal plants. We here explore whether the list of top Malay plants prioritized by the Malaysian government may fulfill the potential of becoming newer, sustainable sources of prostate cancer chemotherapy. These include Andrographis paniculate, Centella asiatica, Clinacanthus nutans, Eurycoma longifolia, Ficus deltoidea, Hibiscus sabdariffa, Marantodes pumilum (syn. Labisia pumila), Morinda citrifolia, Orthosiphon aristatus, and Phyllanthus niruri. Our review highlights the importance of resistance factors such as Smac/DIABLO in cancer progression, the role of the CXCL12/CXCR4 axis in cancer metastasis, and the regulation of PCa cells by some promising terpenes (andrographolide, Asiatic acid, rosmarinic acid), flavonoids (isovitexin, gossypin, sinensetin), and alkylresorcinols (labisiaquinones) among others. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer)
Show Figures

Figure 1

16 pages, 7105 KiB  
Article
Fabrication and Characterization of Clinacanthus nutans Mediated Reduced Graphene Oxide Using a Green Approach
by Dharshini Perumal, Emmellie Laura Albert, Norazalina Saad, Taufiq Yap Yun Hin, Ruzniza Mohd Zawawi, Huey Fang Teh and Che Azurahanim Che Abdullah
Crystals 2022, 12(11), 1539; https://doi.org/10.3390/cryst12111539 - 28 Oct 2022
Cited by 11 | Viewed by 2060
Abstract
The reduction of graphene oxide (rGO) utilizing green methods such as plants has attracted much attention due to its productivity, eco—friendly features, and cost effectiveness. In the present study, the reflux method was employed to synthesize Clinacanthus nutans (C. nutans) leaf [...] Read more.
The reduction of graphene oxide (rGO) utilizing green methods such as plants has attracted much attention due to its productivity, eco—friendly features, and cost effectiveness. In the present study, the reflux method was employed to synthesize Clinacanthus nutans (C. nutans) leaf extract mediated rGO using a simple approach. The synthesized rGO was characterized using various spectroscopic and microscopic techniques. The UV-Vis spectrum demonstrated the absorption peak of rGO (270 nm) at distinct locations, while the FTIR analysis demonstrated that the amount of oxygen group in rGO was reduced. The Raman analysis confirms the reduction of GO by a slight increase in the D—band to G—band intensity ratio. The XRD spectra demonstrated that rGO was successfully produced based on the illustrated 2Ɵ angles at a peak of 22.12° with d-spacing of 0.40 nm. FESEM clearly reveals the morphology of rGO that shows crumpled thin sheets, a rougher surface, and a wave—shaped corrugated structure. The reduction of GO was analyzed in the removal of the hydroxyl group and amorphotization of sp2 carbon structures. The C/O ratio in rGO was higher than GO which indicates the small amount of oxygen-containing functional groups were still presented in the reduced graphene oxide. Furthermore, the cyclic voltammetry behavior of a modified screen—printed carbon electrode (SPCE) was measured. The redox reactivity of rGO—SPCE has been affirmed and compared with GO—SPCE and bare—SPCE. The toxicity using A. salina cysts demonstrated that rGO is less toxic compared to GO. The analysis adequately supports the synthesis of rGO and the effective removal of oxygen-containing functional groups from GO. The findings herein illustrate that C. nutans mediates the synthesis of rGO and is a promising eco-friendly substitute to conventional carbon-based fabrication. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

38 pages, 32765 KiB  
Review
A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy
by Nur Fadlin Saifulazmi, Emelda Rosseleena Rohani, Sarahani Harun, Hamidun Bunawan, Hamizah Shahirah Hamezah, Nor Azlan Nor Muhammad, Kamalrul Azlan Azizan, Qamar Uddin Ahmed, Sharida Fakurazi, Ahmed Mediani and Murni Nazira Sarian
Life 2022, 12(8), 1287; https://doi.org/10.3390/life12081287 - 22 Aug 2022
Cited by 25 | Viewed by 9846
Abstract
Exploration of the traditional medicinal plants is essential for drug discovery and development for various pharmacological targets. Various phytochemicals derived from medicinal plants were extensively studied for antiviral activity. This review aims to highlight the role of medicinal plants against viral infections that [...] Read more.
Exploration of the traditional medicinal plants is essential for drug discovery and development for various pharmacological targets. Various phytochemicals derived from medicinal plants were extensively studied for antiviral activity. This review aims to highlight the role of medicinal plants against viral infections that remains to be the leading cause of human death globally. Antiviral properties of phytoconstituents isolated from 45 plants were discussed for five different types of viral infections. The ability of the plants’ active compounds with antiviral effects was highlighted as well as their mechanism of action, pharmacological studies, and toxicological data on a variety of cell lines. The experimental values, such as IC50, EC50, CC50, ED50, TD50, MIC100, and SI of the active compounds, were compiled and discussed to determine their potential. Among the plants mentioned, 11 plants showed the most promising medicinal plants against viral infections. Sambucus nigra and Clinacanthus nutans manifested antiviral activity against three different types of viral infections. Echinacea purpurea, Echinacea augustofolia, Echinacea pallida, Plantago major, Glycyrrhiza uralensis, Phyllanthus emblica, Camellia sinensis, and Cistus incanus exhibited antiviral activity against two different types of viral infections. Interestingly, Nicotiana benthamiana showed antiviral effects against mosquito-borne infections. The importance of phenolic acids, alkamides, alkylamides, glycyrrhizin, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epigallocatechin (EGC), protein-based plant-produced ZIKV Envelope (PzE), and anti-CHIKV monoclonal antibody was also reviewed. An exploratory approach to the published literature was conducted using a variety of books and online databases, including Scopus, Google Scholar, ScienceDirect, Web of Science, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects, especially regarding medicinal plants. This evaluation gathered important information from all available library databases and Internet searches from 1992 to 2022. Full article
Show Figures

Figure 1

19 pages, 2323 KiB  
Article
Metabolomic Approach for Rapid Identification of Antioxidants in Clinacanthus nutans Leaves with Liver Protective Potential
by Kai Song Ng, Sheri-Ann Tan, Chui Yin Bok, Khye Er Loh, Intan Safinar Ismail, Chen Son Yue and Chui Fung Loke
Molecules 2022, 27(12), 3650; https://doi.org/10.3390/molecules27123650 - 7 Jun 2022
Cited by 3 | Viewed by 3640
Abstract
Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the [...] Read more.
Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the potential antioxidative compounds from the C. nutans leaves (CNL) and stems (CNS). Chemical- and cell-based antioxidative assays were utilized to evaluate the bioactivities of CNS and CNL. The NMR metabolomics approach assisted in the identification of contributing phytocompounds. Based on DPPH and ABTS radical scavenging activities, CNL demonstrated stronger radical scavenging potential as compared to CNS. The leaf extract also recorded slightly higher reducing power properties. A HepG2 cell model system was used to investigate the ROS reduction potential of these extracts. It was shown that cells treated with CNL and CNS reduced innate ROS levels as compared to untreated controls. Interestingly, cells pre-treated with both extracts were also able to decrease ROS levels in cells induced with oxidative stress. CNL was again the better antioxidant. According to multivariate data analysis of the 1H NMR results, the main metabolites postulated to contribute to the antioxidant and hepatoprotective abilities of leaves were clinacoside B, clinacoside C and isoschaftoside, which warrants further investigation. Full article
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)
Show Figures

Graphical abstract

16 pages, 978 KiB  
Review
Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans
by Wei-Yi Ong, Deron R. Herr, Grace Y. Sun and Teng-Nan Lin
Molecules 2022, 27(11), 3607; https://doi.org/10.3390/molecules27113607 - 4 Jun 2022
Cited by 27 | Viewed by 8177
Abstract
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies [...] Read more.
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases. Full article
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)
Show Figures

Figure 1

18 pages, 5011 KiB  
Article
Wound Healing, Antimicrobial and Antioxidant Properties of Clinacanthus nutans (Burm.f.) Lindau and Strobilanthes crispus (L.) Blume Extracts
by Weng Kit Ban, Isabel Lim Fong, Heng Yen Khong and Joyce Hui Yie Phung
Molecules 2022, 27(5), 1722; https://doi.org/10.3390/molecules27051722 - 6 Mar 2022
Cited by 4 | Viewed by 4542
Abstract
Clinacanthus nutans is known to be an anticancer and antiviral agent, and Strobilanthes crispus has proven to be an antidiuretic and antidiabetic agent. However, there is a high possibility that these plants possess multiple beneficial properties, such as antimicrobial and wound healing properties. [...] Read more.
Clinacanthus nutans is known to be an anticancer and antiviral agent, and Strobilanthes crispus has proven to be an antidiuretic and antidiabetic agent. However, there is a high possibility that these plants possess multiple beneficial properties, such as antimicrobial and wound healing properties. This study aims to assess the wound healing, antioxidant, and antimicrobial properties of Clinacanthus nutans and Strobilanthes crispus. The Clinacanthus nutans and Strobilanthes crispus leaves were dried, ground, and extracted with ethanol, acetone, and chloroform through cold maceration. In a modified scratch assay with co-incubation of skin fibroblast and Methicillin-resistant Staphylococcus aureus, Clinacanthus nutans and Strobilanthes crispus extracts were assessed for their wound healing potential, and the antimicrobial activities of Clinacanthus nutans and Strobilanthes crispus extracts were performed on a panel of Gram-positive and Gram-negative bacteria on Mueller–Hinton agar based on a disc diffusion assay. To assess for antioxidant potential, 2,2-diphenyl-1-picrylhydrazyl (DPPH), total phenolic and total flavonoid assays were conducted. In the modified scratch assay, Clinacanthus nutans extracts aided in the wound healing activity while in the presence of MRSA, and Strobilanthes crispus extracts were superior in antimicrobial and wound healing activities. In addition, Strobilanthes crispus extracts were superior to Clinacanthus nutans extracts against Pseudomonas aeruginosa on Mueller–Hinton agar. Acetone-extracted Clinacanthus nutans contained the highest level of antioxidant in comparison with other Clinacanthus nutans extracts. Full article
(This article belongs to the Special Issue The Natural Products in Topical Infections and Wound Healing)
Show Figures

Figure 1

29 pages, 5575 KiB  
Review
A Narrative Review on the Phytochemistry, Pharmacology and Therapeutic Potentials of Clinacanthus nutans (Burm. f.) Lindau Leaves as an Alternative Source of Future Medicine
by Tan Yong Chia, Chee Yuen Gan, Vikneswaran Murugaiyah, Syed F. Hashmi, Tabinda Fatima, Lazhari Ibrahim, Mohammed H. Abdulla, Farhan Khashim Alswailmi, Edward James Johns and Ashfaq Ahmad
Molecules 2022, 27(1), 139; https://doi.org/10.3390/molecules27010139 - 27 Dec 2021
Cited by 17 | Viewed by 7081
Abstract
The application of natural products and supplements has expanded tremendously over the past few decades. Clinacanthus nutans (C. nutans), which is affiliated to the Acanthaceae family, has recently caught the interest of researchers from the countries of subtropical Asia due to [...] Read more.
The application of natural products and supplements has expanded tremendously over the past few decades. Clinacanthus nutans (C. nutans), which is affiliated to the Acanthaceae family, has recently caught the interest of researchers from the countries of subtropical Asia due to its medicinal uses in alternative treatment for skin infection conditions due to insect bites, microorganism infections and cancer, as well as for health well-being. A number of bioactive compounds from this plant’s extract, namely phenolic compounds, sulphur containing compounds, sulphur containing glycosides compounds, terpens-tripenoids, terpens-phytosterols and chlorophyll-related compounds possess high antioxidant activities. This literature search yielded about one hundred articles which were then further documented, including the valuable data and findings obtained from all accessible electronic searches and library databases. The promising pharmacological activities from C. nutans leaves extract, including antioxidant, anti-cancer, anti-viral, anti-bacterial, anti-fungal, anti-venom, analgesic and anti-nociceptive properties were meticulously dissected. Moreover, the authors also discuss a few of the pharmacological aspect of C. nutans leaves extracts against anti-hyperlipidemia, vasorelaxation and renoprotective activities, which are seldom available from the previously discussed review papers. From the aspect of toxicological studies, controversial findings have been reported in both in-vitro and in-vivo experiments. Thus, further investigations on their phytochemical compounds and their mode of action showing pharmacological activities are required to fully grasp both traditional usage and their suitability for future drugs development. Data related to therapeutic activity and the constituents of C. nutans leaves were searched by using the search engines Google scholar, PubMed, Scopus and Science Direct, and accepting literature reported between 2010 to present. On the whole, this review paper compiles all the available contemporary data from this subtropical herb on its phytochemistry and pharmacological activities with a view towards garnering further interest in exploring its use in cardiovascular and renal diseases. Full article
Show Figures

Figure 1

Back to TopTop