Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of C. nutans Extracts
2.2. Growth Inhibition Assay of Periodontitis Pathogenic Bacteria
2.2.1. Agar-Well Diffusion Assay
2.2.2. MIC and MBC Assays
2.3. Evaluation of Anti-Biofilm Formation and Biofilm Degradation Efficiency
2.4. Assessment of α-Glucosidase Enzyme Inhibition
2.5. Cytotoxicity Assay
2.5.1. Cell Lines and Cell Culture
2.5.2. In Vitro Assay for Cytotoxic Activity
2.6. Inhibition of Nitric Oxide (NO) Production
2.7. Preparation of Nanoemulsion of the 95% Ethanol Extract of C. nutans (95E)
2.8. Statistical Analysis
3. Results
3.1. Percentage Yield of Crude Extracts of Clinacanthus nutans Leaves
3.2. Antibacterial Efficiency of C. nutans Extracts
3.3. Anti-Biofilm Formation and Biofilm Degradation Efficacy of C. nutans Extracts
3.4. Inhibition of α-Glucosidase Enzyme Activity by C. nutans Extracts
3.5. Cytotoxicity Effect of C. nutans Extracts
3.6. Anti-Inflammatory Activity of C. nutans Extracts
3.7. Bioactivities of Nanoemulsified 95% Ethanol Extract (95E) of C. nutans
3.7.1. Particle Size of the Globules in Nanoemulsified 95E Extract of C. nutans
3.7.2. Anti-Biofilm Formation and Biofilm Degradation
3.7.3. Inhibition of α-Glucosidase Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Tonetti, M.S. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J. Periodontol. 2018, 89, 173–182. [Google Scholar]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 2017, 11, 72–80. [Google Scholar]
- Steigmann, L.; Maekawa, S.; Kauffmann, F.; Reiss, J.; Cornett, A.; Sugai, J.; Lombaert, I.M. Changes in salivary biomarkers associated with periodontitis and diabetic neuropathy in individuals with type 1 diabetes. Sci. Rep. 2022, 12, 11284. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.A. Periodontal microbiology—The lid’s off the box again. J. Dent. Res. 2014, 93, 840–842. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Li, G.; Xu, X.; Zhang, C.; Zhong, W.; Xu, S.; Song, J. The role of oral microbiome in periodontitis under diabetes mellitus. J. Oral Microbiol. 2022, 14, 2078031. [Google Scholar] [CrossRef]
- Guest, C.B.; Park, M.J.; Johnson, D.R.; Freund, G.G. The implication of proinflammatory cytokines in type 2 diabetes. Front. Biosci. 2008, 13, 5187–5194. [Google Scholar] [CrossRef]
- Wanikiat, P.; Panthong, A.; Sujayanon, P.; Yoosook, C.; Rossi, A.G.; Reutrakul, V. The anti-inflammatory effects and the inhibition of neutrophil responsiveness by Barleria lupulina and Clinacanthus nutans extracts. J. Ethnopharmacol. 2008, 116, 234–244. [Google Scholar] [CrossRef]
- Dheer, R.; Bhatnagar, P. A study of the antidiabetic activity of Barleria prionitis Linn. Indian J. Pharmacol. 2010, 42, 70. [Google Scholar] [CrossRef]
- Arullappan, S.; Rajamanickam, P.; Thevar, N.; Kodimani, C.C. In vitro screening of cytotoxic, antimicrobial and antioxidant activities of Clinacanthus nutans (Acanthaceae) leaf extracts. Trop. J. Pharm. Res. 2014, 13, 1455–1461. [Google Scholar] [CrossRef]
- Tu, S.F.; Liu, R.H.; Cheng, Y.B.; Hsu, Y.M.; Du, Y.C.; El-Shazly, M.; Wu, Y.C.; Chang, F.R. Chemical constituents and bioactivities of Clinacanthus nutans aerial parts. Molecules 2014, 19, 20382–20390. [Google Scholar] [CrossRef]
- Roeslan, M.O.; Ayudhya, T.D.N.; Yingyongnarongkul, B.E.; Koontongkaew, S. Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves. Biomed. Pharmacother. 2019, 113, 108724. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Banerjee, S.; Jha, G.K.; Bose, S. Barleria prionitis L.: An illustrative traditional, phytochemical and pharmacological review. Nat. Prod. J. 2021, 11, 258–274. [Google Scholar] [CrossRef]
- Kongkaneramit, L.; Sitthithaworn, W.; Phattanaphakdee, W.; Sarisuta, N. Physicochemical properties and stability of nanoemulsions containing Clinacanthus nutans extract for postherpetic neuralgia. J. Drug Deliv. Sci. Technol. 2022, 68, 103116. [Google Scholar] [CrossRef]
- Sabindo, N.H.; Yatim, R.M.; Thirumulu, P.K. Phytochemical composition of Clinacanthus nutans based on factors of environment, genetics and postharvest processes: A review. BioMedicine 2024, 14, 1–11. [Google Scholar] [CrossRef]
- Timpawat, S.; Vajrabhaya, L.O. The efficacy of Clinacanthus nutans in the treatment of recurrent aphthous stomatitis: A double-blind controlled trial. J. Oral Pathol. Med. 2013, 42, 56–60. [Google Scholar]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Agents that inhibit bacterial biofilm formation. Future Med. Chem. 2015, 7, 647–671. [Google Scholar] [CrossRef]
- Mai, C.W.; Yap, K.S.; Kho, M.T.; Ismail, N.H.; Yusoff, K.; Shaari, K.; Lim, E.S. Mechanisms underlying the anti-inflammatory effects of Clinacanthus nutans Lindau extracts: Inhibition of cytokine production and toll-like receptor-4 activation. Front. Pharmacol. 2016, 7, 178639. [Google Scholar] [CrossRef]
- Gross, S.S.; Wolin, M.S. Nitric oxide: Pathophysiological mechanisms. Annu. Rev. Physiol. 1995, 57, 737–769. [Google Scholar] [CrossRef]
- Matsuno, K.; Eastman, D.; Mitsiades, T.; Quinn, A.M.; Carcanciu, M.L.; Ordentlich, P.; Artavanis-Tsakonas, S. Human deltex is a conserved regulator of Notch signaling. Nat. Genet. 1998, 19, 74–78. [Google Scholar] [CrossRef]
- Shweash, M.; McGachy, H.A.; Schroeder, J.; Neamatallah, T.; Bryant, C.E.; Millington, O.; Plevin, R. Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression. Mol. Immunol. 2011, 48, 1800–1808. [Google Scholar] [CrossRef]
- Getahun, M.; Nesru, Y.; Ahmed, M.; Satapathy, S.; Shenkute, K.; Gupta, N.; Naimuddin, M. Phytochemical composition, antioxidant, antimicrobial, antibiofilm, and antiquorum sensing potential of methanol extract and essential oil from Acanthus polystachyus Delile (Acanthaceae). ACS Omega 2023, 8, 43024–43036. [Google Scholar] [CrossRef] [PubMed]
- Murugesu, S.; Ibrahim, Z.; Ahmed, Q.U.; Nik Yusoff, N.I.; Uzir, B.F.; Perumal, V.; Khatib, A. Characterization of α-glucosidase inhibitors from Clinacanthus nutans Lindau leaves by gas chromatography-mass spectrometry-based metabolomics and molecular docking simulation. Molecules 2018, 23, 2402. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Zaidul, I.S.M.; Ghafoor, K.; Sahena, F.; Hakim, M.A.; Rafii, M.Y.; Khatib, A. In vitro antioxidant and α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans. BMC Complement. Altern. Med. 2017, 17, 181. [Google Scholar] [CrossRef] [PubMed]
- Susanti, N. Potential of Clinacanthus nutans as an alternative therapeutic agent for diabetes mellitus. In Proceedings of the International Conference of Medical and Life Science (ICoMELISA 2021), Malang, Indonesia, 11–12 December 2021; Atlantis Press: Amsterdam, The Netherlands, 2023; pp. 27–36. [Google Scholar]
- Khoo, L.W.; Kow, A.S.F.; Maulidiani, M.; Ang, M.Y.; Chew, W.Y.; Lee, M.T.; Abas, F. 1H-NMR metabolomics for evaluating the protective effect of Clinacanthus nutans (Burm. f) Lindau water extract against nitric oxide production in LPS-IFN-γ activated RAW 264.7 macrophages. Phytochem. Anal. 2019, 30, 46–61. [Google Scholar] [CrossRef]
- Danaei, M.R.M.M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Nerli, G.; Gonçalves, L.M.; Cirri, M.; Almeida, A.J.; Maestrelli, F.; Mennini, N.; Mura, P. Design, evaluation and comparison of nanostructured lipid carriers and chitosan nanoparticles as carriers of poorly soluble drugs to develop oral liquid formulations suitable for pediatric use. Pharmaceutics 2023, 15, 1305. [Google Scholar] [CrossRef]
Bacterial Species | C. nutans Extracts | Inhibition Zone Diameter (mm) | MIC and MBC (mg/mL) |
---|---|---|---|
S. mutans | 95M | 16.67 ± 0.58 b | 125 ± 0.00 c |
95E | 17.00 ± 0.00 b | 250 ± 0.00 b | |
70E | 16.00 ± 1.00 b | 125 ± 0.00 c | |
W | 10.00 ± 0.00 c | >250 ± 0.00 a | |
Gentamicin | 32.33 ± 0.58 a | 0.008 ± 0.00 d | |
S. pyogenes | 95M | 16.67 ± 2.31 b | 250 ± 0.00 b |
95E | 19.67 ± 0.58 b | 250 ± 0.00 b | |
70E | 17 ± 1.00 b | 250 ± 0.00 b | |
W | 10 ± 0.00 c | >250 ± 0.00 a | |
Gentamicin | 34 ± 1.00 a | >0.5 ± 0.00 c | |
K. pneumoniae | 95M | 11.33 ± 0.58 b | 250 ± 0.00 b |
95E | 11.67 ± 0.58 b | 250 ± 0.00 b | |
70E | 11.00 ± 0.00 b | 250 ± 0.00 b | |
W | 10.00 ± 0.00 c | >250 ± 0.00 a | |
Gentamicin | 30.00 ± 0.00 a | 0.0005 ± 0.00 c | |
S. aureus | 95M | 15.33 ± 1.15 b | 125 ± 0.00 c |
95E | 16.33 ± 1.15 b | 125 ± 0.00 c | |
70E | 17.00 ± 0.00 b | 250 ±0.00 b | |
W | 10.00 ± 0.00 c | >250 ± 0.00 a | |
Gentamicin | 29.67 ± 0.58 a | 0.004 ± 0.00 d |
Bacterial Species | C. nutans Extracts | Concentration (mg/mL) | Inhibition of Biofilm Formation (%) | Degradation of Biofilm (%) |
---|---|---|---|---|
S. mutans | 95M | 62.5 | 81.05 ± 0.66 b | 82.18 ± 2.72 b |
95E | 125 | 97.36 ± 3.93 a | 99.32 ± 1.08 a | |
70E | 62.5 | 59.25 ± 1.24 c | 12.76 ± 2.59 d | |
W | 250 | 82.03 ± 1.35 b | 80.23 ± 1.75 b | |
Gentamicin | 0.004 | 32.46 ± 3.09 d | 23.50 ± 2.45 c | |
S. pyogenes | 95M | 125 | 75.03 ± 2.14 b | 99.40 ± 0.98 a |
95E | 125 | 99.86 ± 0.25 a | 99.23 ± 0.74 a | |
70E | 125 | 16.49 ± 1.11 e | 97.07 ± 1.19 a | |
W | 250 | 54.84 ± 3.36 c | 55.98 ± 0.31 b | |
Gentamicin | 0.5 | 26.11 ± 0.45 d | 37.47 ± 2.16 c | |
K. pneumoniae | 95M | 125 | 98.13 ± 1.41 a | 71.56 ± 2.40 c |
95E | 125 | 84.78 ± 0.98 bc | 84.15 ± 2.59 b | |
70E | 125 | 71.15 ± 1.40 d | 97.32 ± 1.18 a | |
W | 250 | 85.74 ± 1.81 b | 83.49 ± 0.39 b | |
Gentamicin | 0.00025 | 80.68 ± 2.32 c | 87.73 ± 1.04 b | |
S. aureus | 95M | 62.5 | 93.12 ± 1.51 bc | 77.08 ± 1.82 ab |
95E | 62.5 | 99.79 ± 0.37 a | 84.13 ± 4.54 a | |
70E | 125 | 100.00 ± 0.00 a | 35.40 ± 1.84 d | |
W | 250 | 95.44 ± 2.30 b | 72.12 ± 6.12 bc | |
Gentamicin | 0.004 | 90.60 ± 0.65 c | 64.90 ± 1.34 c |
C. nutans Extracts | IC50 (mg/mL) |
---|---|
95M | 12.97 ± 0.55 d |
95E | 17.19 ± 0.30 c |
70E | 7.57 ± 0.04 e |
W | 23.16 ± 1.33 b |
Acarbose | 48.64 ± 0.43 a |
Extract Concentration (mg/mL) | Cell Viability (%) | |||
---|---|---|---|---|
95M | 95E | 70E | W | |
Cell control (CC) | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
Vehicle control | 88.86 ± 4.87 | 88.86 ± 4.87 | 88.86 ± 4.87 | 98.99 ± 0.24 |
0.08 | 105.09 ± 4.24 | 103.25 ± 2.60 | 102.23 ± 1.30 | 98.69 ± 0.81 |
0.16 | 104.75 ± 3.32 | 104.29 ± 5.14 | 101.56 ± 1.88 | 101.27 ± 1.15 |
0.31 | 107.83 ± 2.27 | 105.86 ± 5.49 | 103.72 ± 3.33 | 98.26 ± 1.84 |
0.63 | 109.25 ± 3.00 | 105.39 ± 2.86 | 100.09 ± 2.86 | 93.98 ± 5.13 |
1.25 | 106.74 ± 3.67 | 97.88 ± 4.54 | 97.23 ± 0.75 | 78.29 ± 6.60 |
2.50 | 101.01 ± 5.87 | 73.54 ± 4.48 | 81.38 ± 1.13 | 72.19 ± 6.98 |
5.00 | 54.81 ± 6.84 | 1.87 ± 0.51 | 47.22 ± 9.43 | 69.61 ± 4.74 |
C. nutans Extracts | IC50 (mg/mL) |
---|---|
95M | 5.51 ± 0.56 |
95E | 3.07 ± 0.05 |
70E | 5.15 ± 0.26 |
W | 3.75 ± 1.12 |
Extracts Concentration (mg/mL) | Inhibition of NO Secretion (%) | |||
---|---|---|---|---|
95M | 95E | 70E | W | |
0.08 | 31.90 ± 1.80 | 41.47 ± 2.05 | 31.35 ± 2.09 | 0.00 ± 0.00 |
0.16 | 74.84 ± 2.02 | 67.38 ± 3.79 | 58.14 ± 5.55 | 0.00 ± 0.00 |
0.31 | 94.88 ± 1.33 | 88.22 ± 2.81 | 82.82 ± 1.99 | 0.00 ± 0.00 |
0.63 | 104.32 ± 1.64 | 92.61 ± 3.00 | 103.77 ± 5.10 | 0.00 ± 0.00 |
1.25 | 114.04 ± 2.64 | 94.17 ± 4.33 | 113.91 ± 5.39 | 0.00 ± 0.00 |
2.5 | 125.43 ± 4.58 | 97.65 ± 4.41 | 125.19 ± 3.15 | 6.61 ± 4.98 |
C. nutans Extracts | IC50 (mg/mL) |
---|---|
95M | 0.10 ± 0.03 |
95E | 0.10 ± 0.00 |
70E | 0.15 ± 0.02 |
W | >2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pechroj, S.; Kaewkod, T.; Sattayawat, P.; Inta, A.; Suriyaprom, S.; Yata, T.; Tragoolpua, Y.; Promputtha, I. Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis. Biology 2024, 13, 815. https://doi.org/10.3390/biology13100815
Pechroj S, Kaewkod T, Sattayawat P, Inta A, Suriyaprom S, Yata T, Tragoolpua Y, Promputtha I. Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis. Biology. 2024; 13(10):815. https://doi.org/10.3390/biology13100815
Chicago/Turabian StylePechroj, Sirintip, Thida Kaewkod, Pachara Sattayawat, Angkhana Inta, Sureeporn Suriyaprom, Teerapong Yata, Yingmanee Tragoolpua, and Itthayakorn Promputtha. 2024. "Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis" Biology 13, no. 10: 815. https://doi.org/10.3390/biology13100815
APA StylePechroj, S., Kaewkod, T., Sattayawat, P., Inta, A., Suriyaprom, S., Yata, T., Tragoolpua, Y., & Promputtha, I. (2024). Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis. Biology, 13(10), 815. https://doi.org/10.3390/biology13100815