Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = Clausius

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Viewed by 227
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

25 pages, 578 KiB  
Article
Entropy Generation Optimization in Multidomain Systems: A Generalized Gouy-Stodola Theorem and Optimal Control
by Hanz Richter, Meysam Fathizadeh and Tyler Kaptain
Entropy 2025, 27(6), 612; https://doi.org/10.3390/e27060612 - 9 Jun 2025
Viewed by 469
Abstract
The paper considers an extended interpretation of the second law of thermodynamics and its implications to power conversion optimization in multidomain systems. First, a generalized, domain-independent version of the classical Gouy-Stodola theorem is derived for interconnected systems which satisfy the Clausius postulate of [...] Read more.
The paper considers an extended interpretation of the second law of thermodynamics and its implications to power conversion optimization in multidomain systems. First, a generalized, domain-independent version of the classical Gouy-Stodola theorem is derived for interconnected systems which satisfy the Clausius postulate of the second law. Mechanical, electrical and more general Hamiltonian systems do not satisfy this postulate, however the related property of energy cyclodirectionality may be satisfied. A generalized version of the Gouy-Stodola theorem is then obtained in inequality form for systems satisfying this property. The result defines average forms of entropy generation and lost work for multi-domain systems. The paper then formulates an optimal control problem for a representative electromechanical system, obtaining complete, closed-form solutions for the load power transfer and energy harvesting cases. The results indicate that entropy generation minimization is akin to the maximum power transfer theorem. For the power harvesting case, closed-loop stability is guaranteed and practical controllers may be designed. The approach is compared against direct minimization of losses, both theoretically and with Monte Carlo simulations. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

23 pages, 3829 KiB  
Article
Dissipativity Constraints in Zener-Type Time Dispersive Electromagnetic Materials of the Fractional Type
by Teodor M. Atanacković, Marko Janev, Milan Narandžić and Stevan Pilipović
Fractal Fract. 2025, 9(6), 342; https://doi.org/10.3390/fractalfract9060342 - 26 May 2025
Viewed by 259
Abstract
Thermodynamic constraints must be satisfied for the parameters of a constitutive relation, particularly for a model describing an electromagnetic (or any other) material with the intention of giving that model a physical meaning. We present sufficient conditions for the parameters of the constitutive [...] Read more.
Thermodynamic constraints must be satisfied for the parameters of a constitutive relation, particularly for a model describing an electromagnetic (or any other) material with the intention of giving that model a physical meaning. We present sufficient conditions for the parameters of the constitutive relation of an electromagnetic Zener-type fractional 2D and 3D anisotropic model so that a weak form of the thermodynamic (entropy) inequality is satisfied. Moreover, for such models, we analyze the corresponding thermodynamic constraints for field reconstruction and regularity in the 2D anisotropic case. This is carried out by the use of the matrix version of the Bochner theorem in the most general form, including generalized functions as elements of a matrix, which appear in that theorem. The given numerical results confirm the calculus presented in the paper. Full article
(This article belongs to the Special Issue Applications of Fractional Calculus in Modern Mathematical Modeling)
Show Figures

Figure 1

22 pages, 365 KiB  
Article
Entropy Production Assumption and Objectivity in Continuum Physics Modelling
by Angelo Morro
Foundations 2025, 5(2), 17; https://doi.org/10.3390/foundations5020017 - 22 May 2025
Viewed by 615
Abstract
This paper revisits some aspects connected with the methods for the determination of thermodynamically consistent models. While the concepts apply to the general context of continuum physics, the details are developed for the modelling of deformable dielectrics. The symmetry condition arising from the [...] Read more.
This paper revisits some aspects connected with the methods for the determination of thermodynamically consistent models. While the concepts apply to the general context of continuum physics, the details are developed for the modelling of deformable dielectrics. The symmetry condition arising from the balance of angular momentum is viewed as a constraint for the constitutive equations and is shown to be satisfied by sets of objective fields that account jointly for deformation and electric field. The second law of thermodynamics is considered in a generalized form where the entropy production is given by a constitutive function possibly independent of the other constitutive functions. Furthermore, a representation formula is applied for solving the Clausius–Duhem inequality with respect to the chosen unknown fields. Full article
(This article belongs to the Section Physical Sciences)
20 pages, 2596 KiB  
Article
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
by Major Melusi Mabuza and Mandlenkosi George Robert Mahlobo
Energies 2025, 18(10), 2646; https://doi.org/10.3390/en18102646 - 20 May 2025
Viewed by 685
Abstract
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption [...] Read more.
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption equilibria under in situ unmineable coal reservoir conditions. This paper presents novel findings on the study of the equilibrium adsorption of CO2 on two South African coals measured at four temperatures between 30 and 60 °C and pressures up to 9.0 MPa using the volumetric technique. Additionally, the sorption mechanism and thermodynamic nature of the process were studied by fitting the experimental data into Langmuir–Freundlich (Sips), Tóth, and Dubinin–Astakhov (DA) isotherm models, and the Clausius–Clapeyron equation. The findings indicate that the sorption process is highly exothermic, as presented by a negative temperature effect, with the maximum working capacity estimated to range between 3.46 and 4.16 mmol/g, which is also rank- and maceral composition-dependent, with high-rank vitrinite-rich coal yielding more sorption capacity than low-rank inertinite-rich coal. The experimental data fit well in Sips and Tóth models, confirming their applicability in describing the CO2 sorption behaviour of the coals under the considered conditions. The isosteric heat of adsorption varied from 7.518 to 37.408 kJ/mol for adsorbate loading ranging from 0.4 to 3.6 mmol/g. Overall, the coals studied demonstrate well-developed sorption properties that characteristically make them viable candidates for CO2 sequestration applications for environmental sustainability. Full article
(This article belongs to the Special Issue CO2 Capture, Utilization and Storage)
Show Figures

Figure 1

19 pages, 3857 KiB  
Article
2024 ‘Key Reflections’ on Sadi Carnot’s 1824 ‘Réflexions’ and 200 Year Legacy
by Milivoje M. Kostic
Entropy 2025, 27(5), 502; https://doi.org/10.3390/e27050502 - 7 May 2025
Viewed by 627
Abstract
This author is not a philosopher nor a historian of science, but an engineering thermodynamicist. In that regard, and in addition to various philosophical “why and how” treatises and existing historical analyses, the physical and logical “what it is [...] Read more.
This author is not a philosopher nor a historian of science, but an engineering thermodynamicist. In that regard, and in addition to various philosophical “why and how” treatises and existing historical analyses, the physical and logical “what it isreflections, as sequential Key Points, where a key Sadi Carnot reasoning infers the next one, along with novel contributions and original generalizations, are presented. We need to keep in mind that in Sadi Carnot’s time (early 1800s), steam engines were inefficient (below 5%, so the heat in and out was comparable within experimental uncertainty, as if caloric were conserved), the conservation of caloric flourished (might be a fortunate misconception leading to the critical analogy with the waterwheel), and many critical thermal concepts, including the conservation of energy (The First Law), were not even established. If Clausius and Kelvin earned the titleFathers of thermodynamics”, then Sadi Carnot was ‘the ingenious’Forefather of thermodynamics-to-become”. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

10 pages, 508 KiB  
Article
Lagrangian for Real Systems Instead of Entropy for Ideal Isolated Systems
by Nikolai M. Kocherginsky
ChemEngineering 2025, 9(3), 44; https://doi.org/10.3390/chemengineering9030044 - 24 Apr 2025
Viewed by 565
Abstract
The Second Law of Thermodynamics states that entropy S increases in a spontaneous process in an ideal isothermal and isolated system. Real systems are influenced by external forces and fields, including the temperature field. In this case, only entropy is not enough, and [...] Read more.
The Second Law of Thermodynamics states that entropy S increases in a spontaneous process in an ideal isothermal and isolated system. Real systems are influenced by external forces and fields, including the temperature field. In this case, only entropy is not enough, and we suggest using a new function, Ls, which is analogous to the Lagrangian in classical mechanics. It includes total potential energy but instead of mechanical kinetic energy, Ls includes the product ST, and the system always evolves towards increasing this modified Lagrangian. It reaches an equilibrium when total potential force is balanced by both entropic and thermal forces. All forces have the same units, Newton/mol, and may be added or subtracted. For condensed systems with friction forces, it is a molecular transport velocity, and not acceleration, which is proportional to the acting force. Our approach has several advantages compared to Onsager’s non-equilibrium thermodynamics with its thermodynamic forces, which may have different units, including 1/T for energy transport. For isolated systems, the description is reduced to Second Law and Clausius inequality. It easily explains diffusion, Dufour effect, and Soret thermodiffusion. The combination of electric, thermal, and entropic forces explains thermoelectric phenomena, including Peltier–Seebeck and Thomson (Lord Kelvin) effects. Gravitational and entropic forces together inside a black hole may lead to a steady state or the black hole evaporation. They are also involved in and influenced by solar atmospheric processes. Full article
Show Figures

Figure 1

40 pages, 1021 KiB  
Article
Carnot Theorem Revisited: A Critical Perspective
by P. D. Gujrati
Entropy 2025, 27(4), 346; https://doi.org/10.3390/e27040346 - 27 Mar 2025
Cited by 1 | Viewed by 684
Abstract
After a brief review of Carnot’s everlasting contributions to the foundations of thermodynamics, we critically examine the consequences of the Carnot theorem, which leaves behind some lingering questions and confusion that persist even today. What is the one significant aspect of the Carnot [...] Read more.
After a brief review of Carnot’s everlasting contributions to the foundations of thermodynamics, we critically examine the consequences of the Carnot theorem, which leaves behind some lingering questions and confusion that persist even today. What is the one significant aspect of the Carnot cycle that leads to this theorem? When does the working substance play an important role for an engine and what is its correlation with the protocol of operational details? Do all reversible engines working between the same two temperatures have the same maximum efficiency of the Carnot engine as Fermi has suggested? Are all heat engines equivalent to a Carnot engine in disguise? Our new perspective allows for the clarification of these questions with a positive answer for the last question. Recognizing that Carnot eventually abandoned the caloric theory, we use a result by Carnot and simple dimensional analysis to show how the first law, the concept of entropy, and the efficiency of the Carnot engine could have been germinated by Carnot in his time. This then demonstrates that Carnot had good understanding of entropy before its invention by Clausius. We suggest that both should be credited with inventing entropy by calling it Carnot–Clausius entropy. We also clarify some fundamental misconceptions plaguing reversible regenerators and their irreversible replacement by heat exchangers in the field. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

18 pages, 4311 KiB  
Article
Light-Emitting Diode Array with Optical Linear Detector Enables High-Throughput Differential Single-Cell Dielectrophoretic Analysis
by Emerich Kovacs, Behnam Arzang, Elham Salimi, Michael Butler, Greg E. Bridges and Douglas J. Thomson
Sensors 2024, 24(24), 8071; https://doi.org/10.3390/s24248071 - 18 Dec 2024
Viewed by 838
Abstract
This paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual [...] Read more.
This paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual particle properties from differential velocity changes. Both positive and negative forces are detectable. The light source utilized in this system is composed of LEDs with a wavelength of 470 nm, while detection is performed using a 256-element optical array detector. Measurements with 10 μm polystyrene beads demonstrate this method can resolve changes equivalent to a Clausius–Mossotti factor of 0.18. Simulations in this work, using values from the literature, predict that Clausius–Mossotti factor differences of 0.18 are sufficient to differentiate viable from nonviable cells and cancerous from multidrug-resistant cancerous cells. We demonstrate that for Chinese hamster ovary (CHO) cells, the method can collect a dielectric response spectrum for a large number of cells in several minutes. We demonstrate that for CHO cells, Clausius–Mossotti factor differences of 0.18 can be discriminated. Due to its simple detection apparatus and the utilization of high-throughput, wide, clog-resistant channels, this method holds promise for a wide range of applications. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

17 pages, 2688 KiB  
Article
Evaluation of the Hydrological Response of Nature-Based Solutions (NBS) in Socio-Economically Vulnerable Tropical Urban Settlements: A Case Study in La Guapil, Costa Rica, Under Climate Change Scenarios
by Valeria Serrano-Núñez, Karolina Villagra-Mendoza, Natalia Gamboa-Alpízar, Miriam Miranda-Quirós and Fernando Watson-Hernández
Sustainability 2024, 16(24), 10794; https://doi.org/10.3390/su162410794 - 10 Dec 2024
Cited by 1 | Viewed by 2108
Abstract
Urbanization increases the number of impervious surfaces in watersheds, reducing infiltration and evapotranspiration, which increases runoff volumes and the risks of flooding and the pollution of water resources. Nature-based solutions (NBS) mitigate these effects by managing water volume and quality, restoring the hydrological [...] Read more.
Urbanization increases the number of impervious surfaces in watersheds, reducing infiltration and evapotranspiration, which increases runoff volumes and the risks of flooding and the pollution of water resources. Nature-based solutions (NBS) mitigate these effects by managing water volume and quality, restoring the hydrological cycle, and creating sustainable livelihoods that can promote socioeconomic equity by providing green space. In light of the aforementioned information, this study analyzes the hydrological response of NBS in La Guapil, a densely populated and socioeconomically vulnerable area of Costa Rica with approximately 80% impervious surfaces, focusing on their effectiveness in stormwater management and improving hydrological conditions. Field data from the study area’s storm drainage system, as well as hydrological analyses, were collected and processed to evaluate RCP8.5 climate change scenarios using the Clausius–Clapeyron (CC) relationship. Three scenarios were proposed: (1) the “status quo”, reflecting current conditions, (2) green roofs and green improvements, and (3) detention ponds and green improvements, evaluated using the SWMM, with the latter scenario also using the Iber model. Simulations showed that Scenario 2 achieved the greatest reduction in peak flow (53.74%) and runoff volume (57.60%) compared to Scenario 3 (peak: 28.37%; volume: 56.42%). Both scenarios demonstrate resilience to climate change projections. The results of this study provide a foundation for further research into NBS in Costa Rica and other comparable regions. Full article
(This article belongs to the Special Issue Urban Vulnerability and Resilience)
Show Figures

Figure 1

18 pages, 11583 KiB  
Article
Analysis of Cell Dielectrophoretic Properties Using Isomotive Creek-Gap Electrode Device
by Shigeru Tada and Noriko Sato
Sensors 2024, 24(23), 7681; https://doi.org/10.3390/s24237681 - 30 Nov 2024
Viewed by 767
Abstract
Various types of dielectrophoresis (DEP) cell separation devices using AC electric fields have been proposed and developed. However, its capability is still limited by a lack of quantitative characterization of the relationship between frequency and force. In the present study, this limitation was [...] Read more.
Various types of dielectrophoresis (DEP) cell separation devices using AC electric fields have been proposed and developed. However, its capability is still limited by a lack of quantitative characterization of the relationship between frequency and force. In the present study, this limitation was addressed by developing a method capable of fast and accurate quantification of the dielectric properties of biological cells. A newly designed Creek-gap electrode device can induce constant DEP forces on cells, realizing the isomotive movement of cells suitable for DEP analysis. The real number part of the Clausius–Mossotti (CM) factor of cells, Re(β), was obtained by simple cell velocimetry together with the numerical three-dimensional (3D) electric field analysis. Human mammary cells, MCF10A, and its cancer cells, MCF7 and MDAMB231, were used as model cells to evaluate the capability of the proposed device. The estimation of Re(β) using the Creek-gap electrode device showed good agreement with previously reported values. Furthermore, the thermal behavior of the Creek-gap electrode device, which is crucial to cell viability, was investigated by adopting micro laser-induced fluorescence (LIF) thermometry using Rhodamine B. The temperature rise in the device was found to be approximately several degrees Celsius at most. The results demonstrate that the proposed method could be a powerful tool for fast and accurate noninvasive measurement of the DEP spectrum and the determination of the dielectric properties of biological cells. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 9253 KiB  
Article
New Method for Hydraulic Characterization of Variably Saturated Zone in Peatland-Dominated Permafrost Mires
by Radhakrishna Bangalore Lakshmiprasad, Stephan Peth, Susanne K. Woche and Thomas Graf
Land 2024, 13(12), 1990; https://doi.org/10.3390/land13121990 - 22 Nov 2024
Viewed by 1547
Abstract
Modeling peatland hydraulic processes in cold regions requires defining near-surface hydraulic parameters. The current study aims to determine the soil freezing and water characteristic curve parameters for organic soils from peatland-dominated permafrost mires. The three research objectives are as follows: (i) Setting up [...] Read more.
Modeling peatland hydraulic processes in cold regions requires defining near-surface hydraulic parameters. The current study aims to determine the soil freezing and water characteristic curve parameters for organic soils from peatland-dominated permafrost mires. The three research objectives are as follows: (i) Setting up an in situ soil freezing characteristic curve experiment by installing sensors for measuring volumetric water content and temperature in Storflaket mire, Abisko region, Sweden; (ii) Conducting laboratory evaporation experiments and inverse numerical modeling to determine soil water characteristic curve parameters and comparing three soil water characteristic curve models to the laboratory data; (iii) Deriving a relationship between soil freezing and water characteristic curves and optimizing this equation with sensor data from (i). A long-lasting in situ volumetric water content station has been successfully set up in sub-Arctic Sweden. The soil water characteristic curve experiments showed that bimodality also exists for the investigated peat soils. The optimization results of the bimodal relationship showed excellent agreement with the soil freezing cycle measurements. To the best of our knowledge, this is one of the first studies to establish and test bimodality for frozen peat soils. The estimated hydraulic parameters could be used to better simulate permafrost dynamics in peat soils. Full article
Show Figures

Figure 1

33 pages, 1899 KiB  
Article
Mechanical Foundations of the Generalized Second Law and the Irreversibility Principle
by Purushottam Das Gujrati
Foundations 2024, 4(4), 560-592; https://doi.org/10.3390/foundations4040037 - 22 Oct 2024
Cited by 1 | Viewed by 1142
Abstract
We follow the Boltzmann-Clausius-Maxwell (BCM) proposal to establish the generalized second law (GSL) that is applicable to a system of any size, including a single particle system as our example establishes, and that supercedes the celebrated second law (SL) of increase of entropy [...] Read more.
We follow the Boltzmann-Clausius-Maxwell (BCM) proposal to establish the generalized second law (GSL) that is applicable to a system of any size, including a single particle system as our example establishes, and that supercedes the celebrated second law (SL) of increase of entropy of an isolated system. It is merely a consequence of the mechanical equilibrium (stable or unstable) principle (Mec-EQ-P) of analytical mechanics and the first law. We justify an irreversibility priciple that covers all processes, spontaneous or not, and having both positive and negative nonequilibrium temperatures temperatures T defined by (dQ/dS)E. Our novel approach to establish GSL/SL is the inverse of the one used in classical thermodynamics and clarifies the concept of spontaneous processes so that dS0 for T>0 and dS<0 for T<0. Nonspontaneous processes such as creation of internal constraints are not covered by GSL/SL. Our demonstration establishes that Mec-EQ-P controls spontaneous processes, and that temperature (positive and negative) must be considered an integral part of dissipation. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

13 pages, 1413 KiB  
Article
A Methodological Approach to Improving Extreme Precipitation Reanalysis Data Using the Clausius-Clapeyron Relationship: A Case Study in a Mediterranean City
by Alexandros Papadopoulos-Zachos and Christina Anagnostopoulou
Atmosphere 2024, 15(10), 1195; https://doi.org/10.3390/atmos15101195 - 6 Oct 2024
Viewed by 1310
Abstract
Climate change is a crucial issue of the 21st century, leading to more frequent and severe extreme precipitation events globally. These events result in significant social and economic disruptions, including flooding, loss of life, and damage to infrastructure. Projections suggest that extreme rainfall [...] Read more.
Climate change is a crucial issue of the 21st century, leading to more frequent and severe extreme precipitation events globally. These events result in significant social and economic disruptions, including flooding, loss of life, and damage to infrastructure. Projections suggest that extreme rainfall will intensify in the latter half of the century, underscoring the need for accurate and timely forecasting. Despite advancements in meteorological and climate models that offer high accuracy for various weather parameters, these models still struggle to detect extreme values, particularly for precipitation. This research examines the sensitivity of extreme precipitation events to temperature, based on the Clausius-Clapeyron relationship, focusing on Thessaloniki, Greece. It also evaluates the effectiveness of reanalysis data in identifying extreme precipitation and explores how rainfall-temperature relationships can enhance prediction accuracy. The findings are vital for improving the estimation of extreme rainfall events and informing the design of flood-resilient infrastructure. Full article
(This article belongs to the Special Issue Precipitation Monitoring and Databases)
Show Figures

Figure 1

19 pages, 327 KiB  
Article
Thermodynamically Consistent Evolution Equations in Continuum Mechanics
by Angelo Morro
Foundations 2024, 4(4), 494-512; https://doi.org/10.3390/foundations4040033 - 1 Oct 2024
Cited by 2 | Viewed by 1243
Abstract
This paper addresses the modelling of material behaviour in terms of differential (or rate) equations. To comply with the objectivity principle, recourse is made to invariant fields in the Lagrangian description or to objective time derivatives in the Eulerian description. The thermodynamic consistency [...] Read more.
This paper addresses the modelling of material behaviour in terms of differential (or rate) equations. To comply with the objectivity principle, recourse is made to invariant fields in the Lagrangian description or to objective time derivatives in the Eulerian description. The thermodynamic consistency is investigated in terms of the Clausius–Duhem inequality with two unusual features. Firstly, the (non-negative) entropy production is viewed as a constitutive function per se. Secondly, the inequality is viewed as a constraint on the pertinent fields and it is solved by using a representation formula, which allows for the the admissibility of a class of models. For definiteness, models of heat conduction are established, within Lagrangian descriptions, while models of the Navier–Stokes–Voigt fluid are investigated within Eulerian descriptions. In connection with thermo-viscous fluids, evolution equations are investigated within the Eulerian description. It is shown that the thermodynamic consistency is compatible with both objective and non-objective evolution equations. Full article
(This article belongs to the Section Physical Sciences)
Back to TopTop