Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Central European climate boundary

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4548 KB  
Article
Short-Term Climatic Oscillations in the Central Region of the East-European Plain at the Beginning of the Holocene Based on Palynological Studies of Lacustrine Deposits
by Olga Borisova, Natalia Naryshkina and Andrey Panin
Quaternary 2024, 7(2), 22; https://doi.org/10.3390/quat7020022 - 15 May 2024
Viewed by 2404
Abstract
The Preboreal (11.75–10.70 ka BP) is still the least paleogeographically studied time interval in the central part of the East European Plain. High-resolution multi-proxy studies of lacustrine sediments at the Seltso site located in the Desna River floodplain (Dnieper River basin) were conducted. [...] Read more.
The Preboreal (11.75–10.70 ka BP) is still the least paleogeographically studied time interval in the central part of the East European Plain. High-resolution multi-proxy studies of lacustrine sediments at the Seltso site located in the Desna River floodplain (Dnieper River basin) were conducted. Radiocarbon dating, loss-on-ignition determination, sedimentological and palynological studies and identification of Non-Pollen Palynomorphs in lacustrine sediments allow us to reconstruct changes in vegetation caused by rapid warming at the Younger Dryas–Holocene boundary, short-term climatic fluctuations within the Preboreal and subsequent resumption of warming. Initial Preboreal warming reached its maximum at about 11.5 ka BP when a relatively dry continental climate existed. Between 11.4 and 11.2 ka BP, a short-term cooling corresponding to the Preboreal Oscillation in Greenland occurred, as indicated by a significant reduction of woody vegetation and expansion of open plant communities. In the Late Preboreal, approximately 11.2–10.7 ka BP, warming resumed, which was accompanied by a decrease in the climate continentality. Comparison with high-resolution lithological and palynological data from eight reliably dated sections of the central East European Plain indicates that in northwestern and central Europe, the impact of the Preboreal Oscillation cooling on the vegetation and the lake ecosystems’ development was probably somewhat stronger. Full article
Show Figures

Figure 1

13 pages, 2355 KB  
Article
Seasonal Evolution of Stable Thermal Stratification in Central Area of Lake Ladoga
by Mikhail Naumenko and Vadim Guzivaty
Limnol. Rev. 2023, 23(3), 177-189; https://doi.org/10.3390/limnolrev23030011 - 7 Nov 2023
Cited by 4 | Viewed by 2224
Abstract
The complete climatic courses of the parameters of stable thermal stratification for the central part of Lake Ladoga, the largest European lake, are presented on the basis of empirical relationships, taking into account the physical processes governing water temperature variations. For the first [...] Read more.
The complete climatic courses of the parameters of stable thermal stratification for the central part of Lake Ladoga, the largest European lake, are presented on the basis of empirical relationships, taking into account the physical processes governing water temperature variations. For the first time, the seasonal cycle of the surface water temperature, the temperature and the depth of the thermocline, and the hypolimnion temperature are calculated using the vertical profiles of the temperature obtained from the central area of Lake Ladoga. Temperature data are used for the period of in situ observations from 1897 to the present. The proposed functional forms of the temporal temperature cycle and the course of thermocline’s boundaries deepening are useful for examination and simulation of the heat vertical transport from air to water. Approximation curves for the parameters of heating and cooling periods were developed with high significant determination coefficients. Time dependencies of the climatic rates of change in water temperature and the depth of the thermocline boundaries were determined from the onset of stable stratification to its dissipation. The highest rate of water temperature change in the heating stage takes place in late June–early July, which at the water surface, is 0.32 °C/day, while in the thermocline layer, it is 0.18 °C/day. The peak velocity during the cooling stage at the surface occurs in late August–early September and is 0.14 °C/day, whereas in the thermocline, it is 0.08 °C/day and takes place between September and early October. During the period of heating, the deepening parameters of the thermocline layer do not fluctuate very much, only within the range of 0.1–0.3 m/day. During the cooling period, under the influence of free convection, rates increase drastically. The maximum rates of deepening during the period of full autumn mixing reach 1.8 m/day. When the autumn overturn occurs, the epilimnion thickness equals the bottom depth, and the bottom temperature reaches its maximum during the annual cycle. Climatic norms of the stratification parameters against which it is necessary to assess climate change are calculated. Full article
Show Figures

Figure 1

20 pages, 3029 KB  
Article
A Case Study of Air Quality and a Health Index over a Port, an Urban and a High-Traffic Location in Rhodes City
by Ioannis Logothetis, Christina Antonopoulou, Georgios Zisopoulos, Adamantios Mitsotakis and Panagiotis Grammelis
Air 2023, 1(2), 139-158; https://doi.org/10.3390/air1020011 - 12 Jun 2023
Cited by 8 | Viewed by 8521
Abstract
One of people’s greatest concerns about air quality degradation is its impact on human health. This work is a case study that aims to investigate the air quality and the related impact on people’s health in a coastal city over the eastern Mediterranean. [...] Read more.
One of people’s greatest concerns about air quality degradation is its impact on human health. This work is a case study that aims to investigate the air quality and the related impact on people’s health in a coastal city over the eastern Mediterranean. The analysis proceeded during a low-tourist density period, covering the days from 17 to 27 November 2022. Hourly PM2.5, NO2 and O3 concentration records from three, mobile, Air Quality Monitoring Systems (AQMS), established in an urban location, port and central area of Rhodes city, are analyzed. To investigate the impact of pollution levels on human health, the Air Quality Health Index (AQHI) is calculated. The daily and diurnal variation of pollutants’ concentration and AQHI among the different areas, as well as the relation among the ambient air pollutants and AQHI, are studied. Additionally, to investigate the impact of wind regime on the variation of pollution and AQHI levels, the hourly zonal and meridional wind-speed components, as well as the temperature at 2 m, the dew point temperature at 2 m, and the height of the boundary layer from ERA5 reanalysis, are retrieved for the region of the southeastern Mediterranean. Results show that the highest pollution level occurs in the city center of Rhodes, compared to the rest of the studied locations. In general, the findings do not show exceedances of the pollutants’ concentration according to the European Directive 2008/50/EC. Moreover, findings show that in some cases, the health risk is classified from Low to Moderate in terms of AQHI. The analysis indicates that the climate conditions affect the pollutants’ concentration due to dispersion, and likely, the atmospheric transport of pollutants. Finally, this work aims to improve the knowledge regarding the air quality of southeastern Greece, promoting the framework for the green and sustainable development of the South Aegean Sea. Full article
Show Figures

Figure 1

28 pages, 3178 KB  
Article
Latest Pleistocene and Holocene Floodplain Evolution in Central Europe—Insights from the Upper Unstrut Catchment (NW-Thuringia/Germany)
by André Kirchner, Jasmin Karaschewski, Philipp Schulte, Tina Wunderlich and Tobias Lauer
Geosciences 2022, 12(8), 310; https://doi.org/10.3390/geosciences12080310 - 19 Aug 2022
Cited by 5 | Viewed by 3504
Abstract
The upper Unstrut River is located in Germany at the modern Central European climate boundary of Cfb and Dfb climate. The river drains a loess landscape, which has experienced important environmental changes throughout the last 12,000 years. To evaluate the impacts of these [...] Read more.
The upper Unstrut River is located in Germany at the modern Central European climate boundary of Cfb and Dfb climate. The river drains a loess landscape, which has experienced important environmental changes throughout the last 12,000 years. To evaluate the impacts of these changes on floodplain evolution, a multi-proxy research program, consisting of 2D electrical resistivity tomography profiling (ERT), vibracoring, and sedimentological investigations, 14C and OSL dating were applied. From base to top the investigations the following fluvial deposits were revealed: (1) gravels embedded in a fine-grained sediment matrix (interpreted as fluvial bedload deposits); (2) silty sediment with pedogenic features (interpreted as overbank floodplain deposits); (3) peat and tufa deposits (interpreted as wetland deposits) intercalated by pedogenetically influenced silty sediments (interpreted as overbank deposits); (4) humic silty sediment with some pedogenic features (interpreted as overbank floodplain deposits); and (5) silty sediments (interpreted as overbank deposits). Radiocarbon and luminescence dates yielded the following periods for sediment formation: (1) Younger Dryas to Preboreal period (around 11.6 cal ka BP); (2) Preboreal to early Atlantic period (approx. 11.6 to 7.0 cal ka BP); (3) early Atlantic to late Subboreal period (approx. 7.3 to 3.4 cal ka BP); (4) late Subboreal to early Subatlantic period (2.9 to 2.3 cal ka BP); and (5) late Subatlantic period (approx. 1.0 to 0.6 cal ka BP). The results suggest that floodplain development during the latest Pleistocene and early Holocene (approx. 11.6 to 7.0 cal ka BP) was considerably controlled by climatic conditions and short-term climate variabilities, which caused gravel deposition and overbank sedimentation. Afterwards floodplain conditions varied between rather stable (peat and tufa development, initial soil formation) and active periods (deposition of overbank fines). In this context, active periods with increased sediment input prevailed from approx. 5.1 to 3.4 cal ka BP, 2.9 to 2.3 cal ka, and 1.0 to 0.6 cal ka BP, temporally corresponding well with increased land-use phases of the past. In conclusion this study demonstrates that the investigated Unstrut catchment has reacted very sensitively to natural and human-induced changes during the latest Pleistocene and Holocene. Consequently, this high vulnerability to external changes should be considered in future river predictions or river management. Full article
Show Figures

Figure 1

18 pages, 6645 KB  
Article
COSMIC-2 RO Profile Ending at PBL Top with Strong Vertical Gradient of Refractivity
by Xu Xu and Xiaolei Zou
Remote Sens. 2022, 14(9), 2189; https://doi.org/10.3390/rs14092189 - 3 May 2022
Cited by 4 | Viewed by 2863
Abstract
The Formosa Satellite-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (Satellite-7/COSMIC-2), which was successfully launched on 25 June 2019, provides dense radio occultation (RO) observations over the tropics and subtropics. This study examines the RO-observed lowest altitude and its possible relationship to refractivity [...] Read more.
The Formosa Satellite-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (Satellite-7/COSMIC-2), which was successfully launched on 25 June 2019, provides dense radio occultation (RO) observations over the tropics and subtropics. This study examines the RO-observed lowest altitude and its possible relationship to refractivity gradients and planetary boundary layer (PBL) heights. COSMIC-2 RO data over the Southeast Pacific region (SEP) and the South-Central Pacific (SCP) from August 2020 are employed to determine their RO-observed lowest altitudes, and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data are used to obtain the gradients of refractivity. Results show that there are no ray perigees below the PBL top when the vertical gradient of NN(r) is strong (<−65 N-unit km−1), where N(r) represents the vertical profile of the spherically symmetric refractivity. Significantly strong local vertical gradients due to atmospheric ducting occur more frequently over the SEP than the SCP areas. For some cases, a strong local horizontal gradient of refractivity in the tangent direction of a ray near its perigee point can also limit the RO profile from going further below even when the vertical gradient of NN(r) is relatively weak. Fortunately, only about 0.6% COSMIC-2 RO profiles are unaffected by the above factors but cannot observe below 2-km altitude. Full article
Show Figures

Figure 1

20 pages, 4686 KB  
Article
The Relationship between Dynamic and Static Deformation Modulus of Unbound Pavement Materials Used for Their Quality Control Methodology
by Martin Decký, Marian Drusa, Daniel Papán and Juraj Šrámek
Materials 2022, 15(8), 2922; https://doi.org/10.3390/ma15082922 - 16 Apr 2022
Cited by 21 | Viewed by 8269
Abstract
In the present study, credible analytical and numerical models are developed in order to explain the apparent discrepancies in the ratios of static and dynamic deformation models for assessing the quality of mechanical efficiency of transport structures in Central Europe. Through of experience, [...] Read more.
In the present study, credible analytical and numerical models are developed in order to explain the apparent discrepancies in the ratios of static and dynamic deformation models for assessing the quality of mechanical efficiency of transport structures in Central Europe. Through of experience, authors specifically deal with the comparison of two commonly used methods: the dynamic load plate test, known as the lightweight dynamic test and the static plate load test. This paper presents the relevant correlation dependency of the most commonly used quantification characteristics in earthworks quality control. Their correlation was obtained by applying the static theory of impact to earthworks quality control, which allows for the application of several quality control methods, in line with other member states of the European Union, specifically with regard to constructions under various boundary conditions (climate, soil moisture of the specified layer). According to an analysis of the results of comparisons of static and dynamic load tests, analytical and numerical models of the subsoil formed by soils and uncemented structural materials, respectively, the linear calculation usually used in the conditions of Central Europe does not have universal validity. Rather than relying on the analytical and FEM models for the soil, the authors have determined that the above dependence is a power dependence. Full article
(This article belongs to the Special Issue Advanced Experimental Research on Pavement and Subgrade Materials)
Show Figures

Figure 1

30 pages, 4414 KB  
Article
Energy and Emission Implications of Electric Vehicles Integration with Nearly and Net Zero Energy Buildings
by Hassam ur Rehman, Jan Diriken, Ala Hasan, Stijn Verbeke and Francesco Reda
Energies 2021, 14(21), 6990; https://doi.org/10.3390/en14216990 - 25 Oct 2021
Cited by 13 | Viewed by 5715
Abstract
Buildings and the mobility sectors are the two sectors that currently utilize large amount of fossil-based energy. The aim of the paper is to, critically analyse the integration of electric vehicles (EV) energy load with the building’s energy load. The qualitative and quantitative [...] Read more.
Buildings and the mobility sectors are the two sectors that currently utilize large amount of fossil-based energy. The aim of the paper is to, critically analyse the integration of electric vehicles (EV) energy load with the building’s energy load. The qualitative and quantitative methods are used to analyse the nearly/net zero energy buildings and the mobility plans of the Europe along with the challenges of the plans. It is proposed to either include or exclude the EV load within the building’s energy load and follow the emissions calculation path, rather than energy calculation path for buildings to identify the benefits. Two real case studies in a central European climate are used to analysis the energy performance of the building with and without EV load integration and the emissions produced due to their interaction. It is shown that by replacing fossil-fuel cars with EVs within the building boundary, overall emissions can be reduced by 11–35% depending on the case study. However, the energy demand increased by 27–95% when the EV load was added with the building load. Hence, the goal to reach the nearly/net zero energy building target becomes more challenging. Therefore, the emission path can present the benefits of EV and building load integration. Full article
(This article belongs to the Special Issue Energy Efficiency Improvement Measures in Buildings)
Show Figures

Graphical abstract

19 pages, 5355 KB  
Article
Regional-Scale Model Analysis of Climate Changes Impact on the Water Budget of the Critical Zone and Groundwater Recharge in the European Part of Russia
by Sergey O. Grinevskiy, Sergey P. Pozdniakov and Ekaterina A. Dedulina
Water 2021, 13(4), 428; https://doi.org/10.3390/w13040428 - 6 Feb 2021
Cited by 12 | Viewed by 3180
Abstract
Groundwater recharge by precipitation is the main source of groundwater resources, which are widely used in the European part of Russia (ER). The main goal of the presented studies is to analyze the effect of observed climate changes on the processes of groundwater [...] Read more.
Groundwater recharge by precipitation is the main source of groundwater resources, which are widely used in the European part of Russia (ER). The main goal of the presented studies is to analyze the effect of observed climate changes on the processes of groundwater recharge. For this purpose analysis of long-term meteorological data as well as water budget and groundwater recharge simulation were used. First, meteorological data of 22 weather stations, located from south (Lat 46°) to north (Lat 66°) of ER for historical (1965–1988) and modern (1989–2018) periods were compared to investigate the observed latitudinal changes in annual and seasonal averages of precipitation, wind speed, air temperature, and humidity. Second, water budget in critical zone was simulated, using codes SURFBAL and HYDRUS-1D. SURFBAL generates upper boundary conditions for unsaturated flow modelling with HYDRUS-1D, taking into account snow accumulation and melting as well as topsoil freezing, which are important processes that affect runoff generation and the infiltration of meltwater. Water budget and groundwater recharge simulations based on long-term meteorological data and soil and vegetation parameters, typical for the investigated region. The simulation results for the historical and modern periods were compared to find out the impact of climate change on the average annual and seasonal averages of surface runoff, evapotranspiration, and groundwater recharge, as well as to assess latitudinal differences in water budget changes. The results of the simulation showed, that despite a significant increase in air temperature, groundwater recharge in the southern regions did not change, but even increased up to 50–60 mm/year in the central and northern regions of ER. There are two main reasons for this. First, the observed increase in air temperature is compensated by a decrease in wind speed, so there was no significant increase in evapotranspiration in the modern period. Also, the observed increase in air temperature and precipitation in winter is the main reason for the increase in groundwater recharge, since these climate changes lead to an increase in water infiltration into the soil in the cold period, when there is no evapotranspiration. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

25 pages, 4747 KB  
Article
Evaluation of New CORDEX Simulations Using an Updated Köppen–Trewartha Climate Classification
by Armelle Reca Remedio, Claas Teichmann, Lars Buntemeyer, Kevin Sieck, Torsten Weber, Diana Rechid, Peter Hoffmann, Christine Nam, Lola Kotova and Daniela Jacob
Atmosphere 2019, 10(11), 726; https://doi.org/10.3390/atmos10110726 - 19 Nov 2019
Cited by 85 | Viewed by 11752
Abstract
A new ensemble of climate and climate change simulations covering all major inhabited regions with a spatial resolution of about 25 km, from the WCRP CORDEX COmmon Regional Experiment (CORE) Framework, has been established in support of the growing demands for climate services. [...] Read more.
A new ensemble of climate and climate change simulations covering all major inhabited regions with a spatial resolution of about 25 km, from the WCRP CORDEX COmmon Regional Experiment (CORE) Framework, has been established in support of the growing demands for climate services. The main objective of this study is to assess the quality of the simulated climate and its fitness for climate change projections by REMO (REMO2015), a regional climate model of Climate Service Center Germany (GERICS) and one of the RCMs used in the CORDEX-CORE Framework. The CORDEX-CORE REMO2015 simulations were driven by the ECMWF ERA-Interim reanalysis and the simulations were evaluated in terms of biases and skill scores over ten CORDEX Domains against the Climatic Research Unit (CRU) TS version 4.02, from 1981 to 2010, according to the regions defined by the Köppen–Trewartha (K–T) Climate Classification types. The REMO simulations have a relatively low mean annual temperature bias (about ± 0.5 K) with low spatial standard deviation (about ± 1.5 K) in the European, African, North and Central American, and Southeast Asian domains. The relative mean annual precipitation biases of REMO are below ± 50 % in most domains; however, spatial standard deviation varies from ± 30 % to ± 200 %. The REMO results simulated most climate types relatively well with lowest biases and highest skill score found in the boreal, temperate, and subtropical regions. In dry and polar regions, the REMO results simulated a relatively high annual biases of precipitation and temperature and low skill. Biases were traced to: missing or misrepresented processes, observational uncertainty, and uncertainties due to input boundary forcing. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 2003 KB  
Review
Dogs (Canis familiaris) as Sentinels for Human Infectious Disease and Application to Canadian Populations: A Systematic Review
by Natasha H. Bowser and Neil E. Anderson
Vet. Sci. 2018, 5(4), 83; https://doi.org/10.3390/vetsci5040083 - 21 Sep 2018
Cited by 58 | Viewed by 9623
Abstract
In a world where climate change, vector expansion, human activity, and pathogen dispersal do not respect boundaries, the human–animal–pathogen interface has become less defined. Consequently, a One Health approach to disease surveillance and control has generated much interest across several disciplines. This systematic [...] Read more.
In a world where climate change, vector expansion, human activity, and pathogen dispersal do not respect boundaries, the human–animal–pathogen interface has become less defined. Consequently, a One Health approach to disease surveillance and control has generated much interest across several disciplines. This systematic review evaluates current global research on the use of domestic dogs as sentinels for human infectious disease, and critically appraises how this may be applied within Canada. Results highlighted a bias in research from high- and middle-income-economy countries, with 35% of the studies describing data from the Latin America/Caribbean region, 25% from North America, and 11% from the European/Central Asia region. Bacteria were the most studied type of infectious agent, followed by protozoa, viruses, helminths, and fungi. Only six out of 142 studies described disease in Canada: four researched a variety of pathogens within Indigenous communities, one researched Borrelia burgdorferi in British Columbia, and one researched arboviruses in Quebec. Results from this review suggest that dogs could provide excellent sentinels for certain infectious-disease pathogens in Canada, yet are currently overlooked. Further research into the use of dog-sentinel surveillance is specifically recommended for California serogroup viruses, Chikungunya virus, West Nile virus, Lyme borreliosis, Rickettsia spp., Ehrlichia spp., and Dirofilaria immitis. Full article
Show Figures

Figure 1

Back to TopTop