Short-Term Climatic Oscillations in the Central Region of the East-European Plain at the Beginning of the Holocene Based on Palynological Studies of Lacustrine Deposits
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stratigraphy and Radiocarbon Dating of Sediment Sequence from Seltso
3.2. Pollen Analysis
4. Discussion
4.1. Interpretation of the Seltso Record
4.2. Short-Term Changes in Central East European Plain at the Turn of the Late Glacial and Holocene According to the Studies of Key Sections
4.2.1. Changes in the Composition of Lacustrine Sediments
4.2.2. Changes in Vegetation and Climate
Late Glacial
Early Preboreal
Preboreal Oscillation
Late Preboreal
4.3. Comparison with the PBO in Northwest and Central Europe
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rasmussen, S.O.; Andersen, K.K.; Svensson, A.M.; Steffensen, J.P.; Vinther, B.M.; Clausen, H.B.; Siggaard-Andersen, M.L.; Johnsen, S.J.; Larsen, L.B.; Dahl-Jensen, D.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 2006, 111, D06102. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Vinther, B.M.; Clausen, H.B.; Andersen, K.K. Early Holocene climate oscillations recorded in three Greenland ice cores. Quat. Sci. Rev. 2007, 26, 1907–1914. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Grachev, A.M.; Severinghaus, J.P. A revised +10 ± 4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants. Quat. Sci. Rev. 2005, 24, 513–519. [Google Scholar] [CrossRef]
- Kobashi, T.; Severinghaus, J.; Barnola, J.-M. 4 ± 1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice. Earth Planet. Sci. Lett. 2008, 268, 397–407. [Google Scholar] [CrossRef]
- Björck, S.; Rundgren, M.; Ingólfsson, Ó.; Funder, S. The Preboreal oscillation around the Nordic Seas: Terrestrial and lacustrine responses. J. Quat. Sci. 1997, 12, 455–465. [Google Scholar] [CrossRef]
- van der Plicht, J.; van Geel, B.; Bohncke, S.J.P.; Bos, J.A.A.; Blaauw, M.; Speranza, A.O.M.; Muscheler, R.; Bjorck, S. The Preboreal climate reversal and a subsequent solar-forced climate shift. J. Quat. Sci. 2004, 19, 263–269. [Google Scholar] [CrossRef]
- Bos, J.A.A.; van Geel, B.; van der Plicht, J.; Bohncke, S.J.P. Preboreal climate oscillations in Europe: Wiggle-match dating and synthesis of Dutch high-resolution multi-proxy records. Quat. Sci. Rev. 2007, 26, 1927–1950. [Google Scholar] [CrossRef]
- Schneider, R.; Tobolski, K. Lago di Ganna—Late Glacial and Holocene environments of a lake in the southern Alps. Diss. Bot. 1985, 87, 229–271. [Google Scholar]
- Lotter, A.F.; Eicher, U.; Birks, H.J.B.; Siegenthaler, U. Late Glacial climatic oscillations as recorded in Swiss lake sediments. J. Quat. Sci. 1992, 7, 187–204. [Google Scholar]
- Wick, L. Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeo3 2000, 159, 231–250. [Google Scholar] [CrossRef]
- Magny, M.; Guiot, J.; Schoellammer, P. Quantitative reconstruction of Younger Dryas to Mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data. Quat. Res. 2001, 56, 170–180. [Google Scholar] [CrossRef]
- Goslar, T.; Kuc, T.; Ralska-Jasiewiczowa, M.; Różański, K.; Arnold, M.; Bard, E.; van Geel, B.; Pazdur, M.F.; Szeroczyńska, K.; Wicik, B.; et al. High-resolution lacustrine record of the Late Glacial/Holocene transition in Central Europe. Quat. Sci. Rev. 1993, 12, 287–294. [Google Scholar] [CrossRef]
- von Grafenstein, U.; Erlenkeuser, H.; Brauer, A.; Jouzel, J.; Johnsen, S.J. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 1999, 284, 1654–1657. [Google Scholar] [CrossRef]
- Schwander, J.; Eicher, U.; Ammann, B. Oxygen isotopes of lake marl at Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations, and their correlation to the GRIP ice core. Palaeo3 2000, 159, 203–214. [Google Scholar] [CrossRef]
- Brauer, A.; Endres, C.; Negendank, J.F.W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 1999, 61, 17–25. [Google Scholar] [CrossRef]
- Litt, T.; Brauer, A.; Goslar, T.; Merkt, J.; Bałaga, K.; Müller, H.; Ralska-Jasiewiczowa, M.; Stebich, M.; Negendank, J.F.W. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quat. Sci. Rev. 2001, 20, 1233–1249. [Google Scholar] [CrossRef]
- Müller, D.; Tjallingii, R.; Płóciennik, M.; Luoto, T.P.; Kotrys, B.; Plessen, B.; Ramisch, A.; Schwab, M.J.; Błaszkiewicz, M.; Słowiński, M.; et al. New insights into lake responses to rapid climate change: The Younger Dryas in Lake Gościąż, central Poland. Boreas 2021, 50, 535–555. [Google Scholar] [CrossRef]
- Kramkowski, M.; Filbrand-Czaja, A.; Zawisza, E.; Rzodkiewicz, M.; Kotrys, B.; Mirosław-Grabowska, J.; Błaszkiewicz, M.; Szewczyk, K.; Słowiński, M. Preboreal oscillation in the light of multiproxy analyses—Early Holocene in Lake Jelonek (North Poland). Holocene 2023, 33, 095968362311699. [Google Scholar] [CrossRef]
- Fiłoc, M.; Kupryjanowicz, M.; Rzodkiewicz, M.; Suchora, M. Response of terrestrial and lake environments in NE Poland to Preboreal cold oscillations (PBO). Quat. Int. 2016, 475, 101–117. [Google Scholar] [CrossRef]
- Amon, L.; Veski, S.; Heinsalu, A.; Saarse, L. Timing of Lateglacial vegetation dynamics and respective palaeoenvironmental conditions in southern Estonia: Evidence from the sediment record of Lake Nakri. J. Quat. Sci. 2012, 27, 169–180. [Google Scholar] [CrossRef]
- Puusepp, L.; Kangur, M. Linking diatom community dynamics to terrestrial vegetation changes: A paleolimnological case study of Lake Ķūži, vidzeme Heights (Central Latvia). Estonian J. Ecol. 2010, 59, 259–280. [Google Scholar] [CrossRef]
- Khotinski, N.A.; Aleshinskaya, Z.V.; Guman, M.A.; Klimanov, V.A.; Cherkinski, A.E. A new scheme for periodization of landscape and climate changes in the Holocene. Izv. Akad. Nauk. Ser. Geogr. 1991, 3, 30–42. (In Russian) [Google Scholar]
- Zernitskaya, V.P. The evolution of lakes in the Poles’ye in the Late Glacial and Holocene. Quat. Int. 1997, 41/42, 153–160. [Google Scholar] [CrossRef]
- Kremenetski, K.V.; Borisova, O.K.; Zelikson, E.M. The Late Glacial and Holocene history of vegetation in the Moscow region. Paleontol. J. 2000, 34 (Suppl. S1), S67–S74. [Google Scholar]
- Gunova, V.S.; Tarasov, P.E.; Uspenskaya, O.N.; Pushenko, M.Y.; MacDonald, G.M. Holocene evolution of the Trostenskoe Lake and adjacent area. Vestn. Mosk. Univ. Ser. Geogr. 2001, 1, 61–67. (In Russian) [Google Scholar]
- Novenko, E.Y.; Volkova, E.M.; Nosova, N.B.; Zuganova, I.S. Late Glacial and Holocene landscape dynamics in the southern taiga zone of East European Plain according to pollen and macrofossil records from the central forest state reserve (Valdai Hills, Russia). Quat. Int. 2009, 207, 93–103. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Tsyganov, A.N.; Volkova, E.M.; Babeshko Novenko, E.Y.; Tsyganov, A.N.; Volkova, E.M.; Babeshko, K.V.; Lavrentiev, N.V.; Payne, R.J.; Mazei, Y.A. The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region. Quat. Res. 2015, 83, 459–468. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Eremeeva, A.P.; Chepumaya, A.A. Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Veg. Hist. Archaeobot. 2014, 23, 109–119. [Google Scholar] [CrossRef]
- Zernitskaya, V.P.; Novenko, E.Y.; Stančikaitė, M.; Vlasov, B.P. Environmental changes in the Late Glacial and Holocene in the south-east of Belarus. Dokl. Natl. Acad. Sci. Belarus 2019, 63, 584–596. [Google Scholar] [CrossRef]
- Tarasov, P.E.; Savelieva, L.A.; Long, T.; Leipe, C. Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quat. Int. 2019, 516, 21–41. [Google Scholar] [CrossRef]
- Khotinsky, N.A. The Holocene of the Northern Eurasia (Golotsen Severnoy Evrazii); Nauka: Moscow, Russia, 1977; p. 200. (In Russian) [Google Scholar]
- Fisher, T.G.; Smith, D.G.; Andrews, J.T. Preboreal oscillation caused by a glacial Lake Agassiz flood. Quat. Sci. Rev. 2002, 21, 873–878. [Google Scholar] [CrossRef]
- Clark, P.U.; Pisias, N.G.; Stocker, T.F.; Weaver, A.J. Role of the thermohaline circulation in abrupt climate change. Nature 2002, 415, 863–869. [Google Scholar] [CrossRef]
- Clarke, G.K.C.; Leverington, D.W.; Teller, J.T.; Dyke, A.S. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat. Sci. Rev. 2004, 23, 389–407. [Google Scholar] [CrossRef]
- Tsvetkova, N.M. (Ed.) Reference Book on the Climate of the USSR. Issue 28. Tambov, Bryansk, Orel, Kursk and Belgorod Regions; Gidrometeoizdat (Publ.): Leningrad, Russia, 1965; p. 234. (In Russian) [Google Scholar]
- Gribova, S.A.; Isachenko, T.I.; Lavrenko, E.M. (Eds.) Vegetation of the European Part of the USSR (Rastitel’nost’ Yevropeyskoy Chasti SSSR); Nauka: Leningrad, Russia, 1980; p. 429. (In Russian) [Google Scholar]
- Sidorchuk, A.Y.; Panin, A.V.; Borisova, O.K. Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology 2009, 113, 137–157. [Google Scholar] [CrossRef]
- Borisova, O.K.; Naryshkina, N.N.; Panin, A.V. Short-term climatic oscillations in middle Russia at the beginning of the Holocene. In Dynamics of Ecosystems in the Holocene (Dinamika Ekosistem v Golotsene); Herzen State Pedagogical University: St. Petersburg, Russia, 2022; pp. 211–215. (In Russian) [Google Scholar]
- Borisova, O.K.; Naryshkina, N.N.; Konstantinov, E.A.; Panin, A.V. Landscape and climate changes in the Preboreal in the northwestern European Russia. Geomorfologiya 2022, 53, 19–28. [Google Scholar]
- Konstantinov, E.A.; Panin, A.V.; Karpukhina, N.V.; Bricheva, S.S.; Borisova, O.K.; Naryshkina, N.N.; Gurinov, A.L.; Zakharov, A.L. The riverine past of Lake Seliger. Water Resour. 2021, 48, 635–645. [Google Scholar] [CrossRef]
- Wohlfarth, B.; Lacourse, T.; Bennike, O.; Subetto, D.; Tarasov, P.; Demidov, I.; Filimonova, L.; Sapelko, T. Climatic and environmental changes in north-western Russia between 15,000 and 8000 cal yr BP: A review. Quat. Sci. Rev. 2007, 26, 1871–1883. [Google Scholar] [CrossRef]
- Tarasov, P.E.; Savelieva, L.A.; Kobe, F.; Korotkevich, B.S.; Long, T.; Kostromina, N.A.; Leipe, C. Lateglacial and Holocene changes in vegetation and human subsistence around Lake Zhizhitskoye, East European midlatitudes, derived from radiocarbon-dated pollen and archaeological records. Quat. Int. 2022, 623, 184–197. [Google Scholar] [CrossRef]
- Bogdel, I.I.; Vlasov, B.P.; Ilves, E.O.; Klimanov, V.A. The Sudoble section is a stratotype of the reconstruction of paleogeographical conditions of the Holocene of Central Belarus. In History of Lakes in the USSR; Rotaprint AN ESSR: Tallinn, Estonia, 1983; Volume 1, pp. 30–32. (In Russian) [Google Scholar]
- Novik, A.; Punning, J.-M.; Zernitskaya, V. The development of Belarusian lakes during the Late Glacial and Holocene. Estonian J. Earth Sci. 2010, 59, 63–79. [Google Scholar] [CrossRef]
- Stančikaitė, M.; Zernitskaya, V.; Kluczynska, G.; Valūnas, D.; Gedminienė, L.; Uogintas, D.; Skuratovič, Ž.; Vlasov, B.; Gastevičienė, N.; Ežerinskis, Ž.; et al. The Lateglacial and Early Holocene vegetation dynamics: New multi-proxy data from the central Belarus. Quat. Int. 2022, 630, 121–136. [Google Scholar] [CrossRef]
- Zernitskaya, V.; Stančikaitė, M.; Vlasov, B.; Šeirienė, V.; Kisielienė, D.; Gryguc, G.; Skipitytė, R. Vegetation pattern and sedimentation changes in the context of the Lateglacial climatic events: Case study of Staroje Lake (Eastern Belarus). Quat. Int. 2015, 386, 70–82. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Grichuk, V.P. Technique of processing sedimentary rocks, poor in organic residues, for pollen analysis purposes. Probl. Fiz. Geogr. 1940, 8, 53–57. (In Russian) [Google Scholar]
- Mazei, N.G.; Novenko, E.Y. The use of propionic anhydride in the sample preparation for pollen analysis. Nat. Conserv. Res. 2021, 6, 110–112. (In Russian) [Google Scholar] [CrossRef]
- Kupriyanova, L.A.; Aleshina, L.A. Pollen and Spores of Plants from the Flora of the European Part of the USSR; Nauka: Leningrad, Russia, 1972; Volume 1, p. 171. (In Russian) [Google Scholar]
- Kupriyanova, L.A.; Aleshina, L.A. Pollen of Dicotyledonous Plants of the Flora of the European Part of the USSR; Nauka: Leningrad, Russia, 1978; p. 184. (In Russian) [Google Scholar]
- Bobrov, A.E.; Kupriyanova, L.A.; Litvintseva, M.V.; Tarasevich, V.F. Spores of Ferns and Pollen of Gymnosperms and Monocotyledons of the Flora of the European Part of the USSR; Nauka: Leningrad, Russia, 1983; p. 208. (In Russian) [Google Scholar]
- Grimm, E.C. TILIA and TILIA*GRAPH.PC spreadsheet and graphics software for pollen data. INQUA Work. Group Data-Handl. Methods. Newsl. 1990, 4, 5–7. [Google Scholar]
- Grimm, E.C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Sweeney, C.A. A key for the identification of stomata of the native conifers of Scandinavia. Rev. Palaeobot. Palynol. 2004, 128, 281–290. [Google Scholar] [CrossRef]
- Mauquoy, D.; Van Geel, B. Plant macrofossil methods and studies. Mire and Peat Macros. In Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 2315–2336. [Google Scholar] [CrossRef]
- Seppä, H.; Hicks, S. Integration of modern and past pollen accumulation rate (PAR) records across the arctic treeline: A method for more precise vegetation reconstructions. Quat. Sci. Rev. 2006, 25, 1501–1516. [Google Scholar] [CrossRef]
- Neishtadt, M.I. Forests History and Paleogeography of the USSR in the Holocene; Izdatel’stvo AN SSSR: Moscow, Russia, 1957; p. 404. (In Russian) [Google Scholar]
- Grichuk, V.P. Vegetation of Europe in Late Pleistocene. In Paleogeography of Europe during the Last One Hundred Thousand Years; Nauka: Moscow, Russia, 1982; pp. 92–109. (In Russian) [Google Scholar]
- van Geel, B.; Bohncke, S.J.P.; Dee, H. A palaeoecological study of an upper Late Glacial and Holocene sequence from “De Borchert”, The Netherlands. Rev. Palaeobot. Palynol. 1981, 31, 367–448. [Google Scholar] [CrossRef]
- Kołaczek, P.; Kupryjanowicz, M.; Karpinska-Kołaczek, M.; Winter, H.; Szal, M.; Danel, W.; Pochocka-Szwarc, K.; Stachowicz-Rybka, R. The Late Glacial and Holocene development of vegetation in the area of fossil lake in the Skaliska Basin (north-eastern Poland) inferred from pollen analysis and radiocarbon datings. Acta Palaeobot. 2013, 53, 23–52. [Google Scholar] [CrossRef]
- Davis, B.A.S.; Brewer, S.; Stevenson, A.C.; Guiot, J. The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev. 2003, 22, 1701–1716. [Google Scholar] [CrossRef]
- Borzenkova, I.I.; Borisova, O.K.; Zhiltsova, E.L.; Sapelko, T.V. Cold period in the Northern Europe in the past (about 8200 years ago): Analysis of empirical data and possible causes. J. Ice Snow 2017, 57, 117–132. [Google Scholar] [CrossRef]
Lab. No | Depth (cm) | Material | 14C BP (±1σ) | Calibrated Age (cal a BP) | ||
---|---|---|---|---|---|---|
IGRAN | UGAMS | from (+1σ) | to (−1σ) | |||
5984 | 25 | Bulk sample | 580 ± 20 | 625 | 545 | |
5985 | 75 | Bulk sample | 1450 ± 25 | 1350 | 1305 | |
5986 | 130 | Bulk sample | 5490 ± 30 | 6310 | 6220 | |
5670 | 30223 | 175 | Bulk sample | 8945 ± 30 | 10,195 | 9960 |
5669 | 30222 | 230 | Bulk sample | 9670 ± 30 | 11,185 | 10,895 |
5408 | 29028 | 275 | Bulk sample | 9730 ± 30 | 11,215 | 11,160 |
5409 | 29029 | 308 | Peat | 9970 ± 30 | 11,600 | 11,270 |
Site Number | Site Name | Latitude, N | Longtitude, E | Altitude (m a.s.l.) | Data Sources | Number of 14C Dates |
---|---|---|---|---|---|---|
1 | Protva River, core PR-10 | 55°12′09″ | 36°29′33″ | 137 | [38,39] + non-published pollen data | 8 |
2 | Lake Dolgoye | 56°04′02″ | 37°20′00″ | 201 | [25,40] | 8 |
3 | Lake Seliger, core SP-2 | 57°02′21″ | 33°18′13″ | 205 | [40,41] | 7 |
4 | Lake Terebenskoye | 58°08′ | 32°59′ | 153 | [42] | 6 |
5 | Zmeinoe Mire | 56°16′53″ | 31°15′36″ | 165 | [43] | 22 |
6 | Lake Sudoble | 54°03′ | 28°24′ | 165 | [44,45] | 8 |
7 | Lake Velikoye | 54°09′37″ | 28°08′56″ | 164 | [46] | 4 |
8 | Lake Staroje | 52°51′ | 30°58′ | 130.5 | [47] | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisova, O.; Naryshkina, N.; Panin, A. Short-Term Climatic Oscillations in the Central Region of the East-European Plain at the Beginning of the Holocene Based on Palynological Studies of Lacustrine Deposits. Quaternary 2024, 7, 22. https://doi.org/10.3390/quat7020022
Borisova O, Naryshkina N, Panin A. Short-Term Climatic Oscillations in the Central Region of the East-European Plain at the Beginning of the Holocene Based on Palynological Studies of Lacustrine Deposits. Quaternary. 2024; 7(2):22. https://doi.org/10.3390/quat7020022
Chicago/Turabian StyleBorisova, Olga, Natalia Naryshkina, and Andrey Panin. 2024. "Short-Term Climatic Oscillations in the Central Region of the East-European Plain at the Beginning of the Holocene Based on Palynological Studies of Lacustrine Deposits" Quaternary 7, no. 2: 22. https://doi.org/10.3390/quat7020022
APA StyleBorisova, O., Naryshkina, N., & Panin, A. (2024). Short-Term Climatic Oscillations in the Central Region of the East-European Plain at the Beginning of the Holocene Based on Palynological Studies of Lacustrine Deposits. Quaternary, 7(2), 22. https://doi.org/10.3390/quat7020022