Seasonal Evolution of Stable Thermal Stratification in Central Area of Lake Ladoga
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Lake Ladoga Thermal Database
2.3. Brief Thermal Structure of Central Part of Lake Ladoga
2.4. Determining of Stratification Parameters
3. Results and Discussion
3.1. Climatic Seasonal Course of Stratification Parameters
3.2. The Rate of Change in Water Temperature and the Depth of the Thermocline Boundaries
3.3. Temporal Course of Maximum Vertical Temperature (Density) Gradients and Thickness of Various Layers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Donk, E.V.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 1773–10781. [Google Scholar] [CrossRef]
- Boyarinov, P.M.; Petrov, M.P. Processy Formirovaniya Termicheskogo Rezhima Glubokih Presnovodnyh Vodoyomov (Processes of the Formation of Thermal Regime of Deep Freshwater Reservoirs); Nauka: Leningrad, Russia, 1991; 178p. (In Russian) [Google Scholar]
- Tikhomirov, A.I. Termika Krupnyh Ozyor (The Thermal Regime of Large Lakes); Nauka: Leningrad, Russia, 1982; 232p. (In Russian) [Google Scholar]
- Hutchinson, G.E. A Treatise on Limnology. V.1. Geography and Physics of Lakes; Wiley-Interscience: New York, NY, USA, 1957; 1015p. [Google Scholar]
- Carpenter, S.R.; Fisher, S.G.; Grimm, N.B.; Kitchell, J.F. Global change and fresh-water ecosystems. Annu. Rev. Ecol. Syst. 1992, 23, 119–139. [Google Scholar] [CrossRef]
- King, J.; Shuter, B.; Zimmerman, A. The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Can. J. Fish. Aquat. Sci. 1997, 54, 1873–1882. [Google Scholar] [CrossRef]
- Sundaram, T.R.; Rehm, R.G. The seasonal thermal structure of deep temperate lakes. Tellus 1973, 25, 157–167. [Google Scholar] [CrossRef]
- McCormik, M.J.; Scavia, D. Calculation of Vertical Profiles of Lake-Averaged Temperature and Diffusivity in Lakes Ontario and Washington. Water Resour. Res. 1981, 17, 305–310. [Google Scholar] [CrossRef]
- Fang, X.; Stefan, H.G. Long-term lake water temperature and ice cover simulations/measurements. Cold Reg. Sci. Technol. 1996, 24, 289–304. [Google Scholar] [CrossRef]
- Kirillin, G.; Hochschild, J.; Mironov, D.; Terzhevik, A.; Golosov, S.; Nützmann, G. FLake-Global: Online lake model with worldwide coverage. Environ. Model. Softw. 2011, 26, 683–684. [Google Scholar] [CrossRef]
- Golosov, S.; Mironov, D. Temperature model for Lake Ladoga (TEMIX)–Institute of Limnology. Hydrological monitoring and modelling of Lake Ladoga with recommendation for the further research. Kerelian Inst. Univ. Joensuu 2000, 2, 52–54. [Google Scholar]
- Filatov, N.N. (Ed.) Diagnosis and Forecast of Thermohydrodynamics and Ecosystems of the Great Lakes of Russia; KarRC RAS: Petrozavodsk, Russia, 2020; 255p. (In Russian) [Google Scholar]
- Stepanenko, V.; Mammarella, I.; Ojala, A.; Miettinen, H.; Lykosov, V.; Vesala, T. LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geosci. Model Dev. 2016, 9, 1977–2006. [Google Scholar] [CrossRef]
- Jorgensen, S.E. A review of recent developments in lake modeling. Ecol. Modell. 1994, 221, 689–692. [Google Scholar] [CrossRef]
- Rumyantsev, V.A. (Ed.) Ladozhskoe Ozero I Dostoprimechatel’nosti Ego Poberezh’ya (Lake Ladoga and Sights of Its Coast): Atlas; Nestor-History: St. Petersburg, Russia, 2015; 200p. (In Russian) [Google Scholar]
- Naumenko, M.A.; Guzivaty, V.V. Methodological Approaches and Results of an Analysis of the Climatic Seasonal Course of Stable Stratification Parameters of a Dimictic Lake (Case Study of the Central Part of Lake Ladoga). Izv. Atmos. Ocean. Phys. 2022, 58, 44–53. [Google Scholar] [CrossRef]
- Guzivaty, V.V.; Karetnikov, S.G.; Naumenko, M.A. Opyt sozdaniya i ispol’zovaniya banka termicheskih dannyh Ladozhskogo ozera (Experience of the creation and use of the thermal databank for Lake Ladoga). Geogr. Prir. Resur. 1998, 3, 89–96. (In Russian) [Google Scholar]
- Tilzer, M.M.; Serruya, C. (Eds.) Large Lakes. Ecological Structure and Function; Springer: Berlin/Heidelberg, Germany, 1990; 692p. [Google Scholar]
- Naumenko, M.A. Peculiarities of the climatic correlation of the temperature of the water surface and the driving air layer during the spring warming of Lake Ladoga. Fundam. Prikl. Gidrofiz. 2021, 14, 78–88. [Google Scholar]
- Naumenko, M.A.; Karetnikov, S.G.; Guzivaty, V.V. Thermal regime of Lake Ladoga as a typical dimictic lake. Limnol. Rev. 2007, 7, 63–70. [Google Scholar]
- Schokalsky, J. Lake Ladoga from a thermic point of view. Weather Rev. 1901, 29, 63–64. [Google Scholar] [CrossRef]
- Molchanov, I.V. Ladozhskoe Ozero (Lake Ladoga); Gidrometeoizdat: Moscow, Russia; Leningrad, Russia, 1945; 557p. (In Russian) [Google Scholar]
- James, R. Ocean Thermal Structure Forecasting; U.S. Naval Oceanographic Office: Washington, DC, USA, 1966; 217p. [Google Scholar]
- Skowron, R. Letnia Stratyfikacja Termiczna Wody w Jeziorach na Niżu Polskim (The Summer Thermal Stratification of Water in the Lakes in the Polish Lowlands); Wydawnictwo Naukowe Uniwersytetu Mikolaja Kopernika: Toruń, Poland, 2022; 336p, ISBN 978-83-231-5058-9. [Google Scholar]
- Read, J.; Hamilton, D.; Jones, I.; Muraoka, K.; Winslow, L.; Kroiss, R.; Wu, C.; Gaiser, E. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 2011, 26, 1325–1336. [Google Scholar] [CrossRef]
- Wilson, H.L.; Ayala, A.I.; Jones, I.D.; Rolston, A.; Pierson, D.; de Eyto, E.; Grossart, H.-P.; Perga, M.-E.; Woolway, R.I.; Jennings, E. Variability in epilimnion depth estimations in lakes. Hydrol. Earth Syst. Sci. 2020, 24, 5559–5577. [Google Scholar] [CrossRef]
- Chen, C.; Millero, F. Precise thermodynamic properties for natural waters covering only the limnological range. Limnol. Oceanogr. 1986, 31, 657–662. [Google Scholar] [CrossRef]
- Toffolon, M.; Yousefi, A.; Piccolroaz, S. Estimation of the thermally reactive layer in lakes based on surface water temperature. Water Resour. Res. 2022, 58, e2021WR031755. [Google Scholar] [CrossRef]
- Stepanov, M.E. Nekotorye voprosy, svyazannye s interpolyacionnym mnogochlenom Ermita (Some issues related to the Hermite interpolation polynomial). Model. Anal. Dannykh 2014, 1, 139–161. [Google Scholar]
- Toffolon, M.; Piccolroaz, S.; Majone, B.; Soja, A.-M.; Peeters, F.; Schmid, M.; Wüest, A. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol. Oceanogr. 2014, 59, 2185–2202. [Google Scholar] [CrossRef]
- Naumenko, M.A.; Guzivaty, V.V. Climatic relationships between air temperature and water temperatures in different limnic areas of lake Ladoga. Geogr. Prir. Resur. 2022, 1, 83–92. (In Russian) [Google Scholar] [CrossRef]
- Lesht, B.M.; Brandner, D.J. Functional representation of Great Lakes surface temperatures. J. Great Lakes Res. 1992, 18, 98–107. [Google Scholar] [CrossRef]
- Naumenko, M.A.; Karetnikov, S.G. Seasonal evolution of the spatial distribution of water surface temperature in Lake Ladoga related to its morphometry. Dokl. Earth Sci. 2002, 386, 818–820. [Google Scholar]
- Palshin, N.I.; Efremova, T.V. Stohasticheskaya model’ godovogo hoda temperatury poverhnosti vody v ozerah (Stochastic model of annual variations of water surface temperature in lakes). Meteorol. Hydrol. 2005, 3, 85–94. (In Russian) [Google Scholar]
- Anderson, E.J.; Stow, C.A.; Gronewold, A.D.; Mason, L.A.; McCormick, M.J.; Qian, S.S.; Ruberg, S.A.; Beadle, K.; Constant, S.A.; Hawley, N. Seasonal overturn and stratification changes drive deepwater warming in one of Earth’s largest lakes. Nat. Commun. 2021, 12, 1688. [Google Scholar] [CrossRef]
- Rodgers, G.K. A note on thermocline development and the thermal bar in Lake Ontario. In Symposium of Garda, Hydrology of Lakes and Reservoirs; Proceedings of the International Association of Scientific Hydrology; IAHS Press: Wallingford, UK, 1965; Volume 70, pp. 401–405. [Google Scholar]
- Fichot, C.; Matsumoto, K.; Holt, B.; Gierach, M.; Tokos, K. Assessing change in the overturning behavior of the Laurentian Great Lakes using remotely sensed lake surface water temperatures. Remote Sens. Environ. 2019, 235, 111427. [Google Scholar] [CrossRef]
- Beletsky, D.; Hawley, N.; Rao, Y.R.; Vanderploeg, H.A.; Beletsky, R.; Schwab, D.J.; Ruberg, S.A. Summer thermal structure and anticyclonic circulation of Lake Erie. Geophys. Res. Lett. 2012, 39, L06605. [Google Scholar] [CrossRef]
- Titze, D.J.; Austin, J.A. Winter thermal structure of Lake Superior. Limnol. Oceanogr. 2014, 59, 1336–1348. [Google Scholar] [CrossRef]
- Bouffard, D.; Zdorovennova, G.; Bogdanov, S.; Efremova, T.; Lavanchy, S.; Palshin, N.; Zdorovennov, R. Under-ice convection dynamics in a boreal lake. Inland Waters 2019, 9, 142–161. [Google Scholar] [CrossRef]
- Kelley, D.E. Convection in ice-covered lakes: Effects on algal suspension. J. Plankton Res. 1997, 19, 1859–1880. [Google Scholar] [CrossRef]
- Yang, B.; Wells, M.G.; Li, J.; Young, J. Mixing, stratification, and plankton under lake-ice during winter in a large lake: Implications for spring dissolved oxygen levels. Limnol. Oceanogr. 2020, 65, 2713–2729. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumenko, M.; Guzivaty, V. Seasonal Evolution of Stable Thermal Stratification in Central Area of Lake Ladoga. Limnol. Rev. 2023, 23, 177-189. https://doi.org/10.3390/limnolrev23030011
Naumenko M, Guzivaty V. Seasonal Evolution of Stable Thermal Stratification in Central Area of Lake Ladoga. Limnological Review. 2023; 23(3):177-189. https://doi.org/10.3390/limnolrev23030011
Chicago/Turabian StyleNaumenko, Mikhail, and Vadim Guzivaty. 2023. "Seasonal Evolution of Stable Thermal Stratification in Central Area of Lake Ladoga" Limnological Review 23, no. 3: 177-189. https://doi.org/10.3390/limnolrev23030011
APA StyleNaumenko, M., & Guzivaty, V. (2023). Seasonal Evolution of Stable Thermal Stratification in Central Area of Lake Ladoga. Limnological Review, 23(3), 177-189. https://doi.org/10.3390/limnolrev23030011