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Abstract: A new ensemble of climate and climate change simulations covering all major inhabited
regions with a spatial resolution of about 25 km, from the WCRP CORDEX COmmon Regional
Experiment (CORE) Framework, has been established in support of the growing demands for climate
services. The main objective of this study is to assess the quality of the simulated climate and its
fitness for climate change projections by REMO (REMO2015), a regional climate model of Climate
Service Center Germany (GERICS) and one of the RCMs used in the CORDEX-CORE Framework.
The CORDEX-CORE REMO2015 simulations were driven by the ECMWF ERA-Interim reanalysis
and the simulations were evaluated in terms of biases and skill scores over ten CORDEX Domains
against the Climatic Research Unit (CRU) TS version 4.02, from 1981 to 2010, according to the regions
defined by the Köppen–Trewartha (K–T) Climate Classification types. The REMO simulations have
a relatively low mean annual temperature bias (about ±0.5 K) with low spatial standard deviation
(about ±1.5 K) in the European, African, North and Central American, and Southeast Asian domains.
The relative mean annual precipitation biases of REMO are below ±50% in most domains; however,
spatial standard deviation varies from ±30% to ±200%. The REMO results simulated most climate
types relatively well with lowest biases and highest skill score found in the boreal, temperate, and
subtropical regions. In dry and polar regions, the REMO results simulated a relatively high annual
biases of precipitation and temperature and low skill. Biases were traced to: missing or misrepresented
processes, observational uncertainty, and uncertainties due to input boundary forcing.

Keywords: climate classification; CORDEX; REMO; CRU; model biases; observational uncertainty;
input boundary forcing; ERA-Interim reanalysis

1. Introduction

Over the last few decades, regional climate models are increasingly used as a tool for
understanding regional scale phenomena and assessing possible future climate change impacts.
The demand for an ensemble of climate simulations at regional levels has resulted in initiatives such
as the World Climate Research Program (WCRP) Initiative on COordinated Regional Downscaling
EXperiments or CORDEX [1]. With the growing demand for high-resolution information about
regional climate change and its impacts all over the world, the WCRP CORDEX is supporting
the CORDEX-COmmon Regional Experiment (CORE) Framework [2]. CORDEX-CORE aims to
contribute to the next Intergovernmental Panel on Climate Change (IPCC) report with a homogeneous
dataset of high-resolution regional climate information of at least 25 km spatial resolution for all
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major inhabited areas of the world. This framework has produced a baseline set of homogeneous
high-resolution dynamically downscaled reanalysis forced by the ECMWF ERA-Interim [3] and
projections forced by selected global climate models using the low- (rcp2.6) and high-end (rcp8.5)
representative concentration pathways (rcp) scenarios [4]. With this new framework, a new ensemble
of climate simulations from at least two participating regional climate centers have been created to
provide as a basis for assessments of climate change scenarios as well as possible future extreme events
for all major inhabited regions of the world. The simulations will be used to support the growing
demands for climate services to provide scientifically sound decisions on climate change adaptation.
The coordinated high-resolution simulations could also be used as a basis for further research on
climate vulnerability, impacts, and adaptation.

In this study, we applied the regional climate model REMO and analyzed the results of the present
climate driven by the ERA-Interim reanalysis. The REMO model was originally developed for Europe
and extended to several regions over the globe such as Africa [5,6], South America [7], South Asia [8],
and North America [9]. Currently, REMO is being used to study impacts of climate change over these
domains. For example, REMO simulations contributed to CORDEX studies highlighting the impacts
of climate change at +1.5 °C from its ensemble of climate change simulations from a resolution of 0.44°
(about 50 km) over selected regions of the globe e.g., Africa [10] and down to 0.11° (about 12.5 km)
over Europe [11].

Within CORDEX-CORE [12], new high resolution simulations of 0.22° (about 25 km) were set
up over most domains, except for Southeast Asia [13,14] and Europe [15], which were already at this
resolution or higher (at about 12.5 km over Europe). These new high resolution simulations will
provide additional climate simulations over regions especially with few ensemble members e.g., over
Central Asia [16] and Central America [17]. Figure 1 shows ten out of the fourteen CORDEX domains
that were used in this study.

Figure 1. The ten CORDEX-CORE model domains simulated by the model REMO: North America
(NAM), Central America (CAM), South America (SAM), Europe (EUR), Africa (AFR), South Asia
(formerly referred to as West Asia, WAS), Central Asia (CAS), East Asia (EAS), Southeast Asia (SEA),
and Australasia (AUS). The orography is shown in m. The domain boundaries are indicated with
black polygons.

The regions of the world can be subdivided into political boundaries or into different climate
types based on its long-term precipitation and temperature characteristics. Defining the regions of
analysis according to climate types, rather than political zones, provide regional information based
on physical processes. Using threshold values of temperature and precipitation, the global climate
was originally classified by Köppen [18]. A modification of these thresholds and using an updated
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observational datasets produced classification schemes such as the Köppen–Trewartha (K–T) Climate
Classification [19,20]. The similarities of the latter to the classical scheme were thoroughly discussed in
Belda et al. [21]. The K–T climate types have been widely used in previous studies [22–25] due to its
similarities with the native vegetation. In this study, the K–T climate types were used to define the
regions of analysis using an updated observational dataset.

Before estimating the climate change signal, an evaluation of the model performance for
each domain is needed in order to provide estimates of uncertainties from the model simulations.
The objective of this study is to investigate temperature and precipitation biases over the new high
resolved domains, as well as the skill of the model in representing the climatology of all regions
in order to identify possible sources of systematic errors of the model inherent to input boundary
forcing, observational uncertainty (e.g., [26]), or misrepresented processes (e.g., [27]). This work builds
on previous studies which evaluated the skill of representing the climate over individual domains
(e.g. Europe [28], Africa [29], South America [30]) using multi-models ensembles. The skill of the
model is quantified by using probability density functions (PDF) of the observed and simulated
temperature and precipitation aggregated at each climate type and each region following the PDF skill
score method [31]. This method provides a robust comparison of the similarity between the PDF of the
simulated and observed values.

The REMO model and experimental setup as well as the regions of analysis using the K–T climate
types are discussed in Section 2. Section 3 shows the climate statistics and results of the model
evaluation including the biases and skill of temperature and precipitation. Section 4 discusses the
sources of the systematic errors in the model relating this errors to the mean annual cycles followed by
conclusions in Section 5.

2. Data and Methods

2.1. REMO

The regional climate model REMO [23,32,33] is a three-dimensional, hydrostatic, atmospheric
circulation model within a limited area. REMO is based on the physical paramaterizations of
ECHAM 4.5 [34] and the dynamical core of the German Weather Service (DWD) Europa–Modell
(EM) weather prediction model [35]. The REMO model is used for various studies on coupling with
other earth system components such as with aerosols (REMO-HAM)[36], lakes (REMO-FLAKE) [37],
interactive mosaic-based vegetation (REMO-iMOVE) [38], and global ocean model (ROM) [39]. Most of
these model developments have been performed over the European domain.

In this study, the latest hydrostatic version of REMO (REMO2015) is used with 27 hybrid
sigma-pressure coordinate system, which follows the surface orography in the lower levels but
independent from it at higher atmospheric model levels. REMO2015 has a leap-frog time stepping with
semi-implicit correction and Asselin-filter. The prognostic variables are surface pressure, temperature,
horizontal wind components, water vapor, and cloud water content.

The mass flux convection scheme is parameterized after Tiedtke [40] with modifications after
Nordeng [41] and Pfeifer [42]. The stratiform cloud scheme calculates prognostic equations for the
vapor, liquid, and ice phase, and a cloud microphysical scheme by Lohmann and Roeckner [43].
The radiation scheme is after Morcrette et al. [44] with additional greenhouse gases, the 14.6 µm band
of ozone, and various types of aerosols [45]. The aerosols are based on the Tanre [46] climatology [36].
Turbulence vertical diffusion is based on Louis [47]. The land surface scheme is based on the surface
runoff scheme [48], inland glaciers [49], and vegetation phenology [50,51]. The soil hydrology is
represented by a bucket scheme, in which a bucket exists at each land point and the depth of the bucket
is equivalent to the mean rooting depth of the grid box [49].

In this study, the REMO model was used to simulate the ten domains shown in Figure 1.
The other model parameters such as number of grid boxes (x and y), minimum cloud height over land
(ZDLAND-L), or ocean (ZDLAND-O) for which rain can fall, and the Charnock constant (CHAR) for
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each domain are listed in Table 1. In this setup, the largest domains were Africa (AFR), East Asia (EAS),
and Australasia (AUS) while the smallest domains were Europe (EUR) and Southeast Asia (SEA).
Since ZDLAND is latitude-dependent, different values were set for domains covering the tropics and
the domains covering the mid-latitudes. CHAR is also a parameter that can vary in different regions
due to its dependency of the general characteristics of the sea conditions.

The REMO standard value for ZDLAND, which was originally developed over Europe,
is 750 m · g, where g is the acceleration due to gravity and assuming a cloud height of 750 m.
The tropical value usually reaches the height of 1500 m or 3000 m. In tropical domains (e.g., WAS,
CAM, CAS, EAS, and SEA), the minimum cloud height over land and ocean before precipitation occurs
is higher compared to the other domains. The Charnock constant (CHAR), which determines the
strength of the relationship between the low level winds (i.e., friction velocity) and the roughness-length
over sea within the Charnock formula [52], has the same values except on WAS based on sensitivity
studies on this domain [53]. The parameters for each model domain are listed in Table 1. Although
the EURO-CORDEX [15] community already have simulations with a very high spatial resolution of
12.5 km (EUR-11), in this study, we run EUR-22 simulation as a benchmark for the simulations.

Table 1. Model parameters used in the ten domains (Figure 1): Europe (EUR), Africa (AFR), South
Asia (WAS), North America (NAM), South America (SAM), Central America (CAM), Central Asia
(CAS), East Asia (EAS), Southeast Asia (SEA), and Australasia (AUS). The model parameters listed
below are number of grid boxes (x and y), minimum cloud height over land (ZDLAND-L) and over
ocean (ZDLAND-O), and Charnock constant (CHAR).

Parameters EUR AFR WAS NAM SAM CAM CAS EAS SEA AUS

x 241 401 401 321 301 433 325 433 288 433
y 217 433 271 271 361 241 217 271 217 271

ZDLAND-L 7500 20,000 25,000 7500 7500 25,000 25,000 25,000 25,000 7500
ZDLAND-O 7500 15,000 30,000 7500 7500 30,000 30,000 30,000 30,000 7500

CHAR 0.0123 0.0123 0.00123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123

The setup for each model domain in Table 1 were based on the best expert knowledge for the
respective regions. For example, due to sensitivity studies in South America and in the South Asia
domains, some surface parameters were modified. In South America, it was found that the warm
bias in forested regions were reduced due to reduction of surface evaporation when the wilting point
parameter was lowered in forested regions compared to non-forested regions [54]. In the South
Asia domain, the soil heat conductivity was reduced to represent the dry soils, which improved the
representation of climate especially over India [53].

The global reanalysis data of ERA-Interim [3], which has a horizontal resolution of about
0.7° × 0.7° was used as the initial and boundary conditions of REMO. ERA-Interim was interpolated
to all the ten model domains (Figure 1) from 1979 to 2017. The model was integrated with a time step
of 120 s. For the model to reach an equilibrium state, a spin-up period of thirty years was implemented.
In each domain, the model was initially spun-up for 30 years from 1979 to 2008 to account for the time
the model needed to produce an equilibrium for the soil temperature and soil moisture. These soil
fields were then used as the initial soil conditions upon restarting the model from the year 1979.

The forcing data were prescribed at the lateral boundaries of each domain, which mainly
influenced the eight outer grid boxes, with an exponential decrease towards the center of the model
domain using a relaxation scheme [55]. The lateral boundary conditions were updated every 6 h.
As mentioned in the CORDEX-CORE experimental guidelines [12], the downscaling was conducted to
a horizontal resolution of 0.22° × 0.22° (approx. 25 × 25 km2). The climate variables used in this study
were precipitation and the near surface temperature or temperature at 2 m height. In this study, we
refer to the near surface temperature as temperature throughout the manuscript.
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2.2. Köppen–Trewartha Climate Classification

The analysis regions considered in this study were defined using the Köppen–Trewartha (K–T)
Climate Classification [20]. The fourteen climate types (Table 2) were derived using the mean annual
temperature (Tann, in °C) and the mean annual precipitation (Pann, in cm) of a 30-year climatology
from an observational dataset. For climatology, we used the Climatic Research Unit (CRU) temperature
and precipitation version CRU TS 4.02 dataset [56]. This version utilized a revised interpolation
function improving discontinuities in regions with sparse observations for the period 1901–2017.
The spatial coverage included all land areas excluding Antarctica at 0.5° resolution. The climate period
considered in this study was from 1981 to 2010.

Table 2. Climate types defined by the Köppen–Trewartha Climate Classification [57]. The temperature
metrics (°C) were the mean annual temperature (Tann), mean monthly temperature (Tmon), coldest
(warmest) month Tcold (Twarm). The precipitation metrics were the mean annual precipitation (Pann,
in cm), number of dry months (Pdry) or wet months (Pwet). The threshold for a dry (wet) month
was the mean monthly precipitation < (≥) 6 cm. To distinguish the dry season, we used the Patton’s
precipitation threshold [21] and defined as R = 2.3 · Tann - 0.64 · Pwinter + 41, where Pwinter (%)
was the percentage of annual precipitation occurring in winter or the lowest sunshine duration in the
northern (southern) hemisphere during October to March (April to September).

Types Description

A: Tropical climates; Tcold > 18 °C; Pann ≥ R

Ar humid; 10 to 12 months wet; 0 to 2 months dry
Aw Winter (low-sun period) dry; > 2 months dry
As Summer (high-sun period) dry; rare climate type

B: Dry climates; Pann < R

BS semi-arid; R/2 < Pann < R
BW arid; Pann < R/2

C: Subtropical climates; Tcold < 18 °C

Cs summer-dry; at least 3× as much rain in winter as in summer;
Pdry < 3 cm; Pann < 89 cm

Cw summer-wet; winter dry;
at least 10x as much rain in summer as in winter

Cf humid; No dry season; difference between driest and wettest month
less than required for Cs and Cw; Pdry > 3 cm

D: Temperate climates; 4 to 7 months with Tmo > 10 °C

Do oceanic; Tcold > 0 °C
Dc continental; Tcold ≤ 0 °C

E: Sub-arctic or boreal climates;

1 to 3 months with Tmo > 10 °C
Eo oceanic; Tcold > −10 °C
Ec continental; Tcold ≤ −10 °C

F: Polar climates; Twarm < 10 °C

Ft Tundra/Highland; Twarm > 0 °C
Fi Ice cap; Twarm ≤ 0 °C

In order to make sure that each grid box have exclusive climate types, the order of obtaining
climate types is the following: the polar and boreal climates (Types F and E), followed by the dry
climate (Type B), the temperate climate (Type D), and then subtropical and tropical climates (Types C
and A). An additional check after the run-through of the classification is the regions with an absence of
precipitation (Pann = 0) based on the CRU dataset and with Tcold > 18 °C, which are then classified as
an arid climate (BW).
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2.3. Climate Statistics, Biases and Skill

The observed climate statistics were calculated such as the mean, as well as temporal and spatial
variability. The model biases and skill were mainly evaluated against the CRU observational dataset.
The simulations were interpolated to the CRU grid (0.5° resolution) using conservative and bilinear
remapping functions from the Climate Data Operators version 1.9.7 [58]. The absolute biases of the
simulated monthly precipitation and temperature were calculated compared to the observed monthly
values. For the relative bias, the mean absolute bias was normalized with the observed climatological
mean. The mean absolute and relative biases were then aggregated into regions with similar climate
types defined in Table 2. The simulated temperature values were height-corrected to account the
differences in the orography between REMO and CRU.

In order to gauge the observational uncertainty, additional global datasets were used in analyzing
the mean annual cycle of temperature and precipitation: the Global Precipitation Climatology
Centre (GPCC, monthly, 0.25°, [59]); the University of Delaware Temperature and Precipitation
(UDEL, monthly, 0.5°, [60,61]); and the Global Land Data Assimilation System (GLDASD, daily,
0.25°, [62]). The temperature derived from ERA-Interim was also included to compare the temperature
from the input boundary forcing. In the comparisons of mean annual cycles with observational
datasets, we additionally compared the simulations in the CORDEX Framework [23]: Europe at 50 km
(EUR-44) and 12.5 km (EUR-11); Africa at 50 km (AFR-44); North America at 50 km (NAM-44); South
America at 50 km (SAM-44); and South Asia at 50 km (WAS-44). Except for EUR-11, the CORDEX
simulations were done with a previous version of REMO, which is REMO2009. The main difference
of REMO2015 from the previous version (REMO2009) is the additional option for a non-hydrostatic
simulation, which was opted out in this study.

The skill score was based on the empirical probability functions [31] of precipitation and
temperature aggregated at each climate region. The dimensionless skill score had a value between
0 to 1, with the value of 1 indicating that the probability density functions of the observed and
modelled values are the same. In this study, instead of using the entire temperature and precipitation
distribution [23], we measured the model skill for each season:

Skillseasons =
n

∑
i=1

min(Zseasm,Zseaso), (1)

where n is the number of bins used to calculate the normalized PDF for a given region, and Zseasm and
Zseaso are the seasonal frequency of model values and observed values in a given bin, respectively.
The bin sizes used were 0.1 °C for temperature and 1 mm/day for precipitation.

3. Results

The results of this work are divided into four subsections. The observed and simulated
temperature and precipitation across the domains are presented during the period of study (Section 3.1).
In Section 3.2, the results for the updated K–T climate types derived from CRU TS4.02 observational
dataset are presented. This is followed by an evaluation of the regions with similar climate types,
in which the regions are considered to be significant if the area is more than 5% of the domain area.
The mean annual biases and model skill across the ten domains are presented in Sections 3.3 and 3.4.
The detailed discussions on the causes of these biases are elaborated in Section 4.

3.1. Temperature and Precipitation from Observations and Simulations

In order to investigate the new ensemble of high spatial resolution simulations of 25 km,
we compared the simulations with the CRU observational dataset. The observed climatology of
the mean annual temperature and precipitation over the globe except Antarctica are shown in Figure 2.
The temperature values vary from 24 to more than 30 °C and the precipitation values range from 6 to
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20 mm/day along the low latitudes. The cold (below 10 °C) and dry (less than 2 mm/day) regions are
also shown located at higher latitudes.

(a) Temperature [°C] (b) Precipitation [mm/day]
Figure 2. Mean annual temperature (a) and precipitation (b) based on the Climatic Research Unit
(CRU) TS 4.02 observational dataset during the period 1981 to 2010.

Figure 3a depicts the temperature biases compared to CRU for all the domains during the period of
1981 to 2010. The REMO simulations have a relatively low mean annual temperature bias (within the
range of ±0.5 K) in EUR, AFR, NAM, CAM, and SEA domains. Regional warm and cold biases,
within the range of −5 to 5 K, are found, similar to that of the previous CORDEX simulations by
REMO2009, driven by the same boundary forcing, but with a coarse resolution of 50 km [23] for the
EUR, NAM, AFR, SAM, and WAS domains.

There are noticeable warm biases in the coastal areas, especially Baja California in North America,
Namib Desert, and Angola in Africa, and the coasts of Chile in South America. For the overlapping
domains, the temperature biases were similar with varying magnitude, which will be presented later
in Section 3.2. For example, the model showed a cold bias over the northern part of Africa in both the
EUR and AFR domains, and it reproduced warm biases over Eastern Africa and the coasts of Yemen
and Oman in both the AFR and WAS domains. The warm bias over the Amazon in the CAM domain
is similarly depicted in the SAM domain.The cold bias over the island of New Guinea in the SEA
domain is also present in the AUS domain. A warm bias of about 2 K can be found over the Australia
continent.

In comparison to a previous CORDEX study with an older REMO model version ([23]), the cold
bias over central India is reduced in the present study. The cold bias over the Himalayan region,
however, still existed in this present study, and it is similarly depicted in both CAS and EAS domains,
as well as in the WAS domain. The complex orography over the Himalayan region and sparse
observational dataset attributed to this known modelling challenge.

Figure 3b depicts the precipitation biases compared to CRU for all the domains. The simulations
produced predominantly wet biases over the European and North American continents. The dry bias
in the eastern part of the African continent relate to a warm bias. A similar warm and dry bias is
simulated in the model for the northeastern region of South America. In mountainous regions, such as
the Himalayan mountain range and the Rocky Mountains, the model produced a wet and cold bias
compared to CRU.

An interesting feature is the dry bias over the northern part of South American continent,
which has a wet bias in the SAM domain. Both CAM and SAM domains have a wet bias over
the Andes mountains. In coastal countries, such as Honduras and Nicaragua, however, REMO has
a dry bias compared to CRU. The model has a general tendency of wet biases over the continental
domains of CAS, EAS, and AUS, however, dry biases are simulated over Indonesia especially in Borneo
Islands and the northwest part of the SEA domain. In the AUS domain, the underestimation of rainfall
in Western Australia and the coastal regions of Australia, as well as the overestimation over the rest of
Australia can be also found in other regional climate model simulations [63].
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(a) Absolute bias [K]

(b) Relative bias [%]
Figure 3. Mean annual temperature (a) and precipitation (b) bias compared to CRU over land points
only for all domains (Figure 1) during the period 1981 to 2010. The domain boundaries are indicated
with gray polygons. The gray areas indicate no data. Over regions of low observed precipitation, the
simulations could easily reach a relative bias of more than 100%.

Table 3 summarizes the observed temperature mean and temporal variability (temporal standard
deviation or STD) as well as the biases and the spatial variability (spatial STD) of each domain. In the
large domain such as CAS, EAS, and NAM, the observed variability (temporal STD) is rather high
(more than ±9 K) while the mean annual temperature over the domain is low. The domain-averaged
bias of REMO and the spatial STD will be used in the discussion of the biases in Section 4.
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Table 3. Temperature statistics (mean, standard deviation or STD, and biases) for each domain (Figure 1)
compared to the Climatic Research Unit (CRU) observational dataset from 1981 to 2010. The units of
the CRU mean temperature are in °C while the units of the REMO bias are in K.

Domains CRU Mean Temporal STD REMO Bias Spatial STD

EUR 11.32 ±7.79 −0.40 ±1.14
NAM 4.35 ±9.80 +0.34 ±1.24
AFR 23.14 ±4.20 +0.29 ±1.46
SAM 22.01 ±1.94 +0.63 ±1.24
WAS 19.21 ±5.46 +0.36 ±1.94
CAM 24.32 ±1.79 +0.48 ±1.13
CAS 6.96 ±10.72 +0.01 ±2.01
EAS 9.18 ±9.69 +0.51 ±2.01
SEA 23.15 ±2.80 +0.03 ±1.37
AUS 22.79 ±3.49 +0.90 ±1.17

Table 4 summarizes the observed climatological precipitation mean and temporal variability
(temporal STD) as well as the biases and the spatial variability (spatial STD) of each domain.
The temporal variability of each domain is lower than the mean but the spatial variability of the
model biases across the domains range from ±30% to almost ±200%.

Table 4. Precipitation statistics (mean, standard deviation or STD, and biases) for each domain (Figure 1)
compared to the Climatic Research Unit (CRU) observational dataset from 1981 to 2010. The units are
in mm/day except for the relative bias and relative spatial standard deviation (in %).

Domains CRU Mean Temporal STD REMO Bias Spatial STD Rel Bias Rel Spatial STD

EUR 1.50 ±0.88 +0.22 ±0.55 +26.11 ±137.42
NAM 1.85 ±1.15 +0.50 ±0.81 +40.29 ±56.21
AFR 1.62 ±1.46 +0.85 ±2.47 +15.92 ±192.80
SAM 4.28 ±2.81 −0.08 ±0.72 +40.40 ±110.76
WAS 1.91 ±1.73 +0.05 ±1.46 +7.43 ±99.86
CAM 4.74 ±3.15 −0.78 ±1.97 −7.35 ±63.07
CAS 1.25 ±1.01 +0.28 ±1.24 +23.62 ±98.09
EAS 2.04 ±1.79 +0.34 ±1.42 +24.93 ±101.00
SEA 5.32 ±3.69 −0.36 ±2.47 −0.30 ±39.10
AUS 3.39 ±2.12 +0.64 ±2.23 +22.44 ±31.35

3.2. Derived Climate Regions

The fourteen climate types derived using the definitions in Table 2 and the observed climate
(Figure 2) are drawn in Figure 4, which includes the climate regions dependent on rainfall and
temperature (A, B, C) and regions influenced by temperature or the thermal zones (D, E, F). The climate
types based on the K–T climate classification are listed in Table 5 and the dominant climate types in
the regions of the world (excluding Antarctica) relative to the total land area are: arid/desert regions
(BW, 18%), sub-arctic continental (Ec, 13%), tropical winter dry (Aw, 13%), semi-arid regions (Bs, 12%),
and temperate continental (Dc, 11%). The As or tropical summer dry climate zone is a rare climate
type, which accounts for only about 0.1% of the total land area. The climate types that covers less
than 5% of the total area in each model domain are removed in this study, which also include the rare
climate types (As, Fi, Cw, and Eo). For climate change studies, the rare climate types should also be
included. Note that the subtropical humid climate type (Cf) is present across the ten domains.
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Figure 4. Derived global climate regions based on the Köppen–Trewartha climate classification
(except Antarctica) based on CRU TS 4.02 dataset for the period 1981 to 2010.

Table 5 measures the area coverage of each climate type (in % related to the domain size). The grid
area calculated is equivalent to the continental area including lakes and rivers. Of the 110 climate type
regions, only 50 have an area more than 5% of its respective domain.

If we consider the land area of each 14 climate types per domain, the largest land areas are in the
domains of Africa (AFR), Central Asia (CAS), South Asia (WAS), and East Asia (EAS). The domains
with the smallest land area are Southeast Asia (SEA), Australasia (AUS), Central America (CAM),
and Europe (EUR).

Table 5. The area (%) of each climate type (Table 2) relative to its respective model domain (Figure 1).
The total land area for the “WORLD” (excluding Antarctica), and for each domain are depicted at the
bottom row.

Types “WORLD” EUR AFR WAS NAM SAM CAM CAS EAS SEA AUS

Ar 8.7 - 4.34 4.94 1.00 28.37 36.03 - 2.89 44.50 27.09
As 0.1 - 0.05 0.02 - 0.27 0.33 - 0.02 - -
Aw 13.1 - 19.29 15.64 2.53 33.88 36.69 0.20 9.72 29.42 8.72
BS 12.7 4.74 16.96 15.42 10.31 10.21 10.45 13.71 14.82 1.31 21.65
BW 18.1 18.92 43.32 33.75 3.66 4.84 4.81 19.22 12.78 - 28.62
Cf 8.2 6.58 5.69 9.31 8.31 13.85 10.76 6.21 12.61 22.58 9.74
Cs 1.4 6.12 4.08 2.14 0.89 0.64 0.12 0.91 0.01 - 1.07
Cw 0.5 - 1.24 1.12 - 0.04 - 0.49 0.74 0.51 -
Dc 11.4 31.97 2.64 5.89 25.21 0.01 - 24.47 16.53 0.18 0.05
Do 3.5 15.44 2.29 3.10 4.65 2.59 0.04 3.01 2.46 1.36 2.73
Ec 13.4 10.83 0.07 1.81 25.15 - - 24.98 19.18 - -
Eo 1.6 4.09 - 0.86 3.67 1.81 0.08 0.97 1.26 0.06 0.30
Fi 1.0 - - - 0.77 - - - - - -
Ft 6.2 1.30 0.02 6.00 13.85 3.47 0.70 5.84 6.98 0.09 0.02

Total land area
(× 106 km2) 146 16 40 32 23 19 15 35 30 9 13

A few of the climate masks are shown in Figure 5. Note that the threshold used in determining
the climate types is only dependent on the climatological mean of temperature and precipitation.
The regions of analysis are aggregated into similar climate types where the dominant climate types
such as arid (BW) or continental boreal (Ec) climate are clustered together. In some climate types e.g., BS
(semi-arid dry climate), the regions are scattered since they transition from dry climates to subtropical
climates. Within this transitional climate types, further analysis is recommended to consider physical
processes such as the atmospheric flows. Regions influenced by the same atmospheric flow, as well as
overlapping regions (e.g., BW in both WAS and CAS domains in Figures 5c,d, respectively), should be
analyzed further.
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(a) (b)

(c) (d)
Figure 5. Examples of climate type regions. The orange area indicates the location of each climate type
in its respective domains. (a) Winter dry tropical climate (Aw) in Central America (CAM); (b) Semi-arid
dry climate (BS) in Africa (AFR); (c) Arid climate (BW) in South Asia (WAS); (d) BW in Central Asia
(CAS).

3.3. Mean Annual Biases Using the K–T Climate Types

Based on the results from the previous section, the temperature and precipitation biases of the
model were aggregated according to regions with similar climate types (Figure 4) for each domain.
Figure 6 shows the mean annual bias aggregated at each climate regions in each of the ten domains.
The annual bias for temperature (Figure 6a) ranges from −2.2 to 1.7 K. The bias over EUR is relatively
low from −1.1 to 0.5 K. The coldest bias of about −2 K occurred in the tundra (FT) climate regions
in the WAS, EAS, and CAS domains and within the observed temporal STD and spatial STD of the
bias (Table 3). Similarly, the case of the warmest bias (about 1.7 K) is located in the semi-dry arid (BW)
climate regions in the EAS and AUS domains. In this BW climate regions, except for EUR (cold bias,
approx. −1.1 K) and AFR (low cold bias, approx. −0.2 K), the model produces a warm bias to the rest
of the domains (WAS, CAS, EAS, and AUS). For arid regions (BS), all domains with this climate type
have biases ranging from 0.34 K (CAM) to 1 K (WAS, AUS). In domains with similar climate types (e.g.,
Cf—subtropical humid climate), the model produces a warm bias in both the CAS and SEA domains,
which will be a possible study on the overlapping regions.

Generally, the model tends to have warm biases especially in the tropical and subtropical climate
regions (climate types A, B, C), except for the BW region in EUR (where most of the grid boxes are
located in AFR) and the Ar region in SEA and AUS. In high latitudes or polar climates, the model
tends to have cold biases especially in the WAS, CAS and EAS domains. For the boreal subcontinental
(Ec) climate type, the model exhibits opposite biases in the CAS and EAS domains. Note that the Ec in
CAS has a larger area compared to EAS (Table 5).

Figure 6b shows the relative mean annual precipitation bias aggregated at each climate region in
each of the ten domains. The annual bias for precipitation ranges from about −25% to more than 170%.
The annual precipitation bias over EUR ranges from −15% to 55%. The driest bias is located in the
semi-arid (BW) climate regions in the WAS, EAS, and CAS domains. The wettest biases occurred in
the Ft climate in the WAS, EAS, and CAS domains. A very cold bias was also depicted in Figure 6a
over the Himalayas. In similar climate types (e.g., Aw—tropical winter-dry climate), the SAM and
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CAM domains have opposing biases (wet bias in SAM while dry bias in CAM). Note that, in these two
domains, the ZDLAND parameters differ considerably (Table 1), which might be part of the possible
reasons for the differences.

(a) Temperature (b) Precipitation
Figure 6. Heat maps of annual mean temperature [K] and precipitation biases [%] averaged over
the area of the K–T climate types located in the ten domains (Figure 1) for the period 1981 to 2010.
The x-axis are the ten domains and the y-axis are the K–T climate types defined in Table 2.

3.4. PDF Skill Score

In evaluating the skill of the model, we compared the temporal distribution of the aggregated
simulated climate variables to CRU in each climate type for each domain. The normalized PDFs of
the model are compared to the observed PDFs for each seasons. For example, a high skill score of
the model is shown in Figure 7. In the subtropical humid (Cf) climate type over AUS (Figure 7a), the
model has a relatively high skill score of 0.97 indicating that the normalized PDFs of the simulated
temperature is almost similar to the observed (Figure 7b). In contrast, in a tropical winter-dry climate
region (Aw), the model has a relatively low skill score of 0.56 (figure not shown).

(a) Cf in AUS (b) PDFs of Cf in AUS during JJA
Figure 7. (a) Sample of a climate type mask and (b) its normalized temperature probability
density functions (PDFs) in a subtropical (Cf) climate type at Australasia (AUS) domain during
June-July-August (JJA) for the period 1981 to 2010. The PDF skill score of 0.97 is indicated in the
normalized PDF, and the vertical lines indicated the mean of the observed (black line) and simulated
(red dashed line) distributions.

The skill scores based on the normalized PDFs for temperature and precipitation during different
climatological seasons are shown in Figures 8 and 9. The skills of the model in simulating the
normalized PDFs of temperature are relatively high (more than 0.8), especially during March-April-May
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(MAM) shown in Figure 8b with only few domains of low skill score (less than 0.8). The skill of the
model is comparatively low during December-January-February (DJF) shown in Figure 8a with twelve
climatic regions scoring less than 0.8.

(a) December-January-February (DJF) (b) March-April-May (MAM)

(c) June-July-August (JJA) (d) September-October-November (SON)
Figure 8. Temperature skill scores based on the probability density functions (Skillseasons) of REMO
compared to CRU during the four seasons (DJF, MAM, JJA, SON) for the period 1981 to 2010. The x-axis
are the domains (Figure 1) while the y-axis are the climate types (Table 2). The unit is dimensionless.

The skill of the model in simulating the precipitation decreased compared to the temperature skill
scores. More than ten regions have relatively low skills (less than 0.8) with eighteen regions during
MAM (Figure 9b). The model has a low skill in tropical humid (Ar) and tundra (Ft) climate regions,
especially in terms of precipitation.

(a) DJF (b) MAM
Figure 9. Cont.
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(c) JJA (d) SON
Figure 9. The same as Figure 8 but for precipitation.

4. Discussion

The model performance of REMO2015 in regions with similar climate types were evaluated
in terms of the model biases (Figure 6) and skill score based on probability density functions
(Figures 8 and 9). The sources of biases in each climate type regions were investigated and
categorized to systematic errors due to missing or misrepresented atmospheric processes or due
to observational uncertainty. To explain further the sources of these biases, the mean annual cycles
of the current REMO2015 simulations were compared with CRU and other observational datasets
available (GLDASD, GPCC, UDEL, and ERAINT). In addition, the previous CORDEX simulations
from the old domains (EUR-44, EUR-11, AFR-44, WAS-44, NAM-44, and SAM-44) were compared to
the new CORDEX-CORE domains (EUR-22, AFR-22, WAS-22, NAM-22, and SAM-22).

Another source of biases could be inherited by the model from the input boundary forcing
on temperature. The CORDEX-CORE simulations in this study were driven by the ERA-Interim
reanalysis dataset. To compare the reanalysis with the observational dataset, Figure 10 estimates the
mean annual temperature bias of the driving boundary conditions (ERA-Interim) compared to the
CRU observational dataset.

Figure 10. Mean annual temperature bias [K] of the ERA-Interim reanalysis (ERAINT) against the
Climatic Research Unit (CRU) observational dataset for the period 1981 to 2010.

The biases of ERA-Interim compared to CRU ranges from −5 to +5 K. The warm biases are located
in Namib Desert in Africa, coasts of Yemen and Oman, and the eastern regions of Russia. In these
regions of Russia, the station density is low [64]; hence, the biases are due to observational uncertainty.
The cold biases of ERA-Interim compared to CRU are located in central regions of the African continent,
the Himalayas, Indonesia, Bolivia, northern regions of South America, and Greenland. In some cases,
the stations used in CRU were insufficient reproducing a known bias such as in the Namib Desert,
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near the coast of Africa [65]. The location of these biases are useful, however, in identifying the regions
where the REMO simulations have inherent biases from their input driving fields.

In the following subsections, we discuss the sources of errors using the climate types derived
from the Köppen–Trewartha Climate Classification.

4.1. Tropical Climates

The tropical climate types are found in the seven model domains. In a tropical humid climate
(Ar), REMO has a tendency to have a cold and dry bias in SEA while it has a cold and wet bias in AUS.
The cold bias in SEA is lower than in AUS. The cold bias especially over the western part of Indonesia is
mainly due to the driving input boundary conditions (Figure 10) and as evidently shown in the annual
mean cycle of the reanalysis (ERAINT) in Figure 11. In these two domains (AUS and SEA), a cold bias
is inherent from the input boundary forcing (ERAINT) and the model (SEA-22/AUS-22 REMO2015)
simulated the mean annual cycle closer to the other observational datasets (GLDASD, UDEL), which
was still colder by about 1 °C than the CRU dataset. Note that the Ar region in SEA covered a larger
area than AUS (see Table 5).

(a) SEA (b) AUS
Figure 11. Mean annual temperature cycles for tropical humid (Ar) climate type in SEA and AUS for the
period from 1981 to 2010. The CRU and other observational (GLDASD, UDEL) and reanalysis (ERAINT)
datasets are depicted with black and gray lines. The REMO model (SEA-22/AUS-22 REMO2015) are
shown with red lines. The dashed lines indicate similar native resolution (0.22 and 0.25).

The opposing wet and dry bias in Figure 12 are possibly due to the latitude-dependent parameters
in these two domains. The AUS domain, which is predominantly located in the mid-latitudes, uses the
default parameters for ZDLAND, while the SEA domain uses the modified (larger) ZDLAND for the
tropics (Table 1). This effect can also be seen in comparison of the results for SAM (wet bias, standard
ZDLAND) and CAM (dry bias, larger ZDLAND). While there are many processes included in the
convection scheme, the performance seems to be quite sensitive to ZDLAND. Using a large value for
ZDLAND, the rainfall is suppressed because it takes longer to reach a cloud height from which rain
can fall. Using the small standard ZDLAND has the opposite effect. A comprehensive study on this
feature is needed, which also should include the analysis at daily and sub-daily frequency.
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(a) SEA (b) AUS
Figure 12. Same as in Figure 11 but for the mean annual precipitation cycles. The Global Precipitation
Climatology Centre (GPCC) observational dataset is additionally included.

In a tropical with dry “winters” climate (Aw, e.g., CAM in Figure 5a and SAM), the input
boundary forcing has a cold mean annual bias in the northern region of South America (Figure 10);
however, REMO tends to simulate a warm mean annual bias in both SAM and CAM domains
(Figure 6a). Compared to the previous CORDEX study (SAM-44), the CORDEX-CORE simulation
(SAM-22) follows the same mean annual cycle of temperature and both SAM-22 and SAM-44
simulations have a warm bias of almost 2 K during austral spring from September to November
(figure not shown). Although the land surface parameters were adjusted [54] to represent the
Amazon conditions, REMO missed representing the region. This misrepresentation of the land surface
conditions could be solved in future studies by using a dynamic vegetation scheme [38]. In addition,
REMO has a wet (Figure 13a) bias in SAM only during January to March while it has a slightly dry
(Figure 13b) bias in CAM throughout the year. The opposing wet and dry biases in SAM and CAM
(Figure 13), respectively, are possibly due to the different latitude-dependent parameters of the two
domains (Table 1). In the SAM domain, the wet bias occurs, especially during the austral summer
(DJF), where mesoscale convective systems are more active [66].

(a) SAM (b) CAM
Figure 13. Mean annual precipitation cycles for Aw in SAM and CAM. The CRU and other
observational (GLDASD, GPCC, UDEL) datasets are depicted with black and gray lines. The REMO
model (SAM-44/SAM-22/CAM-22 REMO2015) is shown with red lines. The dashed lines indicate
similar native resolution (0.22 and 0.25). Monthly values are averaged over the common period from
1989 to 2008 (1981 to 2010) for SAM (CAM).

4.2. Dry Climates

Except for SEA, most of the domains contain the dry climate types. In the regions with a
semi-arid (BS) climate type, REMO has generally a warm bias, which indicates some missing processes
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misrepresented in this climate type that is a transition between the arid and tropical climate types.
REMO has a warm and slightly dry bias in AFR and WAS domains as shown in Figure 6. REMO has a
warm and wet bias in NAM, SAM, CAS, EAS, and AUS domains.

In the regions with the arid (BW) climate type or desert regions, REMO has the warmest biases in
EAS and AUS as shown in Figure 6a. This warm bias in this climate type region occurred throughout
the year (Figure 14). One possible source of this bias is the warm bias of the driving field (ERA-Interim)
compared to CRU especially during summer (JJA in EAS and DJF in AUS). A study investigating the
CORDEX-Australasia RCM ensemble at 50 km using the Australian Gridded Climate Data [67] showed
that most models in the AUS domain show a cold bias in the daily maximum temperature (ensemble
mean of about −1 to −2 K), while the daily minimum temperature was mainly overestimated with
some exceptions [63]. A mean temperature comparison was not made due to the limitations of the
observational dataset, but the REMO results over Australia were comparable within the range of other
RCMs.

(a) EAS (b) AUS
Figure 14. Mean annual temperature cycles for arid (BW) climate type in EAS and AUS. The CRU and
other observational (GLDASD, UDEL) and reanalysis (ERAINT) datasets are depicted with black and
gray lines. The REMO model (EAS-22/AUS-22 REMO2015) is shown with red lines. The dashed lines
indicate similar native resolution (0.22 and 0.25). Monthly values are averaged over the period from
1981 to 2010.

The warm and dry bias in EAS corresponds to a missing process over desert regions where the
precipitation especially during JJA were underestimated in REMO (Figure 15a). Precipitation is also
suppressed with the higher cloud height in EAS compared to AUS, where a wet bias occurs especially
during austral summer (DJF), as shown in Figure 15b.

(a) EAS (b) AUS
Figure 15. Same as in Figure 14 but for the mean annual precipitation cycles. The Global Precipitation
Climatology Centre (GPCC) observational dataset is additionally included.
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The choice of domain is one of the possible sources of biases. REMO results indicated a cold
and wet bias in the regions with BW climate type over EUR domain, but this is mainly located on
the African continent, which is located at the southern border of the EUR domain. This cold bias is
reduced in the AFR domain; however, the BW region is larger in AFR than in EUR (see Table 5).

For dry regions such as the Sahara desert, the REMO simulations tend to have a cold and wet bias
(Figure 3). One of the factors that contribute to this cold bias is too many clouds reproduced by REMO
resulting in less net surface solar radiation (figure not shown). Another possible factor is the missing
coupled aerosol-cloud interaction, which some other modelling studies recommended to use due to
the active dust aerosols in this region (e.g., [68]). This missing interaction could also explain the biases
occurring in other deserts such as Namib and Patagonia.

4.3. Subtropical Climates

All of the ten model domains contain the subtropical humid (Cf) climate type. REMO-simulated
results have a warm and dry bias in EUR, AFR, and WAS domains, but the REMO results have a warm
and wet bias in NAM, CAS, AUS, and EAS domains. In SAM and CAM, temperature biases are quite
low while the precipitation is overestimated. The precipitation biases are relatively low in this climate
zone ranging from −15% to 56%. The highest temperature biases are similar regions in an overlapping
domains of WAS (+1.04 K) and EAS (+0.91 K), which was still below the temporal variability (STD) of
the domains (see Table 3).

One of the sources of biases in this climate region is possibly due to the large-scale dynamics
such as monsoonal processes (e.g. [8]). In WAS, although the skill of the model in simulating the
temperature distributions in Cf regions over WAS were relatively high, but it was relatively low in
terms of precipitation distributions especially during DJF and MAM. The shift in the precipitation
mean annual cycle (Figure 16b) depicts an early onset of the monsoon in the REMO simulations. This
early onset of the monsoon could possibly be due to the warm biases of both the REMO simulations
(WAS-44 REMO2009 and WAS-22 REMO2015) shown in Figure 16a.

(a) Temperature (b) Precipitation
Figure 16. Mean annual temperature and precipitation cycles for subtropical humid (Cf) climate
type in WAS for the period from 1989 to 2008. The CRU and other observational (GLDASD, GPCC,
UDEL) and reanalysis (ERAINT) datasets are depicted with black and gray lines. The REMO model
(WAS-44/WAS-22 REMO2015) are shown with red lines. The dashed lines indicate similar native
resolution (0.22° and 0.25°).

In subtropical regions producing a wet summer and dry winter or Cs climate type, this regions
are significantly present (area more than 5%) only in the EUR domain. The cold and dry bias of the
model compared to the observational datasets is relatively low, and the Skillseasons is relatively high
except for summer temperature (Figure 8c), indicating that the model represents the Cs climate type
relatively well.
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4.4. Temperate Climates

The climate of the higher latitude regions is mainly dependent on temperature (thermal zones).
The dominant climate type in EUR and NAM is the temperate continental (Dc) climate type, which
accounts for more than 25% of its domain land area (Table 5). In EUR, where the model has been
intensively developed and already higher resolution of 12.5 km is existing (EUR-11), the mean annual
temperature and precipitation biases are relatively low and the PDF skill is relatively high except for
precipitation. In regions with the Dc climate type (Figure 17), the summer precipitation averages about
2 mm/day, and the model reproduces excess precipitation throughout the year.

(a) Temperature (b) Precipitation
Figure 17. Mean annual temperature and precipitation cycles for temperate continental (Dc) in EUR
for the common period from 1989 to 2008. The CRU and other observational (GLDASD, GPCC, UDEL)
and reanalysis (ERAINT) datasets are depicted with black and gray lines. The REMO model (EUR-44
REMO2009 and EUR-11 REMO2015) is shown with red lines. The dashed lines indicate similar native
resolution (0.22° and 0.25°). The dotted line indicate the highest spatial resolution of 0.11°.

For regions located near the ocean, the climate exhibits an oceanic temperate type (Do) and
is significantly present (area more than 5%) only in the EUR domain. The warm and wet bias is
relatively low and the Skillseasons is relatively high (close to unity) throughout the year (Figures 8 and 9),
indicating that the model represents the Do climate type well.

4.5. Sub-Arctic or Boreal Climates

The continental sub-arctic or boreal climate type (Ec) occurred in EUR, NAM, CAS, and EAS
domains. In these regions, the sources of bias stem from the input boundary forcings (Figure 10).
In the EAS domain, Ec is the dominant climate type (more than 19% of the land area) and REMO
has a relatively low warm bias of about +0.7 K. The temperature skill of the model measured by its
normalized PDF was relatively high although a warm bias of the input driving fields is evident during
winter (Figure 18a); however, the precipitation skill is relatively low during winter and spring where
the observational uncertainty is rather high (especially during JJA) as shown in Figure 18b. In these
climate regions, the precipitation amount is relatively low and station density in the low-populated
mountainous and desert areas of the west and northwest of China [69].
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(a) Temperature [°C] (b) Precipitation [mm/day]
Figure 18. Mean annual temperature and precipitation cycles for boreal (Ec) climate type in EAS for the
period from 1981 to 2010. The CRU and other observational (GLDASD, GPCC, UDEL) and reanalysis
(ERAINT) datasets are depicted with black and gray lines. The REMO model (EAS-22 REMO2015) is
shown with red lines. The dashed lines indicate similar native resolution (0.22° and 0.25°).

4.6. Polar Climates

The polar climates with tundra or highland (Ft) are located in WAS, NAM, CAS, and EAS domains.
The high mountain regions of Himalayas are present in the WAS, CAS, and EAS domains, where REMO
has a very cold and very wet bias. One main source of the cold bias is due to the ERA-Interim boundary
forcing, which already has a large cold bias of more than −4 K (Figure 10). Although the biases were
within the range of the domain temporal and spatial variability (Tables 3 and 4), the low skill of
simulating the temperature and precipitation PDFs is largely attributed to the complex orography.
In these regions, the model tends to produce the cold bias of and wet bias throughout the year
(Figure 19). Another known source of error is the observed precipitation undercatch in high latitudes
and mountainous regions where errors could reach up to 80% [70]. Although some global datasets
such as GPCC attempted to reduce this error, undercatch correction remains a challenge in global
datasets due to unavailable important information such as gauge characteristics and exposure [71].
Further analysis of these regions’ station data or other available high resolution observational datasets
would be needed in these regions.

(a) Temperature [°C] (b) Precipitation [mm/day]
Figure 19. Same as Figure 18 but for tundra (Ft) climate type in Central Asia (CAS).

5. Conclusions

In this study, the ability of the latest REMO regional climate model (REMO2015) to simulate
the present climate in all inhabited regions world-wide was quantified in terms of biases and skill
compared with observations within the CORDEX-CORE framework. The high resolution simulations
of 0.22° (about 25 km) were driven by the ERA-Interim reanalysis over the following domains: Europe,
Africa, South Asia, North America, South America, Central America, Central Asia, East Asia, Southeast
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Asia, and Australasia and the period of analysis is from 1981 to 2010. The new datasets were also
compared with existing simulations of REMO from the CORDEX framework. The selected regions
of analysis were based on the Koeppen–Trewartha Climate Classfication where ten of the fourteen
climate types were used.

Based on the biases (Figure 6) and seasonal skill (Figures 8 and 9), REMO2015 represents
precipitation and temperature relatively well in most climate type regions of EUR, NAM, CAM,
and SEA. The simulated temperature and precipitation in subtropical (Cf, Cs) and temperate (Dc, Do)
climate regions have relatively low biases (about ±0.5 K and ±50%). The low biases especially in EUR
indicate that the model has been intensively used and developed in this domain; however, most of the
model biases in the other domains are within the range of the observed variability (see Tables 3 and 4).

The sources of model biases and low model skills were identified as missing or misrepresented
processes in tropical and dry regions, observational uncertainty especially in less populated regions
such as in polar regions and high mountains, and inherent biases from the input boundary forcing.
The discussion on the input boundary forcing was crucial in identifying the regions where the
ERA-Interim already has an inherent bias compared to the CRU. Two of the challenging domains
were the CAS and EAS, where the cloud height parameter (ZDLAND) was increased compared to the
default values. In these two large domains, the simulated temperature and precipitation in regions with
dry climates (BW) were too warm and slightly dry, which indicated a suppressed production of rainfall
and warmer atmosphere. As discussed in regions with tropical humid (Ar) climate types (Section 4.1),
more cloud water is needed for the formation of rainfall using the large values for ZDLAND in SEA
compared to small values for ZDLAND in AUS. Further sensitivity studies are recommended in these
large domains that contain regions with several climate types, especially in the overlapping regions.
In regions with polar climates (Ft), the simulated temperature and precipitation were very cold and
very wet, but this was possibly due to the input boundary forcing and observational uncertainty
discussed in Section 4.6.

In order to decouple the sources of biases for each domain, further sensitivity studies are planned
to tackle the regions with high model biases especially in the tropical and polar climates. A regional
analysis for each domain is needed in pinpointing the possible causes of biases and low model
skill such as misrepresented process of the flow regimes, environmental effects (e.g., topography),
and possible missing land-atmosphere-ocean processes (e.g., vegetation feedbacks, coastal regions).
Investigating the biases of the model in each domain could facilitate further development of the model.
However, as shown in this present study, quantifying the REMO model biases and skill provided the
necessary information to identify the regions where the model has a high or low skill. We have seen
that REMO is able to sufficiently represent the climate of the regions using the Köppen–Trewartha
climate classification and could be further used for climate change studies.
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